Influence of hydrogen plasma treatment on charge storage characteristics in high density tungsten nanocrystal nonvolatile memory

Shih-Cheng Chen, Ting-Chang Chang, Wei-Ren Chen, Yuan-Chun Lo, Kai-Ting Wu, S.M. Sze, Jason Chen, I.H. Liao, Fon-Shan Yeh

A R T I C L E I N F O

Article history:
Received 14 July 2010
Received in revised form 12 January 2011
Accepted 14 January 2011
Available online 27 January 2011

Keywords:
Hydrogen plasma
Tungsten nanocrystals
Nonvolatile memory
X-ray photoelectron spectroscopy

A B S T R A C T

This study focuses on the influence of a hydrogen plasma treatment on electrical properties of tungsten nanocrystal nonvolatile memory. The X-ray photon emission spectra show that, after the hydrogen plasma treatment, a change in binding energy occurs such that Si$^{3+}$ and Si$^{4+}$ peaks appear at a position that is shifted about 2.3 and 3.3 eV from Si$^{2+}$ in Si 2p spectra. This indicates that Si dangling bonds are passivated to form a Si–H bond structure in the SiO$_2$. Furthermore, the transmission electron microscopy shows cross-sectional and plane-view for the nanocrystal microstructure after the hydrogen plasma treatment. Electrical measurement analyses show improved data retention because the hydrogen plasma treatment enhances the quality of the oxide surrounding the nanocrystals. The endurance and retention properties of the memory device are improved by about 36% and 30%, respectively.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Conventional nonvolatile memory (NVM, flash memory) suffers from certain limitations during continual scaling of device structures [1]. Therefore, in recent years nanocrystal (NC) nonvolatile memory devices have been investigated as a method to overcome these drawbacks. Because discrete trap storage nodes act as the charge center of NC nonvolatile memory devices, they can effectively avoid data loss in terms of reliability when scaling down such devices [2].

Among various NC nonvolatile memories [3–5], metal NCs are good candidates for improving the retention property and charge storage ability [6] due to their high work function, which provides a lower potential well compared to the silicon substrate. Tungsten (W) NC was chosen because, besides its high work function (4.9 eV), thermal stability is suitable for the process thermal budget [7–9]. Moreover, for nanoscale devices, the density of nanocrystals is an issue because the memory window is dependent on the NC density. High density is helpful to scale down the device structure. However, if the density of NCs is very high, then the quality of the oxide which surrounds the NCs will be critical because the electrons stored in NCs will escape easily by trap tunneling if the oxide quality is not sufficient. When NCs are very close to each other [10,11], there is a tradeoff between high NC density and good reliability for nano-NVM application. In order to achieve both high density and good reliability, using high-pressure hydrogen treatment with high temperature annealing (700–900 °C) has proven to be a valid method to improve the oxide surrounding NCs [12,13]. Unfortunately, metal NCs and metal control gates cannot endure this temperature treatment. Hence, a hydrogen plasma treatment is proposed for W NC nonvolatile memory as an alternative method to passivate the defects in the surrounding oxide and improve its quality. The advantages of this method are a simple fabrication process and a low thermal budget.

2. Experiment

The process flow and the memory structure for this study are shown in Fig. 1. The W NC NVM capacitor structure was fabricated on single-crystal 6 in. (100) oriented P-type silicon. After the standard RCA cleaning, wafers went through a thermal oxidative process in an atmospheric pressure chemical vapor deposition furnace to form a 5 nm thick dry SiO$_2$ layer that serves as a tunnel oxide. Afterward, a 4 nm thick tungsten silicide (WSi$_2$) thin film was deposited onto the tunnel oxide by sputtering at room temperature with argon plasma 50 sccm (sccm denotes cubic centimeter per minute at standard temperature and pressure) and a DC power of 100 W. Subsequently, a 6 nm thick amorphous silicon (a-Si) layer was deposited by the same system with argon plasma 30 sccm and a RF power of 100 W. After the deposition of this WSi$_2$/a-Si double layer structure, high temperature
3. Results and discussion

Fig. 2(a) and (b) shows the TEM image cross-sectional and plane-view for the proposed device. The TEM image analyses show that the average diameter of nanocrystals is approximately 8 nm and the area density can be estimated to be about $2.5 \times 10^{12} \text{cm}^{-2}$. After going through the process indicated above, a high density of NCs was gained appropriate for 32–22 nm device applications.

Fig. 3(a) and (b) shows the Si 2p spectra of the control and standard sample, performed by a monochromatic Al Kα (1486.6 eV) X-ray. In Fig. 3(a), the transition region spectra between Si$^{0+}$ and Si$^{4+}$ are not observed in the SiO$_2$, which had not been exposed to the hydrogen plasma. Therefore, deconvolution of the spectra was carried out assuming that only Si$^{0+}$ and Si$^{4+}$ peaks exist in the Si 2p spectra for the unexposed SiO$_2$ [14–17]. In contrast, the SiO$_2$ which had been exposed to the hydrogen plasma exhibited transition region spectra between Si$^{0+}$ and Si$^{4+}$ in the Si 2p spectra, shown in Fig. 3(b). These transition region spectra could not be deconvoluted as Si$^{0+}$, Si$^{2+}$ and Si$^{4+}$, as shown in Fig. 3(c). In addition, the shift to lower energy and the increase in the intensity of the Si$^{0+}$ peak and the presence of the Si$^{2+}$ peak after hydrogen plasma treatment are caused by the Si and Si–Si$_2$O$_3$ reduction from weak Si–O$_4$ bonds [18–20]. Moreover, W 4f core-level photoemission spectra of the control and standard samples both consist of the two main peaks of W 4f$^{7/2}$ (31.4 eV) and W 4f$^{5/2}$ (33.5 eV), as shown in Fig. 4(a) and (b). The small peak at a position 35.2 eV is the peak of WO$_3$ of W 4f bonding [21,22]. Some of the W was probably oxidized during the rapid thermal annealing in the oxygen ambient because the solid solubility of O atoms within W material is extremely small [23], and O atoms cannot exist in W nanocrystals except if there is absolute oxidation of tungsten. Therefore, the position of WO$_3$ will be on the surface of the W nanocrystals. The W 4f spectra of the control and standard sample are very similar. In addition, in our experiment, the hydrogen plasma treatment is a post-treatment after the W nanocrystal formation. Therefore, it is unlikely that the W 4f spectra of the control and standard sample would show major differences, as the treatment does not influence the W nanocrystal formation.
As the C–V hysteresis diagram in Fig. 5 shows, the memory window is ~8.8 V under ±10 V compared to the flat-band gate voltage operation. This memory window is sufficient to define the digital data information “1” and “0” for low power nano-NVM applications. Moreover, hysteresis loops follow a counterclockwise direction due to the injection of electrons from the inversion state and the discharge of electrons from the accumulation state of the Si substrate. The memory window of the standard sample that had the plasma treatment is slightly larger than the control sample under the same operation voltage. Hence, the charge storage ability of W NC NVMs is not influenced by the post-hydrogen plasma treatment in the standard sample. This shows that, for metallic NCs, most of the efficacious electron store in the W NCs rather than the surrounding oxide defects. In general, the memory window decreases as the trap density is reduced in SONOS-type memory. However, in nanocrystal memory, because charges are mainly stored in nanocrystals, there is no obvious variation in the memory window as the device is treated by hydrogen plasma treatment. The slight increase of memory window suggests that the improvement of oxide quality surrounding the nanocrystals suppresses de-trapping via traps. In addition, the Si nanocrystals formed during the hydrogen plasma treatment can provide additional storage states.

Fig. 6(a) and (b) presents the endurance characteristics of control and standard samples under the pulse condition of \(V_C - V_{fb} = \pm 7 \) V for 10 ms. The flat-band voltage (\(V_{fb} \)) shift can be defined by using the C–V hysteresis under ±7 V gate voltage operation. The memory of control samples can be distinguished after \(10^6 \) program/erase cycles at room temperature; however, memory is degraded to about 57.5%, as shown in Fig. 6(a). This is because during the endurance test, carrier transport between nanocrystals and the substrate can damage the surrounding oxide.

Fig. 2. TEM image of W nanocrystal NVM. (a) Cross-section, and (b) plane-view.

Fig. 3. XPS analysis of the Si 2p core-level spectrum. (a) Control sample, (b) standard sample, and (c) Si–H bond structure in the SiO\(_2\) and theoretical chemical shifts calculated by the concept of local electronegativity.
Fig. 6(b) shows that the variation of the memory window is stable (△VFB of 93.3%) after 10^6 program/erase cycles for devices with the hydrogen plasma treatment. It is known that the △VFB reduction during the endurance test is due to the degradation of the gate oxide [24]. The superior endurance characteristics of the sample with hydrogen plasma treatment can be attributed to the improvement of surrounding oxide quality. The surrounding oxide was strengthened by the hydrogen incorporation after the treatment; therefore, the generation rate of traps is reduced, resulting in better endurance properties.

Fig. 7 shows the retention characteristics of the W NC nonvolatile memory. The open triangles represent the standard sample, and the solid black circles represent the control sample. We used an extrapolation to give a long-term predictable result (dotted lines) after 1000 s (stable region of retention). The memory window significantly decays during the first 100 s due to the charge emission from the shallow traps in SiOx matrix to the substrate. However, after 100 s the memory window becomes more stable. A 1.39 V memory window (charge ratio remaining at 69.4%) can be obtained after 10^4 s. As shown in Fig. 6, the retention property of the sample with hydrogen plasma treatment is superior. The better retention characteristics of the sample with the plasma treatment can be attributed to the improvement of surrounding oxide quality.

As the density of NCs increases, the oxide surrounding those NCs becomes very thin. If the surrounding oxide quality is not sufficient, it will be unable to block the lateral electron migration effect, and the electron storage in the NCs will escape, as shown in Fig. 8(a). The hydrogen plasma treatment can be used to effectively passivate dangling bonds of the Si/SiO2 interface and defects in the surrounding oxide such that Si–H bonds are formed. Hence, the lateral electron migration will be reduced, as shown in Fig. 8(b).

4. Conclusion

This study investigates the influence of hydrogen plasma treatment on the electrical characteristics and the chemical composition of the proposed W nanocrystal nonvolatile memory. After the hydrogen plasma treatment, the XPS results indicate that Si dangling bonds (traps) in SiO2 have been repaired by hydrogen passivation and have...
formed a H-passivated bonding (Si$^5+$ and Si$^{+}$). In addition, the binding energy reduction and the increased intensity of the Si$^+$ peak reveal that Si nanocrystals form due to the Si reduction from weak Si–O bonds during hydrogen plasma treatment. Because Si nanocrystals can provide additional storage centers, the memory window increases slightly, even though traps were passivated. By using the hydrogen plasma treatment, the endurance and retention properties of the memory device can be improved by 36% and 30%, respectively. The reason the reliability improved was that Si dangling bonds were repaired to form Si–H bonds during hydrogen plasma treatment. In addition, the process is compatible with current flash memory fabrication technology.

Acknowledgements

This work was performed at the National Science Council Core Facilities Laboratory for Nano-Science and Nano-Technology in Kaohsiung–Pingtung area and supported by the National Science Council of the Republic of China under Contract Nos. NSC-99-2120-M-110-001 and NSC 97-2112-M-110-009-MY3.

References