Electrical and thermal transport in single nickel nanowire

Citation: Applied Physics Letters 92, 063101 (2008); doi: 10.1063/1.2839572
View online: http://dx.doi.org/10.1063/1.2839572
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/92/6?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles

Strain effect analysis on the thermoelectric figure of merit in n-type Si/Ge nanocomposites

Theoretical study of the electrical transport of nickel nanowires and a single atomic chain
J. Appl. Phys. 102, 013702 (2007); 10.1063/1.2750413

Thermal and electrical conductivity of a suspended platinum nanofilm
Appl. Phys. Lett. 86, 171912 (2005); 10.1063/1.1921350

Electrical transport in boron nanowires
Electrical and thermal transport in single nickel nanowire

M. N. Ou,1,a T. J. Yang,1 S. R. Harutyunyan,2,a Y. Y. Chen,3,b C. D. Chen,3 and S. J. Lai3

1Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
2Institute for Physical Research, NAS, Ashtarak-2, Armenia
3Institute of Physics, Academia Sinica, Taipei, Taiwan, Republic of China

(Received 20 August 2007; accepted 8 November 2007; published online 11 February 2008)

The thermal conductivity and electrical resistivity of a suspended nickel nanowire have been measured for $T=15–300$ K. The temperature dependence of the thermal conductivity and the Lorentz number strongly differ from the bulk. The comparison of the transports in the Ni nanowire shows, that at temperatures $75<T<300$ K Wiedemann–Franz (WF) law holds, whereas at temperatures $T<75$ K the WF law is violated, indicating that thermal current in this material is suppressed more than electrical current. The results are explained by combined effect of confined dimension, enhanced disorder, and grown contribution of N-processes. © 2008 American Institute of Physics. [DOI: 10.1063/1.2839572]

Much attention has been focused on magnetic nanowires in recent years1–8 due to their great importance in fundamental low-dimensional physics as well as in fabrication of nanoscale magnetic devices. To date, most of transport studies on ferromagnetic nanowires concentrated on electrical resistivity and magnetoresistivity, whereas the knowledge on heat transport on this material is suffering from the lack of information. This paper presents the study of electrical and thermal transport of suspended single nickel (Ni) nanowire.

Characteristic property of nanocrystalline materials, including nanowires, is the enhanced numbers of interfaces and random atomic arrangements, representing enhanced disorder. In consequence, the effective number of conduction electrons are limited to those, which pass or tunnel through all the boundaries along the mean free path (mfp), resulting in additional resistivity.9–11 The grain size and transverse dimensions in nanowires are comparable to the mfp leading to the enhanced contribution of normal (N-processes) electron-phonon and electron-electron scattering at low temperatures12 because in this case each scattering act is followed by a collision with the surface. There is also a considerable s-d scattering in ferromagnets, particularly in Ni,13,14 which, for its turn, increases the number of N-processes, leading to redistribution of energy between hot and cold electrons. Thus, in nanowires the behavior of charge current may differ from the behavior of heat current, even if the heat carriers are also charged particles, giving rise to the violation of Wiedemann–Franz law (WF). Recently, the behavior of the Lorenz number (L) in disordered systems became the topic of several theoretical treatments, which suggested the deviation from the WF law in nonmagnetic granular metals,15,16 and the correction ΔL of Lorenz number have to be positive.

The fabrication process of the suspended single nickel nanowire (Ni-NW) (100 nm \times 180 nm \times 35 μm) includes: (1) thermal evaporation of Ni film and patterning it into strip with four electric leads by means of e-beam lithography and (2) the formation of a groove under the Ni strip by etching of a Si/Si$_3$N$_4$ substrate to thermally isolate the nanowire from the substrate. The Ni-NW is shown in Fig. 1. The junction-free connection of electrodes (the leads) prevents the undesirable heating of contact areas on the nanowire during the measurements. The thermal and electrical conductivities of the nanowire was measured simultaneously by means of “3ω self heating” method.17 The whole set of arrangement was placed in a He$_3$ refrigerator which provides a variable temperature in high vacuum environment.

The experimental data of resistivity ρ of the Ni-NW in the temperature region of $0.5–300$ K are shown in Fig. 2. The metallic temperature dependence of resistivity is similar to the bulk but with a larger magnitude of resistivity. The relative ratio of resistivity $\rho(300\text{K})/\rho(4.2\text{K})=2$ is much smaller as compared to the value of 47 for the bulk. Since the wire dimensions are much larger than the mfp of Ni (~ 14 nm),18 the increase in resistivity is conjectured to be the predominant effect of the grain-boundary scattering. The temperature coefficient of resistivity (TCR) is positive in the whole temperature range (inset a in Fig. 2), indicating that the Ni-NW is weakly disordered. At low temperatures T
carrier with the structural defects and by the substantial contribution of the phonon thermal conductivity. In general, thermal conductivity \(k \) is the summation of electronic \(k_E \) and phonon \(k_{ph} \). If the WF law holds, one can obtain the \(k_E \) from the data of \(\rho(T) \) through the relation \(k_E=\frac{L_0}{k_0}T/\rho \). The calculated \(k_E \) for \(T<60 \) \(\text{K} \) is larger than the experimental data \(k_{total} \), indicating the violation of the WF law in this temperature region (Fig. 3).

To compare heat and charge currents the Lorenz number \(L(T) \) of the Ni-NW is calculated and plotted in Fig. 4. It is known that in pure metals at temperatures higher than Debye temperature (\(\theta_D \)) the Lorenz number approaches the Sommerfeld value \(L_0=2.45\times10^{-8} \text{ W} \Omega/\text{K}^2 \), at \(T<\theta_D \) it falls below \(L_0 \) and in the limit of low temperature region \(T\rightarrow0 \) \(\text{K} \), \(L \) returns to \(L_0 \) again. Such kind of behavior of \(L \) was observed for bulk nickel (Fig. 4). Unlike that of the bulk, Lorenz number of the Ni-NW is constant for \(75<T<300 \) \(\text{K} \), although a little higher than the value of \(L_0 \), indicating both dominant electronic thermal conductivity \(k_E \) and large-angle scattering events mostly caused by elastic scattering at the grain boundaries. Based on the weak temperature dependence of electrical resistivity, the contribution to the thermal resistivity due to phonon scattering is relatively small. The small phonon thermal conductivity \(k_{ph} \) is likely the reason for the enhanced value of \(L \) in this temperature region. At \(T<75 \) \(\text{K} \) when \(k_{ph} \) becomes comparable with grain size and transverse dimension of the Ni-NW, the contribution of small-angle scattering (N-process) grows. The small-angle scatterings relax only the heat current, leaving the charge current relatively unaffected, which result in decreasing of the Lorenz number. Since the correction \(\Delta L \) is the combined effects of positive contribution of the disorder \(\Delta L_{dis} \) and negative contribution of the small-angle scattering (ee interaction) \(\Delta L_{ee} \), the variation in \(L(T) \) is mainly depend on the relative weights of the two constituents.

In conclusion, we fabricated single suspended nickel nanowire and measured its electrical and thermal conductivities. The comparison of these two transports in the Ni-NW shows that at temperatures \(75<T<300 \) \(\text{K} \) WF law holds but not for \(T<75 \) \(\text{K} \), indicating that thermal current in this material is suppressed more than electrical current. The results
are explained by combined effect of confined dimension, enhanced disorder and grown contribution of N-processes.

This work was supported by US AFOSR through its Asia Office and the National Research Council of the Republic of China, under Grant No. NSC 96-2120-M-001-003.