Abstract

The goal of this project is to explain the fundamental ideas of precision motion control and set up the experimental modules. From these results, students or operators can learn the core techniques of motion control through two developed experimental setup.

Keywords: interpolator, DDA, man-machine interface.

二、計畫目的：
本計劃是為「機電整合模組化教學改進計畫」之子計畫。本計畫著重於讓使用者瞭解 (1) 插值器 (2) 人機介面，經由這兩個單元實驗後，使用者能較深入瞭解精密運動控制系統之基本動作原理。並了解插值器在精密運動控制上的重要性。

人機介面的部份，是以程式模擬 CNC工具機的控制方式，以程式將已編寫完成的 G-M 命令在電腦中執行，並可在螢幕上繪出刀具的運動情形。

三、DDA原理

DDA 的動作原理如下 (Koren, 1983)

\[z(t) = \int_0^t p \, dt = \sum_{i=1}^{k} p_i \Delta t \] (1)

當時間 \(t = k \Delta t \) 時

\[z_k = \sum_{i=1}^{k-1} p_i \Delta t + p_k \Delta t \]

\[= z_{k-1} + \Delta z_k \] (2)

其中 \(\Delta z_k = p_k \Delta t \)

同様的也可將 \(p_k \) 寫為

\[p_k = p_{k-1} \pm \Delta p_k \] (3)

則 \(\Delta p \) 與 \(\Delta \) 必須為 0 或 1，當 \(p \) 被儲存在 n-bit
計數器時，需滿足

\[\frac{p_k}{2^n} < 1 \] \hspace{1cm} (4)

當增量量 \(p \)，儲存於 \(n \)-bit，即最大值為 \(q \)的計數器時

\[q_{k-1} + p_k \Delta \tau = q_k \] \hspace{1cm} (5)

在二進制情形下 \(\Delta \tau \) 必為 0 或 1，可改寫成

\[\Delta \tau_k = 2^{-m} p_k = C p_k \Delta t \] \hspace{1cm} (6)

直線插值器

如圖二所示，DDA3 中，輸入為頻率

\(f \cdot p = \text{FRN} \)，FRN 定義為

\[\text{FRN} = 10 \frac{V}{L} \] \hspace{1cm} (7)

其中

\[L = \sqrt{a^2 + b^2} \] \hspace{1cm} (8)

DDA3 之輸出 \(f_0 \) 可寫為:

\[f_0 = C \times \text{FRN} \]

\[= f \cdot \frac{10V}{L} \] \hspace{1cm} (9)

將 \(f_0 \) 達接到 DDA1 與 DDA2 做為輸入，則

各軸之速度

\[V_x = \frac{\Delta x}{\Delta t} = Ca \]

\[V_y = \frac{\Delta y}{\Delta t} = Cb \] \hspace{1cm} (10)

圈弧運動

假設有一圓滿足下面關係式

\[(X - R)^2 + Y^2 = R^2 \] \hspace{1cm} (11)

其中 \(R \) 為圓弧半徑，可將 \(X \)、\(Y \) 關係式寫為:

\[X = R(1 - \cos \omega t) \]

\[Y = R\sin \omega t \] \hspace{1cm} (12)

對時間取微分可得，其速度關係式:

\[dX = \omega R \sin \omega t \] \hspace{1cm} (13)

\[dY = \omega R \cos \omega t \]

則 DDA 之輸出可表示為:

\[\Delta \tau_x = CR \sin \omega t \Delta t \] \hspace{1cm} (14)

\[\Delta \tau_y = CR \cos \omega t \Delta t \]

在加法器中，p 每次的增量各別為:

\[\Delta \tau_x = d(R \sin \omega t) \]

\[\Delta \tau_y = -d(R \cos \omega t) \] \hspace{1cm} (15)

在圈弧運動中

\[\text{FRN} = 10 \frac{V}{R} \] \hspace{1cm} (16)

其中 \(V \) 為圈弧運動之切線速度，其單位為

(BLUs / 分鐘)，\(R \) 為圈弧運動之半徑，

單位為（BLUs），可得

\[f_0 = \frac{10V}{2^n R} \] \hspace{1cm} (17)

其中 \(m \) 為 DDA3 中加法器的 bit 數，將 \(f_0 \) 接到 DDA1 與 DDA2 做為 Clock 的 input，可
得 X、Y 軸各別速度，單位為（BLUs／秒）
\[
V_y = \frac{\Delta z_i}{\Delta t} = CR \cos \theta t \tag{18.}
\]
\[
V_x = \frac{\Delta z_j}{\Delta t} = CR \sin \theta t
\]

加減速控制

加減速功能的關鍵在減速的時機，而要知道減速時機便先要知道速度完全需
的脈衝。設 X 軸要走長為 Lx 的距離，
DDA3 輸出 q_max 次的脈衝便可使 X 軸到達

\[
q_{\text{max}} \times \frac{L_y}{q_{\text{max}}} = L_y
\]

輸入脈衝經除頻得到 Lx 由此可知 DDA3
輸出的脈衝數和速度無關。而 DDA3 要輸
出 q_{\text{max}} 個脈衝，系統必須輸

\[
\frac{q_{\text{max}}}{FRN} \times \frac{L_y}{q_{\text{max}}} = \frac{L_y}{FRN} \tag{19}
\]

因此，在進行加速控制時，是將加法器 p
逐次增加，直到 p = f 為止，即表示加速已
到達最高速度。在進行減速控制時，需有
另一計算脈衝數的加法器 c，當加法器

\[
c \geq q_{\text{max}} - f
\]

將加法器 p 逐次減小，直到 p = 0 為止，即
表示加速已到達 0，且已到達終點。

四，軟體插值器

假設一圓弧運動，其切線速度為 V，
則 X、Y 軸之速度可表示為：

\[
\begin{align*}
V_x(t) &= V \sin \theta(t) \\
V_y(t) &= V \cos \theta(t)
\end{align*}
\]

由三角之疊代公式可得：

\[
\begin{align*}
\cos \theta(t + 1) &= A \cos \theta(t) - B \sin \theta(t) \\
\sin \theta(t + 1) &= A \sin \theta(t) + B \cos \theta(t)
\end{align*}
\]

其中

\[
A = \cos \alpha \\
B = \sin \alpha \\
\theta(t + 1) = \theta(t) + \alpha
\]

則 X(i+1)、Y(i+1) 可寫為

\[
\begin{align*}
X(i + 1) &= R(i) \cos \theta(i + 1) \\
Y(i + 1) &= R(i) \sin \theta(i + 1)
\end{align*}
\]

將(23)式代入(24)式可得

\[
\begin{align*}
X(i + 1) &= AX(i) - BY(i) \\
Y(i + 1) &= Ay(i) + BX(i)
\end{align*}
\]

插值器計算 X(i), Y(i) 的下一個目標
點 X(i+1), Y(i+1)，則此段的增加量可表示
為

\[
\begin{align*}
DX(i) &= X(i + 1) - X(i) \\
DY(i) &= Y(i + 1) - Y(i)
\end{align*}
\]

此段的速度

\[
\begin{align*}
V_x(i) &= \frac{V \cdot DX(i)}{DS(i)} \\
V_y(i) &= \frac{V \cdot DY(i)}{DS(i)}
\end{align*}
\]

此處

\[
DS(i) = \sqrt{(DX^2(i) + DY^2(i))}
\]

由於 \alpha 相當小，故 DS 可近似為為段弧長 R
\alpha，因此，X、Y 軸速度表示可簡化為

\[
\begin{align*}
V_x(i) &= K \cdot DX(i) \\
V_y(i) &= K \cdot DY(i)
\end{align*}
\]

\[
\begin{align*}
V_x(t) &= V_y(t) = 0 \\
V_x(i) &= K DX(i) \\
V_y(i) &= K DY(i)
\end{align*}
\]

$$K = \frac{V}{R \alpha}$$ 此處系數 K 是一個固定值，它每次須對不同的圓弧加以計算。

![圖四、徑向及弦切誤差](image)

參考圖四，徑向誤差 ER，其定義為

$$ER(i) = R(i) - R = \sqrt{X^2(i) + Y^2(i)} - R \quad (29)$$

弦切誤差 EH，定義為

$$EH(i) = R - R(i) \cos \frac{\alpha}{2} \quad (30)$$

將(28)式展開，將式中之 X, Y 分別以 $X = R \cos \alpha$，$Y = R \sin \alpha$ 代入，則

$$ER(i) = i(C - 1)R \quad (31)$$

其中

$$C = \sqrt{A^2 + B^2} \quad (32)$$

由三角公式

$$\cos \frac{\alpha}{2} = \sqrt{\frac{1 + \cos \alpha}{2}} = \sqrt{\frac{1 + A}{2}} \quad (33)$$

可將(2-42)式寫為

$$EH(i) = R - R(i) \sqrt{\frac{1 + A}{2}} \quad (34)$$

Improved Tustin Method

在 Tustin Method 中，其軸向誤差 ER 為 0。在一般型的機器設備中可允許較大的誤，即 ER 為 1BLU 的最大軸向誤差

$$A = \cos \alpha = \frac{1 - (\alpha / 2)^2}{1 + (\alpha / 2)^2} \quad (35)$$

$$B = \sin \alpha = \frac{\alpha}{1 + (\alpha / 2)^2} \quad (36)$$

可得徑向誤差 $ER(i) = 0$， ERR(i) = 0，即

$$R(i) = R$$

弦切誤差可由(34)及(35)式求得

$$EH = R - \frac{R}{\sqrt{1 + (\alpha / 2)^2}} \quad (37)$$

若 α 相當小，則弦切誤差可得近似結果

$$EH = \frac{\alpha^2}{\alpha^2 + 8}R \quad (38)$$

在允許弦切誤差 EH 最大值為 1BLU 情形下，可反推求得

$$\alpha = \sqrt{\frac{8}{R - 1}} \approx \sqrt{\frac{8}{R}} \quad (39)$$

Tustin Method

可用近似的方式求出 $\cos \alpha$ 與 $\sin \alpha$，可寫成下式：

$$\cos \frac{\alpha}{2} = \frac{R - 1}{R + 1} \quad (39)$$

由圖五可得

![圖五、誤差控制在 1 BLU 之插值路徑](image)
\[
\frac{R + 1}{R - 1} = \sqrt{1 + \frac{2}{1 + A}} \\
\cong \sqrt{1 + \frac{2}{1 + (\alpha/2)^2}} \\
\cong 1 + \frac{\alpha^2}{8} \\
\]
(40)

可反推得角度 \(\alpha \)
\[
\alpha = \sqrt{\frac{16}{R - 1}} = \frac{4}{\sqrt{R}} \\
(41)
\]

五、教學實驗

實驗一 插值器原理

程式 DDA.exe 如圖六所示，其目的在於表現 DDA 之動作原理。當使用者執行此程式時將可選擇無加速度及有加速度兩種情形。無加速度模式下，使用者可輸入 DDA1 與 DDA2 中的 p 值；有加速度模式下，程式將直接設定 DDA1 之 p 為 1。

之後，將有柱狀圖表示加法器中的數值大小，當 overflow 時，超出的部份將以紅色表示，右側之方框為輸入之 Clock 與輸入之脈衝之對應圖形。如此，可令使用者充分了解 DDA 之真實動作情況。

實驗二 人機介面之操作

將其各部份功能解說如下：

1. 刀具位置及速度顯示視窗：
 本視窗用以顯示刀具目前相對於原點的所在位置，並顯示刀具運動之速度

2. 刀具路徑顯示視窗：
 顯示刀具之運動軌跡，用以讓使用者明白刀具運動之情形

3. 自動與手動模式顯示區
 當使用者選擇自動模式時，自動模式的顯示燈會亮起；反之，當選擇手動模式時，手動模式顯示燈會亮起，自動模式顯示燈會熄滅。內定值為自動模式

4. 手動控制區
 當選擇手動模式時，本控制區方可動作。

5. 命令顯示視窗
 在執行自動模式時，命令顯示視窗將顯示目前執行中的 command ，及接下來的兩行命令，並以不同顏色表示

了解人機介面之各部份功能後，將進行下列兩個實驗，讓使用者充分明白人機介面在自動模式與手動模式下之操作情形。
自動模式
1. 執行 Code.exe 程式，進入人機介面模擬程式。
2. 程式將於 Command 顯示視窗以閃爍文字的方式提示使用者選擇自動模式或手動模式。
3. 按下 ‘a’ 鍵後，程式進入自動模式狀態
4. 等待使用者按下任意鍵後開始執行 Code.cnc 中的內容，若使用者想修改自動模式之刀具運動情形，可修改 Code.cnc之內容。
5. Code.cnc之內容執行完畢後，將於 Command 顯示視窗以閃爍文字的方式提示使用者按下任意鍵繼續程式，或按下 ‘q’ 跳出程式。

手動模式
1. 執行 Code.exe 程式，進入人機介面模擬程式。
2. 程式將於 Command 顯示視窗以閃爍文字的方式提示使用者選擇自動模式或手動模式。
3. 按下 ‘m’ 鍵後，程式進入手動模式狀態
4.

如圖八所示，依據鍵盤數字鍵的排列方式，表示為對刀具運動方向的控制，由 1 到 9 對應圖中之顯示，分別為左下、下、右下、左、Zero、右、左上、上及右上。

使用者可任意移動刀具至任何運動範圍內的位置，當刀具運動範圍超過允許範圍後，刀具將被限制在原位置。

當使用者按下 Zero 鍵後，將清除刀具路徑顯示視窗之內容，並將刀具位置規零。

6. 按下 ‘q’ 跳出手動模式

六、結論

由於 CNC 的發展已有近四十年的歷史，專有的技術上以相當成熟。然而，對於插值器的核心技術，以及如何教導學生能簡潔的了解 CNC 操作，本研究計畫提出一系列的教學實驗單元。在過去，我們已完成相關之精密度量測及改良之實驗單元。在本年度計畫中，我們完成了 DDA 及人機界面的實驗單元，達成原訂之教學研究目標。此兩個實驗，可使學生迅速的明瞭精密運動的關鍵技術。有關運動精密度的控制，可參考 (Hsu and Houng, 1996)。而有關人機界面中的立體動畫切削模擬，可參考 (Hsu and Yang, 1993)。這些以發表的成果，均對學生在研究精密運動控制有所助益。

七、參考文獻
