Effects of gonadotropins (Gonal-F and Puregon) on human endometrial cell proliferation in vitro

Chi-Chen Chang a,†, Yao-Yuan Hsiehb,c,†, Kung-Hao Hsuc,†, Chih-Sheng Lin a,⁎

a Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
b School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
c Division of Infertility Clinic, Hsieh Yao-Yuan Women's Hospital, Taichung, Taiwan

Accepted 24 August 2009

Abstract

Condensation: Both Gonal-F and Puregon, especially in their high-dosage administration, might inhibit the endometrial cell proliferation in the initial 48-hour culture. After 72-hour culture, Gonal-F persisted the inhibition of the endometrial growth, whereas Puregon reversed its effect to enhance endometrial growth.

Objectives: Endometrial proliferation or regeneration during menstrual cycle is regulated by sexual hormones. However, the effect of gonadotropins on the endometrial cell growth remains obscure. Herein, we aimed to investigate the effects of recombinant follicle-stimulating hormones (r-FSHs) (Gonal-F and Puregon) on the proliferation of human endometrial cells in vitro.

Materials and Methods: Human endometrial cells (RL95-2 cells) were obtained commercially and cultured in the serum-containing media in the presence of r-FSHs (Gonal-F and Puregon at concentrations of 0 mIU/mL, 200 mIU/mL, 400 mIU/mL, and 600 mIU/mL) up to 72 hours. According to the gonadotropin concentrations, all cultured endometrial cells were divided into four groups: (1) 0 mIU/mL (control); (2) 200 mIU/mL; (3) 400 mIU/mL; and (4) 600 mIU/mL. After 72-hour culture, endometrial cell proliferations were assessed overnight by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The influences of different r-FSH agents and dosages on endometrial cell proliferation in each group were evaluated and compared.

Results: In the four Gonal-F groups, the cell absorption (control and 200 mIU/mL, 400 mIU/mL, and 600 mIU/mL Gonal-F) after 24/48/72-hour cultures were as follows: (1) 0.57/0.7/0.82; (2) 0.56/0.66/0.78; (3) 0.55/0.64/0.77; and (4) 0.51/0.61/0.78. After 48 hours, higher dosage of Gonal-F appeared to significantly inhibit the endometrial cell proliferation. After 72-hour culture, all three dosages of Gonal-F appeared to inhibit the endometrial cell proliferation similarly. In Puregon groups, the cell absorptions were as follows: (1) 0.62/0.53/0.62; (2) 0.61/0.5/0.66; (3) 0.61/0.49/0.66; and (4) 0.64/0.49/0.66. Puregon administration displayed initial inhibition and subsequent stimulation effects on the endometrial cells.

Conclusions: Both Gonal-F and Puregon, especially in their high-dosage administration, appeared to inhibit the endometrial cell proliferation in the initial 48-hour culture. After 72-hour culture, Gonal-F persisted the inhibition of the endometrium, whereas Puregon reversed its effect by enhancing the endometrial growth. The differences might be because of the different formulations or molecular structures existing between alpha and beta follitropins.

Keywords: Endometrium; Gonadotropin; Gonal-F; IVF; Puregon

* Corresponding author. Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 300, Taiwan.
E-mail address: lincs@mail.nctu.edu.tw (C.-S. Lin).
† Chi-Chen Chang, Yao-Yuan Hsieh, and Kung-Hao Hsu contributed equally to this work.

Copyright © 2011, Taiwan Association of Obstetrics & Gynecology. Published by Elsevier Taiwan LLC. All rights reserved.

1028-4559/$ - see front matter Copyright © 2011, Taiwan Association of Obstetrics & Gynecology. Published by Elsevier Taiwan LLC. All rights reserved. doi:10.1016/j.tjog.2009.08.003
Introduction

Adequate endometrial development is one of the factors that play a significant role in early pregnancy. Endometrial growth is thought to depend on numerous factors, including hormones, lifestyle, uterine artery blood flow, posture, and others. Endometrial proliferation or regeneration during menstrual cycle is regulated by sexual hormones. A change in endometrial pattern and a decrease in endometrial and sub-endometrial blood flows are critical for the subsequent implantation of embryos. During the menstrual cycle, the endometrium undergoes cyclic proliferative and secretory changes in preparation for implantation. If this preparation is not sufficient, the implantation will fail.

The importance of endometrial development in in vitro fertilization (IVF) outcome has been previously reported. In the follicular phase, the growing follicles produce increasing amounts of estradiol that would induce proliferative endometrial changes. After ovulation, the corpus luteum produces progesterone that would initiate secretory changes. If implantation does not occur in the window of implantation, the endometrium will shed once the corpus luteum regresses. Thicker endometrium might improve the pregnancy rate [1]. With certain endometrial abnormalities (e.g. Asherman’s syndrome) that prevent normal endometrial changes from occurring, implantation rates are low and abortion rates are high [2].

Numerous hormones might influence the endometrial proliferation and cyclic changes. Follicle-stimulating hormones (FSHs) have been known to directly act on endometrium, which results in the decidualization of endometrial cells [3]. FSH receptors have not been proven to be present on the human endometrium. However, myometrial and endometrial cancer cells have been known to contain FSH receptors [4,5]. Furthermore, other hormone receptors, such as LH/hCG receptor, have been shown to be present in human endometrium [6–8].

Recombinant FSH (r-FSH) has been routinely used for controlled ovarian hyperstimulation (COH) during assisted reproduction procedures. Two popular r-FSHs, follitropin alpha (Gonal-F; Serono, Rome, Italy) and follitropin beta (Puregon; Organon, Oss, The Netherlands), have been popularly used for years. There are numerous reports comparing their clinical applications in IVF. Most literatures demonstrated their comparable clinical results [9]. However, the effect of these recombinant gonadotropins on the endometrial cell growth remains obscure.

Reviewing the MEDLINE database, no investigators demonstrated the influence of r-FSH on endometrial proliferation. Ku et al [10] demonstrated the inhibitive effects of human menopausal gonadotropin (hMG) and urinary FSH (u-FSH, Metrodin; Serono) on endometrial cell proliferation. Besides this, there is no literature concerning the roles of recombinant gonadotropins in the endometrial proliferation in vivo or in vitro. Herein, we aimed to investigate the effects of r-FSH (Gonal-F and Puregon) on the proliferation of human endometrial cells in vitro. To the best of our knowledge, this is the first report about the related issue.

Materials and methods

Human endometrial carcinoma (RL95-2 cell line) was derived from Food Industry Research and Development Institute. Human endometrial cells were maintained in 90% of a 1:1 mixture of Dulbecco’s Modified Eagle Medium (DMEM) and Ham’s F12 medium containing 1.2 g/L sodium bicarbonate; 5 µg/mL bovine insulin; 15 mM HEPES (Gibco BRL, Gaithersburg, MD, USA); and 10% heat-inactivated fetal bovine serum (Hyclone, Logan, UT, USA). Cell growth was evaluated microscopically with an inverted-phase microscope. Human endometrial cells were cultured in the serum-containing media in the presence or absence of Gonal-F and Puregon for 72 hours.

According to the gonadotropin concentrations, all cultured endometrial cells were divided into four groups: (1) 0 mIU/mL (control); (2) 200 mIU/mL; (3) 400 mIU/mL; and (4) 600 mIU/mL. Human endometrium cells were counted by hemocytometer and seeded in 96-well plates (Corning, NY, USA) at 1 × 10⁴ cells/well to 3 × 10⁴ cells/well. Cells were grown at 37°C with medium alone (control) or 200 mIU/mL, 400 mIU/mL, and 600 mIU/mL of Gonal-F and Puregon. The culture procedures and determination and classification of gonadotropin dosages were modified after referring Ku et al’s work [10].

The Cell Proliferation Kit I assay (Roche Applied Science, 68298 Mannheim, Germany) was used to assess the gonadotropins’ influences on cell growth. After 72-hour culture, endometrial cell proliferations were assessed overnight by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was added to the culture wells for 4 hours, after which the cells were solubilized overnight at 37°C; absorbance at 595 nm was recorded using an enzyme-linked immunosorbent assay plate reader (Bio-Rad, Philadelphia, PA, USA). The influences of different r-FSH agents and dosages on endometrial cell proliferation in each group were evaluated and compared. All experiments were performed in triplicate using eight wells for each treatment. Optical densities were compared between the treatment groups and the controls incubated with medium alone. The intra- and interassay coefficients of variation were less than 5% and 6%, respectively.

Statistical analysis

Cell proliferation data were expressed as ratio influence of control culture proliferation. All results were normalized to cellular protein content, and the data were examined for equal variance and normal distribution before statistical analysis. The mean values were compared by analysis of variance with Fisher’s least significant difference method for comparing groups [11]. Standard errors were within 10% of the mean of replicate wells. A p value less than 0.05 was considered statistically significant.
Results

In the four Gonal-F groups, the cell absorptions (control and 200 mIU/mL, 400 mIU/mL, and 600 mIU/mL Gonal-F) after 24/48/72-hour cultures were listed as follows: (1) 0.57/0.7/0.82; (2) 0.56/0.66/0.78; (3) 0.55/0.64/0.77; and (4) 0.51/0.61/0.78 (Figs. 1A–C). In the first 24 hours, low- or moderate-dosage (200 mIU/mL or 400 mIU/mL) Gonal-F appeared to have nonsignificant influences on the endometrial growth. In contrast, high Gonal-F dosage (600 mIU/mL) appeared to inhibit endometrial growth (Fig. 1A). In 48 hours, cell proliferation appeared to be negatively correlated with the Gonal-F dosage. Higher dosage of Gonal-F appeared to significantly inhibit endometrial cell proliferation (Fig. 1B). After 72-hour culture, all three dosages of Gonal-F appeared to similarly inhibit the endometrial cell proliferation (Fig. 1C).

In Fig. 2, we observe the clear trend of initial inhibition of high-dosage Gonal-F administration for the endometrial cells. In proportion to the normal controls, the absorption ratios for the (1) control and (2) 200 mIU/mL, (3) 400 mIU/mL, and (4) 600 mIU/mL Gonal-F after 24/48/72-hour cultures were as follows: (1) 100 ± 4.8/100 ± 3.8/100 ± 7.3; (2) 98.4 ± 0.9/94.9 ± 3.7/94.5 ± 0.8; (3) 95.6 ± 2.2/91.1 ± 2.2/93.7 ± 0.7; and (4) 89.9 ± 2.3/87.7 ± 1.6/94.3 ± 4.7, respectively. High-dosage Gonal-F significantly inhibited cell growth compared with low-dosage Gonal-F. However, the inhibition of endometrial cells might be transient and might return to comparable levels as that in low-dosage Gonal-F (Fig. 2).

In the four Puregon groups, the cell absorptions after 24/48/72-hour cultures were listed as follows: (1) 0.62/0.53/0.62; (2) 0.61/0.5/0.66; (3) 0.61/0.49/0.66; and (4) 0.64/0.49/0.66 (Figs. 3A–C). In the first 24 hours, low-dosage Puregon (200 mIU/mL and 400 mIU/mL) appeared to have a nonsignificant influence on the endometrial cell proliferation. In contrast, high-dosage Puregon (600 mIU/mL) appeared to stimulate endometrial growth (Fig. 3A). After 48 hours, Puregon appeared to inhibit the endometrial cell proliferation.
Furthermore, this inhibition is non-correlated with Puregon dosage (Fig. 3B). Higher dosage of Puregon appeared to significantly inhibit the endometrial cell proliferation (Fig. 3C). After 72-hour culture, all three dosages of Puregon appeared to similarly stimulate the endometrial cell proliferation (Fig. 3C).

In Fig. 4, we observe the trend of initial inhibition and subsequent stimulation effects of Puregon on endometrial cell proliferation. The absorption ratios for the (1) control and (2) 200 mIU/mL, (3) 400 mIU/mL, and (4) 600 mIU/mL Puregon after 24/48/72-hour cultures were as follows: (1) 100 ± 3.2/100 ± 8.7/100 ± 6.2; (2) 98.3 ± 0.7/93.5 ± 0.7/106.7 ± 1.7; (3) 98.1 ± 1/91.9 ± 3/107.8 ± 0.03; and (4) 103.1 ± 2.2/91.9 ± 6/107.4 ± 3.4, respectively. High-dosage Gonal-F significantly inhibited cell growth compared with low-dosage Gonal-F. However, the inhibition of endometrial cell proliferation might be transient and might reverse to stimulation effect after 72-hour culture (Fig. 2).

Discussion

Numerous variables, such as age, embryo quality, and stimulation protocol, have a significant impact on assisted reproduction technique outcome. Evaluation of endometrial thickness and pattern might be beneficial to distinguish the fertile cycles from the infertile ones. Adequate proliferation and cyclic changes are necessary for successful implantation to occur. Thinner endometrium is often associated with implantation failure and abortion [12]. A minimum thickness of 10 mm during IVF was found to produce a higher pregnancy rate [12]. Therefore, during COH application, clinicians must pay close attention to endometrial development and follicle growth.

Numerous medicine administrations during COH might influence endometrial proliferation and pattern. The r-FSH preparations have been introduced in IVF markets for around one decade. Till date, there are two major r-FSHs (folitropin alpha (Gonal-F) and folitropin beta (Puregon)) used in clinical applications. Most literatures compared and demonstrated their clinical folliculogenesis and pregnancy rates [9].
was no difference in endometrial response after the administration of both agents [9].

Concerning the influence of other medicines on endometrium, clomiphene citrate (CC) administration during COH has been well known to be associated with thin endometrium [13]. Thicker endometrium was identified among women treated with gonadotropin when compared with those treated with CC [14]. A similar negative endometrial effect was not observed in the present CC + gonadotropin cycles. The endometrial thickness with CC + gonadotropin was similar to that in the simple gonadotropin cycles. The supraphysiological estradiol level reached during CC + gonadotropin stimulation was able to correct for the negative endometrial effects of CC alone.

Other medicine applications might also influence the endometrial proliferation. Estrogen supplementation during stimulation with CC has been shown to improve endometrial development and to result in thicker endometria and improved morphology [15,16]. Administration of ethinyl estradiol might reverse the deleterious effect of CC on endometrial development during the follicular phase [17]. Obesity and hypertension have been found to increase endometrial thickness independently [18]. In contrast, the estrogen or progesterone receptors were correlated with endometrial pattern but not with endometrial thickness [19]. Pre-retrieval hCG administration does not improve the endometrial thickness [20].

In this study, we first demonstrated the possible adverse effects of gonadotropin on the endometrial growth. Our application of r-FSH might prevent the contamination of urinary compounds in FSH/hMG on the endometrial proliferation and the subsequent evaluation. These findings were compatible with those of Ku et al [10], who demonstrated the adverse effects of hMG and u-FSH on endometrial proliferation. Concerning the gonadotropin concentration on the endometrial proliferation, after repeat experiments, we observed their different presentation between Gonad-F and Puregon on the endometrial proliferation. The difference in the effects of Gonad-F and Puregon on endometrium might be because of their different molecular structures. These findings were also different from those of Ku et al [10], which revealed the non-correlations between different concentrations of u-FSH/hMG and inhibition on endometrial cell proliferations.

In this study, the 3-day culture instead of a longer-period culture is essential for the clarification of the related issues. In conclusion, our preliminary results highlighted a statistically significant difference in the co-culture of different types of r-FSH on the endometrial growth. Both Gonad-F and Puregon, especially in their high-dosage preparation, appear to inhibit the proliferation of endometrial cells in the initial 48-hour culture. High-dosage gonadotropin administration might transiently inhibit the endometrial cell proliferation in vitro, which suggests its inhibitory role in endometrial growth during COH. After 72-hour culture, Gonad-F persisted its inhibition on endometrial proliferation, whereas Puregon reversed its effect by enhancing endometrial growth. The differences might be because of the different formulations, molecular structures, and potencies of the alpha and beta follicitropins, as well as the subsequent stimulation or resistant effects on the hormone receptors of the endometrial cells. Despite its limited case numbers and conflicting outcomes between different r-FSHs, this study provided the preliminary database for the future surveys on the effects of gonadotropin on endometrium during COH.

References
