行政院國家科學委員會專題研究計畫 期中進度報告

子計畫二：讀取器之研製暨建立讀取器與電子標籤之傳輸系統

計畫類別：整合型計畫
計畫編號：
執行期間：○○年 月 日至 ○○年 月 日
執行單位：國立交通大學電機與控制工程學系

計畫主持人：陳福川

報告類型：精簡報告

處理方式：本計畫可公開查詢

中華民國 ○○年 月 日
子計畫二：讀取器(Reader)之研製，暨建立讀取器與電子標籤(Tag)之傳輸系統

計畫類別：整合型計畫
計畫編號：NSC 93–2212–E–009–144
執行期間：94 年 08 月 01 日 至 95 年 07 月 31 日
執行單位：交通大學電機與控制工程研究所

計畫主持人：陳福川

報告類型：完整報告
處理方式：可公開查詢

中華民國 95 年 5 月 31 日
中文摘要

射頻辨識(RFID)是一種以 RF 無線電波辨識物件的自動辨識技術，目前已有許多的實際應用，如悠遊卡的資料存取、人員或動物與裝備的追蹤，商品的查核盤點與結帳，以及產品從原料、製造、庫存、運輸、銷售之整個产销供應鍊管理等。而 RFID 系統的組成元件主要包括讀取器、電子標籤、主電腦，以及內含於讀取器、電子標籤的天線。

此報告包含超高頻被動式射頻辨識工作原理分析及超高頻被動式射頻辨識系統的讀取器硬體設計，和其通訊協定，包括了天線、發射機、接收機、電路板佈局，以及由全球產品電子代碼管理中心所推出的第二代超高頻射頻辨識系統標準。
Abstract

Radio frequency identification utilize the transmission of radio waves to reach the function to reach the function of identification automatically. This technology is widely used in many applications, including access control, transportation and supply chain management. The RFID system consists of mainly the following parts: Reader, Tag, host and antenna comprised in Reader and Tag.

This report describes a passive UHF RFID reader hardware design and protocol with tag, including antenna select, transmitter module, receiver module, PCB layout, and communication protocol published by EPCglobal with reader and tag.
目錄

中文摘要 .. I
Abstract .. II
目録 ... III
圖目錄 .. IV
表目錄 ... V
前言 ..1
1 統論 ...2
 1.1 研究目的 ... 3
 1.2 第二代超高頻RFID標準規範 .. 3
 1.3 超高頻RFID操作原理 ... 4
 1.3.1 主動式射頻辨識系統與被動式射頻辨識系統 .. 4
 1.3.2 電子標籤操作原理 ... 6
 1.3.3 讀取器架構原理 ... 7
 1.3.3.1 讀取器操作原理 ... 7
 1.3.3.2 讀取器組成模組 .. 8
2 RFID 通訊協定及系統規格、參數決定 ... 10
 2.1 資料通訊協定 ... 10
 2.1.1 讀取器對電子標籤的通訊編碼方式 ... 10
 2.1.2 電子標籤對讀取器的通訊編碼方式 ... 12
 2.2 資料完整性及錯誤偵測 .. 12
 2.2.1 資料正確性的檢驗-Checksum ... 13
 2.2.2 防碰撞技術(Anticollision) .. 15
 2.3 信號調變與解調 ... 18
3 RFID 讀取器系統硬體架構 ... 19
 3.1 天線(Antenna) .. 19
 3.1 環行器(Circulator/Directional Coupler) .. 21
 3.2 發射機設計 ... 22
 3.2.1 鎖相迴路頻率合成器 .. 22
 3.2.2 功率放大器 .. 23
 3.3 接收機設計 ... 25
 3.3.1 接收機架架構 .. 26
 3.3.2 低雜訊放大器 .. 26
 3.3.3 混波器 .. 28
 3.4 PCB版佈局 .. 29
 3.4.1 元件佈局 ... 30
 3.4.2 地線佈局 ... 30

III
3.4.3 電源線佈局..31

參考文獻..33

圖目錄

圖表 1 反向散射耦合...6
圖表 2 讀取器操作原理...7
圖表 3 全雙工與半雙工和序列程序...8
圖表 4 READER的讀/寫單元方塊圖...8
圖表 5 PIE符號..10
圖表 6 READER TO TAG的前導及訊框同步...11
圖表 7 FM0 符號及序列...12
圖表 8 CRC-5 編解碼電路結構...14
圖表 9 RFID READER的CCITT-16 CRC產生器結構.............................15
圖表 10 會議層圖解..17
圖表 11 不同的調變技術(A)100%ASK (B)BINARY FSK (C)BINARY PSK.....18
圖表 12 ASK調變波封...19
圖表 13 電磁場輻射場型(RADIATION PATTERNS).....................................20
圖表 14 圖形極化波..21
圖表 15 環形器結構圖..21
圖表 16 環形器運行方向..22
圖表 17 鎖相迴路設計..23
圖表 18 E類功率放大器..24
圖表 19 E類功率放大器最佳工作曲線圖...25
圖表 20 低中頻接收機架構..26
圖表 21 低雜訊放大器...27
圖表 22 混波器電路..28
圖表 23 混波器電路..29
圖表 24 單點接地的電源系統...31
圖表 25 佈線的較佳角度...31
圖表 26 佈線差異造成的電容效應...32
表目錄

表格 1 主動式射頻辨識系統與被動式射頻辨識系統... 4
表格 2 讀取器對電子標籤TARI時間值 ... 11
表格 3 EPC C1 G2 CRC-5 定義 ... 13
表格 4 CCITT-16 CRC定義 .. 14
表格 5 ASK調變參數值 ... 19
表格 6 功率放大器基本特性 ... 23
表格 7 低雜訊放大器特性 ... 27
前言

此計畫目標為使無線射頻辨識系統讀取器操作在 UHF 922MHz-928MHz 的頻段之下，並參考 EPC Class 1 Generation2 的標準規範，及台灣本地之電信法規，確定了本系統規格參數。因 RFID 操作頻段、系統種類及設計方式眾多，本報告主要介紹本系統所操作頻段所遵循之規範及設計方式。

此報告包含目前研究成果，主要為超高頻 RFID 系統介紹、遵循國際標準規範而選擇之系統規格、通訊協定及讀取器之硬體架構。而由於學術界及產業界對讀取器及電子標籤之稱呼不盡相同：如讀取器 = 閱讀器 = 讀寫器 = Interrogator = Reader；電子標籤 = 應答器 = Transponder = Tag，因此本報告之後之內容會統一以讀取器或 Reader，電子標籤或 Tag 來稱呼，以避免混淆。而 EPC Class1 Generation 2 也用 EPC C1G2 來簡稱。
1 緒論

2003 年，RFID 已被列入 21 世紀十大重要技術之一，且其應用已愈來愈廣泛，常見的有台北捷運悠遊卡、EAS 電子式商品防竊系統，出入門禁感應卡，及物流貨運、物料管理、圖書館藏、醫療管理…等等。之所以會受到如此的重視，是因為如下的幾點優勢：

1. 非接觸式的：使用該系統時，電子標籤不需要與讀取器相接觸即可操作，不但方便，而且也避免了接觸式系統所造成的磨損以及其不方便且費時的特定方向的插入。

2. 不須在視野範圍內（No line of sight）：電子標籤不需要在讀取器的視野範圍內（不需將其和讀取器對準），即可以被讀取。

3. 可以強壯的抵抗外在的環境：由於射頻辨識系統是 no line of sight 的，所以可以將電子標籤隱藏在一個包裝之下或是肉眼所看不到的地方，有效的防止外在環境的影響。

4. 讀取速度：電子標籤可以在非常快的速度之下被讀取。由於這方面的特性，在辨識快速移動的物體上是非常有用的。

5. 可同時讀取多個物品：只要電子標籤在讀取器的讀取範圍內，讀取器擁有可以同時讀取多個電子標籤的能力，這是其他 line of sight 的辨識技術所做不到的。

6. 安全性：而在訊號傳遞上，通常讀取器和電子標籤會先進行認證或對資料進行加密的動作，來提高安全性。而如果有需要的話，也可以採用展頻的技巧達到更高的安全性，使得有心人士無法干擾或擄取重要的訊號。

7. 可程式化的：由於電子標籤記憶體的選取可以是可讀且可寫的，所以使用者可以視需要採用可改變所儲存資料的電子標籤，達到多重的利用。

8. 自動化的：可促進流程自動化，節省人力及時間成本。

除此之外，它尚有可儲存大量的資訊、有效即時的長距離偵測效能及抗雜訊之特性等優點。射頻辨識系統雖然有上數眾多的優點，但由於價格較為昂貴，在商品辨識的應用中，其電子標籤的價格比條碼式標籤貴了數倍，尤其是主動式射頻辨識系統的電子標籤價格更高昂，如何藉由當今的晶片技術將成本降低，將是非常重要的一項關鍵。另外一個缺點就是它尚未完全標準化，導致當客戶使用某一廠商的射頻辨識系統時，它只能用來讀取該廠商的電子標籤，不但降低了客戶選用的慾望，也造成了技術發展的限制。
射頻辨識的應用範圍極廣，包括了供應線的管控、商品的防盜追蹤、圖書館書目的管理和人員的出入管制等。由於它的多樣性和選擇性以及近年來各項技術不斷的提昇，而導致射頻辨識系統快速的崛起。它在市場上的佔有率也節節攀高，擁有著非常大的潛能。

1.1 研究目的

由於以上的背景因素，這次我們整個研究團隊所欲進行的總計畫為：「RFID based 圍及物件追蹤管制系統平台之研發」，總共分成了五個子計畫。我們所負責的則是子計畫二「讀取器之研製，暨建立讀取器與電子標籤之傳輸系統」。為了完成整個計畫，我們定下了三年的目標。第一年目標為「讀取器－電子標籤的傳輸系統規劃，及讀取器系統設計」，依照需求來選定最佳的系統參數、傳輸方法，並對讀取器系統做初步的設計。第二年目標為「完成讀取器的原型，並與電子標籤做傳輸測試」，完成讀取器原型機，並且和製作電子標籤的團隊做彼此間的傳輸測試。第三年目標為「讀取器與網路之連結，及系統整合測試」，將所有子計畫發展的系統整合起來，並測試系統的正確性。

而在進行射頻辨識系統的實際電路研發之前，我們當然必須先對射頻辨識系統的整體架構有所了解，了解在不同系統參數之下，射頻辨識系統所產生出來的行為、效能，才能審慎的選定各系統參數值，在最佳化操作與實際應用上達到一個平衡點，這也就是第一年的主要目標。各系統參數包括有主動式射頻辨識系統與被動式射頻辨識系統，不同的操作原理程序、不同的訊號耦合（coupling），不同的頻率範圍，電子標籤上記憶體類型、容量大小，資料編碼與調變技術，檢驗資料正確性和避免碰撞的技術，以及確保安全性的技術方法等。我們將會在本文內對射頻辨識系統的各項參數做更詳細的介紹。

藉由三年的漸進式的目標，和不同子計畫負責團隊合作，一步一步來完成整個總計畫。我們希望透過這個計劃的完成，能發展出一套完善的射頻辨識系統，並累積相關的知識、經驗和技術，以提昇相關學術與產業的水準。

1.2 第二代超高頻 RFID 標準規範

國際上主要有兩個射頻辨識系統的標準技術：EPC 和 ISO。EPC 電子產品碼系統源自麻省理工學院 Auto ID Center，現由 EAN 和 UCC 所共同成立的國際組織－EPCglobal inc. 接掌。而 ISO 之射頻辨識系統標準制定則是由 JTC1 主導。而目前射頻辨識系統在 UHF 的頻帶範圍內所依循的標準，其中兩種為 ISO 組織中的 ISO 18000-6 群組，另外其他則是 EPC Global 所主導。本計畫則遵循 EPC Class1 Generation 2 技術標準。
第二代規範相當詳細地描述了電子標籤與讀取器應當如何通信，規範中定義相關系統的物理與邏輯需求，以提供被動-反向散射(Passive-Backscatter)、讀取器優先溝通(Interrogator-Talks-First, ITF)、射頻識別(RFID)系統，在 860 MHz～960MHz 頻段操作使用，其溝通模式為半雙工，讀取器可具備 DSB-ASK、SSB-ASK 或 PR-ASK 調變功能。電子標籤反向散射需採用 ASK 或 PSK 調變功能。由 Tag 供應商選定調變格式。讀取器必須具備解調這兩種調變方式。資料傳輸率 80Kbps、160Kbps、320Kbps 和 640Kbps，比起第一代 70Kbps~149Kbps，速率往上提升。並支援長達 256 位的電子產品碼(EPC)，第一代至多為 96 位元。並且可支援密集讀取器模式，有助於標籤在多讀取器近距離使用情況下正常工作。

1.3 超高頻 RFID 操作原理

1.3.1 主動式射頻辨識系統與被動式射頻辨識系統

電子標籤本身電源供應的有無，可以將射頻辨識系統分成主動式與被動式兩大類。主動式射頻辨識系統和被動式射頻辨識系統的比較如下表：

<table>
<thead>
<tr>
<th>表格 1 主動式射頻辨識系統與被動式射頻辨識系統</th>
<th>主動式射頻辨識系統</th>
<th>被動式射頻辨識系統</th>
</tr>
</thead>
<tbody>
<tr>
<td>電源裝置</td>
<td>內建（電池）</td>
<td>無</td>
</tr>
<tr>
<td>電子標籤電源的獲取</td>
<td>持續的</td>
<td>只有在讀取器的讀取範圈內才能獲得</td>
</tr>
<tr>
<td>記憶體類型</td>
<td>典型為可讀且可寫</td>
<td>唯讀</td>
</tr>
<tr>
<td>記憶體容量大小</td>
<td>較大</td>
<td>較小</td>
</tr>
<tr>
<td>感應距離</td>
<td>較遠</td>
<td>較短</td>
</tr>
<tr>
<td>尺寸、重量</td>
<td>較大較重</td>
<td>較小較輕</td>
</tr>
<tr>
<td>使用年限</td>
<td>有</td>
<td>無</td>
</tr>
<tr>
<td>設備裝置</td>
<td>大</td>
<td>小</td>
</tr>
<tr>
<td>環境影響</td>
<td>對高低溫較敏感</td>
<td>可以適應於較差的環境</td>
</tr>
<tr>
<td>價格</td>
<td>較高</td>
<td>較低</td>
</tr>
<tr>
<td>從讀取器到電子標籤所發</td>
<td>較低</td>
<td>較高（因電子標籤必須從</td>
</tr>
<tr>
<td>送的訊號強度</td>
<td>中獲得電力</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>從電子標籤到讀取器所發送的訊號強度</td>
<td>較高</td>
<td>較低</td>
</tr>
</tbody>
</table>

主動式或被動式射頻辨識系統的選取將造成以下的影響:

(1). 通訊範圍：對於被動式射頻辨識系統而言，由於電子標籤需要從讀取器獲得非常強的訊號來當作電力來源，故限制了讀取器與電子標籤之間的距離；又因為從電子標籤只能發送少量的功率到讀取器，故限制了電子標籤與讀取器之間的距離。由於以上兩個因素，所以被動式射頻辨識系統的通訊範圍，典型地被限制在小於3公尺的範圍之內，而根據不同的應用及頻率的選取，有時通訊範圍大概只有幾公分的距離。而主動式射頻辨識系統，由於本身附有電源，所以通訊的範圍甚至可以大到100公尺以上。

(2). 多個電子標籤的資訊蒐集：被動式射頻辨識系統由於通訊範圍比較短，所以在蒐集多個電子標籤資訊上的能力也比較不足。尤其是在移動的物體上，由於通訊範圍較短，所以當物體移動速度太快時，會導致讀取器来不及一個一個去讀取。所以主動式射頻辨識系統在蒐集多個電子標籤資訊上的能力會來的比較好。

(3). 內建感應器能力：在某些應用上，會需要在電子標籤內建一個感應器，來偵測外在環境的變化。由於被動式射頻辨識系統的電源不是持續性的(只有在讀取器的讀取範圍內)，導致這方面的應用上，無法持續去監測、紀錄這些狀態。

(4). 資料儲存能力：主動式射頻辨識系統由於本身附有電源，擁有較大的功率可以提供較大的記憶體電路來使用，再加上其電源供應是持續性的，使得我們可以使用需持續供應電源的記憶體類型(一旦沒有電源，上面的資料將會消失)，也可以作較精準的資料操作。典型地，主動式射頻辨識系統的記憶體容量通常為128kbytes，而被動式射頻辨識系統的記憶體容量通常是128bytes或更小。

另外值得注意的是，由於被動式射頻辨識系統需要讀取器持續傳送較高的功率來驅動電子標籤，導致當鄰近有其他系統在相同頻帶下工作時，會被其干擾影響。而主動式射頻辨識系統，由於不需讀取器傳送大的功率，以及可以在較低的工作週率（duty cycle）下工作，故可以和其他低功率短距離的系統並存。故在綜合的應用上，我們必須為被動式射頻辨識系統專門安排一個頻帶，避免其和其他系統互相的影響干擾。

雖然主動式射頻辨識系統擁有許多的優點，但由於其價格明顯高於被動式射頻辨識系統，導致目前的應用仍以低成本的被動式射頻辨識系統為主。在需要較...
高安全性或快速移動物體上的應用等，則適合採用主動式射頻辨識系統。隨著應用的不同與成本的考量，選取適當的射頻辨識系統來達到所預期的表現。而在某些應用，甚至需要同時採用主動式和被動式射頻辨識系統，才能得到一個最佳的解決方法。

現在主動式射頻辨識系統的標準仍在開發中，而 EPC Class 1 Generation 2 則是定義 HUF 頻段被動式射頻辨識系統的最新標準(January 2005)，也是本計畫所依循之標準。

1.3.2 電子標籤操作原理

電子標籤在不同頻段下，與 Reader 感應耦合的方式也不同，有感應式耦合、封閉式耦合、電耦合、電磁反向散射耦合。在 UHF 頻段下，Reader 和 Tag 間的感應是為電磁反向散射耦合的方式(Electromagnetic Backscatter Coupling)，此耦合方式，讀取範圍可以達到 1 公尺以上，通常在 UHF (868MHz in Europe、915MHz in USA) 和 microwave (2.5GHz 和 5.8GHz) 上操作，由於具有更高的操作頻率(更短的波長)，因此比一般感應偶合系統(HF)有更短的天線構造和更佳的能量傳輸效能。

下圖所示是一個長距離系統之電磁反向散射耦合 Tag 的操作原理，相當於雷達(radar)技術的操作原理。當物體的大小是大約比電磁波波長的一半要來的大時，電磁波將會被其反射，反射的效率與物體的截面反射有關。當物體和電磁波產生諧振時，截面反射為最大。如圖 1 所示，當讀取器天線發送功率 P1 時，由於自由空間的衰減，導致只有一小部份功率 P1' 被電子標籤所收到。此時標籤會感應耦合出 HF 電壓，經過二極體 D1 和 D2 的整流之後，可當成開設電壓以將微晶片進入準備模式(Ready)，以恢復正常操作。

![反向散射耦合](image)

为了将资料以调变方式传回给 Reader，Tag 使用一个负载电阻 R_L 与天线并联，並由微晶片內之数位資料串來控制天线 RF 之開與關(由負載電阻的開或關決定傳送或不傳送);功率 P_2 (功率 P_1' 的一部份) 由 Tag 天线所發射，也就是從電子
標籤電線反射出來的功率 P_2 振幅將會被影響調變，也就是所謂的被調變反向散射（modulated backscatter）。而功率 P_2 輻射到自由空間，經衰減後其一小部份功率 P_2' 為 Reader 天線所接收，經由方向耦合器（directional coupler）解耦合而傳送到讀取器的接收機（receiver）作為輸入。此外，P_1 除以 P_2 的值可以由雷達方程式獲得。

1.3.3 讀取器架構原理

1.3.3.1 讀取器操作原理

RFID 系統內的 Reader 主要用以讀取 Tag 內的資料，以利主電腦（Host）進行物件的辨識工作，當主電腦下達辨識命令給 Reader 時，Reader 會透過內建或外接的天線（Antenna）發射 RF 無線電波，一旦 Tag 進入偵測範圍，即開始進行雙方溝通，Tag 會將其內的資料透過內建 RF 機制傳回給 Reader，Reader 接收到資料後，再傳到主電腦進行物件的辨識工作。

![圖表 2 讀取器操作原理](image)

在資料通訊過程中，主電腦（Host）與 Reader 之間有其通訊協定，Reader 與 Tag 間亦有其通訊協定以達到資料互傳目的。Reader 與主電腦相溝通的介面，可以是有線方式的 RS232、RS485、RS422 介面，或者是無線方式的藍芽、GPS 介面；Reader 與 Tag 間則靠無接觸之 RF 無線電波磁場感應作溝通，以進行資料寫入或讀取操作。依 EPC C1 G2 標準，其 Reader 跟 Tag 間訊號收發的操作類型程序為半雙工模式，如圖 3 HDX（Half Duplex）所示。
圖表 3 全雙工與半雙工和序列程序

（downlink：從Reader到Tag的資料傳輸。uplink：從Tag到Reader的資料傳輸）

讀取器到電子標籤的資料傳輸，是採用數位調變的方法，如：ASK、FSK 和 PSK 等。而由於 ASK 的解調變較為簡單，所以現今存在的大部分系統多採用 ASK，注意的是，讀取器到電子標籤的資料傳輸是和操作頻率與耦合方式是無關的。更詳細的協定資料將於之後做解釋。

1.3.3.2 讀取器組成模組

Reader 用以接收主電腦的命令，以讀取 Tag 內的資料或將資料寫入 Tag 內，因此，Reader 內的組成模組包括如圖 4 所示之各單元方塊圖。

![Reader 的讀/寫單元方塊圖](image)

其操作功能如下：

1. 控制模組(control module)
控制模組是由微控制器(微晶片)、調變與解調等 RLC 電路所組成，主要區分以下三項功能：

- 資料處理功能
 包括資料的編碼(Encode)、解碼(Decode)、檢查與儲存，以及與主電腦之間的通訊等操作。

- 與 Tag 間的通訊管理
 包括起動(wake up)Tag 開始工作，通訊機制的初始化、讀取與寫入資料、安全認證、整合檢查與時序(Timing)控制等等。

- 實體的通訊
 控制收發模組與收發天線發射 RF 無線電波能量以進行對 Tag 的讀取或寫入資料動作。

(2). 射頻模組(Radio Frequency Module)

此為一發射與接收電磁波之 RF 收發機(Transceiver)的收發模組，其中收發機內的發射機(Transmitter)與接收機(Receiver)之功能如下：

- 發射機功能
 發射較強之 RF 電磁波，用以提供被動式 Tag 所需之電源，以及使用 ASK 調變方式將資料寫入 Tag 內。

- 接收機功能
 接收 Tag 所傳回之已調變數位信號(資料)，此調變的信號可以是移幅鍵控(ASK)或移相鍵控(PSK)。

(3). 收發天線

發射 RF 無線電波能量之收發天線，在 HF 頻段，通常內建在 Reader 機殼內，在 UHF 頻段，因讀取距離較長，所以收發天線會單獨存在。

(4). 電源

提供各模組電路板所需之電源，其中又以發射 RF 無線電波能量之射頻模組與收發天線最耗電。
2 RFID 通訊協定及系統規格、參數決定

通訊協定主要包括二資料通訊裝置之間的交握操作程序，以及所使用的通訊線傳輸規則；交握程序決定了資料互傳之步驟與正確傳輸之確認；RFID 通訊線傳輸則包括全雙工、半雙工及序列程序的操作方式。而資料在調變傳輸之前，為了跟傳輸通道特性相匹配，降低外部環境的干擾影響，讓接收端能以最大的機率正確還原本來的資料，因而產生了各種資料編碼技術，也就是所謂的基頻（baseband）編碼。所以原始的數位訊號在傳輸之前，發射端會先對其做編碼的動作，接收端最後再對其做解碼的動作。

而發射機(transmitter)在傳送訊號到通道之前，會先與一高頻載波(carrier)做調變，讓調變後的訊號能在通道中傳播的更遠、更能抵抗雜訊的干擾。之後，接收機(receiver)再做解調變的動作，將訊號與載波分離。

2.1 資料通訊協定

EPC C1 G2 將超高頻 RFID 的通訊協定分成兩個層次，實體層(Physical layer)及電子標籤識別層(Tag-identification layer)。實體層定義了 Reader 傳送資料到 Tag，使用的載波調變方式為 DSB-ASK、SSB-ASK 及 PR-ASK，編碼方式為 PIE(Pulse-interval encoding)；而 Tag 回傳資料到 Reader 的反向散射調變方式為 ASK 或 PSK，編碼方式為 FM0 或 Miller-modulated subcarrier。第二層電子標籤識別層定義了 Reader 管理 Tag 的三種命令操作：選擇命令、登入命令及存取命令。而 Reader 與 Tag 的通訊操作為半雙工型式，採用讀取器優先溝通(Interrogator-talks-first)以及隨機導向(slotted random)的防碰撞技術。整個頻率操作範圍則選擇台灣開放給射頻辨識系統使用的 UHF 頻段 922~928MHz。

2.1.1 讀取器對電子標籤的通訊編碼方式

Reader 使用 PIE(Pulse-interval encoding)的編碼方式，傳輸資料給 Tag，其編碼時脈如圖 5 所示，圖上所定義的單位 Tari 時間，是由上升脈波沿的中點至下一個上升脈波沿的中點來計算，如表 2 有三種可參考值，可知 Reader 下載到 Tag 的資料傳輸率為 40、80 及 160 kbps。
在傳送資料到 Tag 時，Reader 必須以一個前導(Preamble)或是訊框同步(Frame-sync)做為傳輸至 Tag 的訊息開頭，此兩種方式如圖 6 所示，一個前導必須在詢問命令之前，並代表整個登錄環程(inventory round)的開頭。往後接下來的訊息則使用訊框同步作為開頭。

R=>T Preamble

<table>
<thead>
<tr>
<th>Tari Value</th>
<th>Tari-Value Tolerance</th>
<th>Spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.25 μs</td>
<td>+/- 1%</td>
<td>DSB-ASK, SSB-ASK, or PR-ASK</td>
</tr>
<tr>
<td>12.5 μs</td>
<td>+/- 1%</td>
<td></td>
</tr>
<tr>
<td>25 μs</td>
<td>+/- 1%</td>
<td></td>
</tr>
</tbody>
</table>

RTcal: Reader 必須設定 RTcal 的長度等於位元 0 加上位元 1 符號的時間長度。Tag 則必須量測 RTcal 的長度，並且計算二分之一 RTcal 的時間定義為 pivot，當 Tag 解譯之後 Reader 傳過來的數據，Tari 時間短於 pivot 的為位元 0，長於 pivot 的為位元 1。Tag 解譯大於 4 個 RTcal 長度的符號為無用資料。在改變 RTcal 之前，Reader 須傳送至少 8 RTcal 長的連續波。

TRcal: Reader 藉由使用前導的 TRcal 及分時比(DR)定義 Tag 反向散射回的連結頻率(其 FM0 數據速率或是 Miller 次載波的頻率)，方程式(1)說明反向
散射連結頻率、TRcal 跟 DR 之間的關係。Tag 則需量測 TRcal 的長度，計算出 LF，並校準 T=>R 的連結速率等於 LF。Reader 在任何一次的登入環程中使用的 RTcal 跟 TRcal 必須符合方程式(2)的限制。

\[LF = DR / TRcal \]

(1)

\[1.1 \times RTcal \leq TRcal \leq 3 \times RTcal \]

(2)

訊框同步比前導少了 TRcal，其他皆相同。對一個登入環程的持續期間來說，當 RTcal 在前導中初始化後，Reader 必須在訊框同步使用同樣長度的 RTcal。

2.1.2 電子標籤對讀取器的通訊編碼方式

Tag 以反向散射調變的方式與 Reader 作溝通，調變方式可以使用 ASK 或 PSK，而 Reader 必須能解調這兩種調變的載波。Tag 傳輸資料到 Reader 的編碼方式為可以為「基頻 FM0」或「次載波米勒調變(Miller modulation of a subcarrier)」。圖 7 所示為 FM0 二位元符號的時脈表示：位元周期中有轉變過程的為位元 0，無轉變過程的為位元 1。

![FM0 Symbols and Sequences](image)

圖表 7 FM0 符號及序列

其資料連結頻率(等於資料傳輸率)可由 2.1.1 中的方程式 LF = DR / TRcal 來決定，EPC C1 G2 中定義的 DR 有 64/3 及 8 兩個值，TRcal 如 2.1.1 所述，因此可計算出 FM0 的資料傳輸率約為 40、160、320 及 640 kbps。

此外對所有 R=>T 和 T=>R 的通訊傳輸順序應該依照下列的協定

- 在每個訊息裡，最高有效位元應先被傳輸，還有
- 在每個字元裡，最高有效位元(MSB)應先被傳輸。

2.2 資料完整性及錯誤偵測

為了保持資料的完整及正確性，需要對其資料的傳輸進行偵測與改正，錯誤偵測只能偵測到有傳輸錯誤的發生，但不能加以改正，錯誤改正則可以偵測到錯誤，並加以改正。依 EPC C1 G2 標準，並無定義錯誤改正，而有定義使用 CRC
的錯誤偵測法。錯誤偵測無法得知哪一位元錯誤，而是偵測位元錯誤已經發生，而系統將忽略此錯誤訊息，並等待下一個內含正確命令的資訊到來。

2.2.1 資料正確性的檢驗-Checksum

在資料傳輸過程中，難免會受到雜訊的干擾，導致資料的不正確性，為了偵測出資料的正確性與否，我們需要利用某種 checksum 的技術來偵測錯誤的發生，以保持資料的正確性。常用的幾種 checksum 程序如下：

(1). 同位元檢查（Parity checking）：每一位元組（byte）的資料，多附加一個同位元。同位元位元不算，當設定奇同位，當有奇數個位元為 1 時，則同位元被設定為 0; 偶數個位元為 1 時，同位元位元設定為 1。而偶同位，則是當有偶數個位元為 1 時，同位元被設定為 0; 奇數個位元為 1，同位元位元設定為 1。這種方法是非常簡單易行且受歡迎的，不過它只能用來發現奇數個位元產生錯誤的情況，而當有偶數個位元產生錯誤時，它將無法發現。

(2). 縱向冗餘檢查（longitudinal redundancy check, LRC）程序：也就是所謂的 XOR checksum，它可以被快速並簡單的執行。它是將一個資料區塊的每一位元組相對應位置元作 XOR 的動作，產生出一位元組的值（LRC），將其附加於資料區塊之後並傳輸之；之後接收端會將資料區塊的每一位元組（包括 LRC 值）做 XOR 的動作，若結果非 0，則表示有傳輸錯誤的發生。LRCs 雖然可以被快速而簡單的計算，但多個錯誤發生時，也可能互相取消，導致無法偵測，而產生一個不可信賴的結果。

(3). 循環冗餘檢查（cyclic redundancy check, CRC）程序：簡單來說，它的操作是先選擇一個多項式作為除數，將一個資料區塊當作被除數，進行除法之後，得到的餘數值（CRC），將被附加於資料區塊之後；之後接收端會將資料區塊加上 CRC，對同一個多項式做除法的動作，若餘數非 0，則表示傳輸過程中，有錯誤發生。CRC 程序是一種值得信賴的錯誤偵測法，不過它的計算和執行則比前面兩種方法較為複雜。

EPC C1 G2 標準中使用 CRC-5 及 CCITT-16 CRC 做為錯誤偵測的方法。Reader 對 Tag 傳送詢問（Query）命令時，使用 CRC-5 讓 Tag 做檢查; 傳送選擇及存取命令時，使用 CRC-16 程序讓 Tag 解碼檢查。而 Tag 所有回傳的訊息皆以 CRC-16 程序編碼，Reader 則要負責解碼以偵測是否有錯誤發生。

表格 3 EPC C1 G2 CRC-5 定義

<table>
<thead>
<tr>
<th>CRC Type</th>
<th>Length</th>
<th>Polynomial</th>
<th>Preset</th>
<th>Residue</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>5 bits</td>
<td>$x^5 + x^3 + 1$</td>
<td>01001$_2$</td>
<td>00000$_2$</td>
</tr>
</tbody>
</table>
上表為EPC所參考的CRC-5定義，用於訊問命令錯誤偵測，下圖為其實現的電路架構圖。因為CRC-5的實現方式雷同於CRC-16，所以不再詳述，下面介紹CRC-16會詳述其實現方式。

圖表8 CRC-5編解碼電路結構

常用的16位CRC多項式有兩種：一種是CRC-CCITT標準，另一種是CRC-16標準，分別用於歐洲和美國的8位元字組的傳輸，CRC-CCITT的偵錯能力略高於CRC-16，而EPC C1 G2採用的正是CCITT-16 CRC來檢測錯誤。

表格4 CCITT-16 CRC定義

<table>
<thead>
<tr>
<th>CRC-16 precursor</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC Type</td>
<td>Length</td>
<td>Polynomial</td>
</tr>
<tr>
<td>ISO/IEC 13239</td>
<td>16 bits</td>
<td>(x^{16} + x^{12} + x^5 + 1)</td>
</tr>
</tbody>
</table>

CRC的作法是若給定一個k位元的資料區塊，則發射機需在再產生一個n-k位元的序列，此稱為訊框檢驗序列(frame check sequence, FCS)或區塊檢驗序列(block check sequence, BCS)，這樣組成一個可被CRC產生函數P(x)除盡的n位元訊框(k位元資料+n-k位元FCS)。P(x) = (n-k+1)位元之模式序列；即預定之除數。接收機將接收到的n位元訊框資料除以P(x)，如果沒有餘數則表示沒有錯誤發生。

因此CCITT-16需要一個16位元的訊框檢驗序列(FCS)，其作法為k位元資料向上提升16位元，原16位元之位置補上0，會產生一個新的(k+16)位元序列，再將其除以17位元的CRC產生多項式，如上表定義之\(X^{16} + X^{12} + X^5 + X^0\)\(X^0 = 1\)，其二進位表示為10001000000100001，產生之餘數即為訊框檢驗序列(FCS)=CRC碼。而最後傳出的訊號即為向上提升16位元的k位元資料+16位元CRC碼=k+16位元訊框。當接收機接受此k+16位元資料，再次除以P(x)，相除後的餘數為0，則表示資料傳輸無誤。其除法器的硬體電路實現可由移位暫存器及XOR加法器所組成。
EPC C1 G2 所使用的CCITT-16 乃參考ISO/IEC 13239 標準，如表4 所示，此編碼使用數位邏輯分析的步驟是先載入一個內容為FFFFh 之 16-bit 移位暫存器，稱之為「CRC」暫存器，然後將串列訊息(被除數)一次一個位元的輸入移位暫存器。先輸入的是最高有效位元(MSB)，從高到底至最低有效位元(LSB)，當串列訊息所有位元傳送出去，此時反置CRC暫存器內的數值，其為訊息檢驗序列(FCS)。解碼亦是先載入內容為FFFFh 之 16-bit 移位暫存器，然後接收串列訊息，最高有效位元(MSB)先接收，最後接收的為CRC碼，當串列訊息已接受完畢，此時留在暫存器內的數值若等於1D0Fh，則可通過，代表此為正確訊息。

![CRC Generator for CCITT-16](image)

圖表 9 RFID Reader 的 CCITT-16 CRC 產生器結構

2.2.2 防碰撞技術(Anticollision)

RFID 系統為了能夠一次讀取多個標籤，Reader 必須能夠知道同時有多個 Tag 是被驅動的，但是當 Tag 在同時間將訊號傳回給 Reader 時，將造成彼此間的干擾，使得讀取器無法獲得正確的資料，造成所謂的碰撞(collision)問題。克服的方法通常是在資料傳輸上進行所謂的多工操作，允許數個使用者同時共用同一通道，或是同一通道接收來自不同的資料源，常見的多工型態如下：

- 分間多工(Space-Division Multiplexing，SDM)

 每一個時間者使用各自的線路當通道，因此每一位使用者可同時使用相同的頻率。其有各自的傳輸線路、發射器和接收器，因此任何一位使用者的任何改變不會影響到其他使用者，因此其傳輸效能是可預期及有保障的，但有建造成本較貴的缺點。

- 分頻多工(Frequency-Division Multiplexing，FDM)

 整個通道寬(Bandwidth)被分割成許多小頻帶(Bands)，每一個使用者被指定使用某一頻帶。每個發射機使用不同的載波頻率, 在保護頻帶(Guard Band)的合理設定下，可以減小各頻帶間的干擾。缺點是每個使用都均必須要有精確的載波頻率，且載波頻率不可隨系統溫度變化或因元件老化而造成漂移。

- 分時多工(Time-Division Multiplexing，TDM)

 通道上只使用單一頻帶，並將時間分成一小段一小段的時槽，而每一個使用
者分配到一特定時槽(Time slot)，讓不同的裝置可在不同但極接近的時間，及完整的通道頻帶下通訊。

依 EPC C1 G2 的標準，UHF 採分時多工(TDM)架構，而 Reader 和 Tag 溝通的防碰撞演算法是 slotted random，其基本原理為 Reader 發出訊號讓所有的 Tag 感應後，Tag 則會在時槽計數器產生一亂數，並在每次 Reader 發出訊息的每一時槽時間，倒數一次，先倒數至零的則回應訊息至 Reader。

在射頻辨識系統中，Tag 發生的碰撞問題是因為當有兩個以上的電子標籤在同一個讀取器的讀取範圍，此時會導致讀取器同時接收到多個反射回來的訊號，導致碰撞發生。此外還有另一種為讀取器的碰撞問題，其原因如下：
- 讀取器到讀取器的干擾 (reader-to-reader interference)：兩個以上的讀取器在同一的時間點在相同的頻率下操作，為一種頻率的干擾。
- 電子標籤的干擾 (tag interference)：兩個以上的讀取器在同一的時間點企圖去和同一個電子標籤做通訊。

因此 EPC C1 G2 也新規範了密集讀取器(Dense-Interrogator)模式，有助於 Tag 在多個 Reader 在近距離使用的情形下正常工作。此並非強制性模式，但是只要有一個非密集閱讀器模式的 RFID 讀取器也會淹沒 Tag 響應信號，抵消密集讀取器模式的潛在好處。因為密集讀取器模式還是有建立的必要，此架構則定義在 EPC C1 G2 的協定第二層，電子標籤識別層。其做法如下：

Reader 應支援 4 會議層，即 Tag 能提供 4 個會議層，(定義為 S0、S1、S2、S3)，在一個登入環程中，Tag 要能參與其中並唯一的一層，兩個或更多的 Reader 可以使用不同的會議層來獨立地登入同一個 Tag 群，這會議層的概念解釋如圖 10 Tags 在每一會議層須固定一個獨立的登入旗標，四會議層中任一個都有兩個登入旗標值，定義為 A 跟 B，在每次的登入環程的開始，Reader 在四會議層中之一選擇登入 A 或是 B Tag，而在其中之一會議層中，Tag 參與其登入環程時，其他層的 Tag 是不能使用也不能修改其登入旗標值的。被給定的會議層中，Tag 提供分別獨立的登入旗標值，其他 Tag 來源在會議層被共享。

會議層允許 Tag 對每個不同的 Reader 連結至分別獨立的登入旗標值。當 Reader 獨立區隔出一個 Tag 之後，Reader 便會發出一個命令，使得 Tag 在其會議層中反轉其登入旗標值。(如 A->B 或是 B->A)。接下來的例子解釋兩個 Reader 如何使用會議層和登入旗標去區隔跟完全的登入一 Tag 群而不會發生衝突。

- Reader 1 啟動，那麼
 - 它開始一個登入循環，並區隔出 S2 會議層中的 A Tags 並反轉成 B。
 - Reader 1 關閉。
Reader 2 启动，那么
- 它开始一个登录循环，并区隔出 S3 会议层中的 B Tags 并反转成 A。
- Reader 2 闭锁。

图 10 会议层图解

这个程序不断重复，直到 Reader 1 已经将会议层 2 中所有的 Tags 反转成 B，然后它把会议层中的 Tags 从 B 反转回 A 并登录。同样的，Reader 2 把会议层 3 中所有的 Tags 反转成 A，从 A 反转回 B，然后登录其 Tags。藉著多步程序，每个 Reader 可以在它的范围内独立地登录所有 Tags，而不须理会它们的登录标志的初始状态。Tag 启动时应以如下方式登录标志。

- S0 的登录标志应被设定为 A。
- S1 的登录标志以其内部的储存值应被设定为 A 或 B，除非它的标志被设定的时间大于持续时间，则 Tag 在下一次被啟動时，将设定 S1 登录标志为 A，因为 S1 的登录标志不会自动更新，需等待 Tag 再次充电，才能将 B 转换至 A。
- S2 的登录标志以其内部的储存值应被设定为 A 或 B，除非 Tag 未收到 Reader 电源的时间超过其规定持续时间，则 Tag 在下一次被啟動时，将设定登录标志为 A。
- S3 的登录标志以其内部的储存值应被设定为 A 或 B，除非 Tag 未收到 Reader 电源的时间超过其规定持续时间，则 Tag 在下一次被啟動时，将设定登录标志为 A。

Tag 要能够在 2 ms 或更短的时间内，设定其登录标志为 A 或 B，而不管其初始值为何。当每一次 Tag 失去电源达 S2、S3 登录标志所规定如表 6.15 的持续时间时，下一次 Tag 启动时，必须能更新其 S2、S3 的登录标志。当 Tag 参与
登入循環，不能讓其 SI 的登入旗標錯過其持續時間。相反的，Tag 必須要在下個問問命令到達前，維持其旗標值。

2.3 信號調變與解調

由於低頻基帶信號在傳輸上易受雜訊和失真的影響，且所需要的接收天線極長，為了使傳輸更有效率，因此將低頻基帶信號附加在高頻電磁波上傳遞，此即所謂的調變。尚未調變過的電磁波也就是所謂的載波，調變過後的電磁波被傳送端發射，在空氣中傳播，途中亦或多或少會受到外部雜訊的干擾影響，而後到達接收端。接收端再對電磁波作解調變，還原成原本的訊號。典型的 RFID 系統中，主要使用移幅鍵控(ASK)、移頻鍵控(FSK)和移相鍵控(PSK)等三種數位資料之類比調變的方式。不同的調變技術，其功率消耗量、可靠度、頻寬和電路設計複雜度皆有所不同。以下為三種基本的數位調變技術：

(1). ASK（amplitude-shift keying）調變：傳送端利用載波振幅的變化來傳送資料。通常使用兩種不同的振幅來表示基帶編碼後的訊號。ASK 由於構造簡單且在接收端解調出原始基帶信號，所以是最簡單的調變方式，但需要極寬的頻寬和極大的載波功率。使用 ASK 雖然有著極高的資料傳輸率，但對於噪音的容忍度是較差的。

(2). FSK（frequency-shift keying）調變：傳信端使用不同的載波頻率來傳送資料。而 binary FSK 是最簡單常見的一種，利用兩種不同的頻率來表示基帶編碼後的訊號。使用 FSK 可以簡化讀取器的設計，提供一個良好的噪音容忍度，但由於需要的傳輸線路頻寬較高，造成了較低的資料傳輸率。

(3). PSK（phase-shift keying）調變：傳信端使用載波相位的改變來傳送資料。而 binary PSK 是最簡單常見的一種，利用兩種不同的相位（0 度、180 度）來表示基帶編碼後的訊號。使用 PSK 也提供了不錯的噪音容忍度，適度地簡化了讀取器的設計，並且跟 FSK 相比起來有更快的資料傳輸率。

![不同調變技術](chart1.png)

圖表 11 不同的調變技術(a)100%ASK (b)binary FSK (c)binary PSK
EPC C1 G2 規範了 Reader 對 Tag 的通訊調變方式為雙旁波帶-移幅鍵控 (DSB-ASK)、單旁波帶-移幅鍵控(SSB-ASK)及反相移幅鍵控(PR-ASK)，如圖 12 所示，其中 ASK 調變深度最小為 80%，最大 100%，一般為 90%。如表 5 所示。

ASK Modulation

![ASK Modulation Diagram]

PR-ASK Modulation

![PR-ASK Modulation Diagram]

圖表 12 ASK 調變波封

表格 5 ASK 調變參數值

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulation Depth</td>
<td>(A-B)/A</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>%</td>
</tr>
<tr>
<td>RF Envelope Ripple</td>
<td>M₀ = Mᵢ</td>
<td>0</td>
<td>0.05(A-B)</td>
<td>V/m</td>
<td></td>
</tr>
<tr>
<td>RF Envelope Rise Time</td>
<td>t₀.10-90%</td>
<td>0</td>
<td>0.33Tari</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>RF Envelope Fall Time</td>
<td>t₀.10-90%</td>
<td>0</td>
<td>0.33Tari</td>
<td>μs</td>
<td></td>
</tr>
<tr>
<td>RF Pulsewidth</td>
<td>PW</td>
<td>MAX(0.265Tari, 2)</td>
<td>0.525Tari</td>
<td>μs</td>
<td></td>
</tr>
</tbody>
</table>

3 RFID 讀取器系統硬體架構

3.1 天線(Antenna)

天線是在空間有效送出電磁波，且對空間交錯的電磁波有效收集的被動元件。RFID 系統中 Reader 與 Tag 之間的資料傳輸是以無線方式來進行，憑藉的就是靠彼此間的天線發射與接收 RF 無線電波，因此如何設計出最佳化天線的操作效能以取得最大之 Tag 可被讀取的距離，是相當重要的。

首先要介紹三個不同的名詞 dB/ dBi / dBm。這都是用來測量增益的單位，但意義並不相同。dB 和 dBi 是相對單位，而 dbm 是絕對單位。dB 是天線的增益和此天線的比例，我們常以 3dB 代表天線增為 2 倍; dBi 這個值的比較基準是相
對於等向性天線 (Isotropic Antenna；一種每個方向所測得的輸出及輸入功率都是相等的理論天線) 的比值，此即天線增益 dBm 是以 RF 輸出 1 mW 做為基準，其發射功率和 1mW 之比值。

在許多情況下，天線需要在某一方向加強訊號，而另一方向必須減弱訊號，以這樣方式設計的天線就是指向性天線，而訊號的加強就是所謂的「天線增益」。天線之指向特性則可以用電磁場輻射場型來解釋。如圖 13 所示：

- Omni-directional - 垂直天線之電磁場輻射能量在各方向完成相等。
- Bi-directional - 水平天線之電磁場輻射能量主要在兩個方向上。
- Uni-directional - 單一指向性天線之電磁場輻射能量主要在一個方向上。

<table>
<thead>
<tr>
<th>OMNIDIRECTIONAL</th>
<th>BIDIRECTIONAL</th>
<th>UNIDIRECTIONAL</th>
</tr>
</thead>
</table>

圖表 13 電磁場輻射場型 (Radiation Patterns)

超高頻 Reader 使用的天線以電信法所規定的增益範圍內，在結構允許的大小、欲設計讀取範圍內作自由的選擇。對於 13.56 MHz，UHF，及 2.45 GHz 之 RFID，其天線的原理有所不同。13.56 MHz 主要靠的是電磁感應，感應距離較近；而 UHF 及 2.45 GHz 則是利用天線共振所產生之電磁波，由 Tag 之天線接收，故其有高指向性，讀取距離較遠。由於為了使超高頻 Reader 能夠讀取較寬廣範圍距離的 Tag，所以我們使用圓形極化波的天線。天線的極化是指輻射波電磁場向量的極化方向，通常天線的極化包括直線(垂直或水平)、圓形(右旋圓形極化 RHCP 與右旋圓形極化 LHCP)、及橢圓極化。

圓形極化波如圖 14 所示，其電場分量大小相等且彼此相位差為 90 度，可以讀取 y 及 z 兩個方向，直線極化僅能讀取單方向，因此圓形極化天線會比直線極化天線擁有較佳的讀取場形，且對於某些使用直線極化天線的 Tag，若無法確定其擺放位置，則 Reader 使用圓形極化天線會是較佳的。不過讀取距離會比直線極化天線稍近一些。
此外天線收集電波的能力，與有效面積有關，無開口面天線的絕對增益以下式表示：\(G = 10 \log \left(\frac{4\pi A}{\lambda^2} \right) \)。其中 \(G \) 為天線的增益，\(A \) 為天線的等效面積，\(\lambda \) 為自由空間無線電波長。

3.1 環行器(Circulator/Directional Coupler)

因為 Reader 使用單一天線發射與接收信號，需要一個方向耦合器介於天線、發射機、接收機之間，來保護接收機不會接受到發射機強大的發射能量而損毀，也避免因接收機內部阻抗不匹配而產生的反射信號經由天線輻射出。而環行器正符合此性質，它可以應用於無線電發射上，其為三埠網路裝置，具有單向傳輸特性，入射信號能順利通過，反射信號由於被吸收電阻吸收而不能通過。一般使用的環行器為微帶式環行器(Microstrip)或同軸環行器(Coaxial)，下圖 15 所示為微帶線接面環行器：

![圖表 15 環行器結構圖](image-url)
典型的連接環行器：在上下兩個接地面間是兩層圓盤或三角狀磁性鐵氧體元件 (Ferrite disk)，中間夾著微帶線。三條微帶線交於一圓金屬盤，互相交 120 度，做為環行器的三個端，直流偏壓場的方向與接地面垂直。當其工作時，兩磁性鐵氧體圓盤會形成共振腔，無偏壓時，共振腔會有一共振模式，受到偏壓時，共振模式會形成兩頻率略為不同的共振模式，因此決定其操作頻率，使兩波形模式疊加時，輸出端為同相相加，隔離端為相減。如下圖 16，能量流動方向為埠 1 到埠 2，埠 2 到埠 3，埠 3 到埠 1，其為順時針環行，亦有逆時針環行器。圖表 16 環行器運行方向

3.2 發射機設計

發射機系統模組設計需考慮所使用積體電路晶片，週邊外部被動元件數目，頻帶外散射干擾 (Unwanted Emission)、功率放大器 (Power Amplifier，PA) 的最大輸出功率 (Output Power) 與輸出效率 (efficiency)、以及線性度 (Linearity) 等等因數，而這些特性優劣都取決於傳送機架構的選擇，進一步影響整體電路實現的難易。最重要的是發射功率要符合系統規格及各地無線電法規的要求，不可過大或過小，也不允許干擾到不屬於自己的頻道。

發射機的結構不像接收機比較複雜，其重要的考量因素包括各種系統對頻道內以及頻道外發射電波功率大小的限制，震盪器及濾波器的元件數目的多寡。但如果其架構與接收機的架構相近的話，這樣就可共用部分的電路與升頻降頻所需的本地震盪訊號。目前常見的發射機架構有數次升頻、直接升頻及鎖相迴路的發射機架構，為了確保發射訊號的純度，我們選擇鎖相迴路的作法，而整體的設計說明如下：

3.2.1 鎖相迴路頻率合成器

因我們所需要的操作頻率是 925MHz，然而，此操作頻率無法由石英震盪器直接產生，所以我們必須用頻率合成的方式將頻率乘上一個倍數，以達到我們想要的 925MHz 的操作頻率。因此我們先設計一個 37MHz 的石英振盪器，使用石英振盪器的原因是因為它有良好的相位雜訊，接著經由鎖相迴路構造的頻率合成
器產生我們所需要的 925MHz 的操作頻率，如圖 17 所示，之後 Modulator 利用此頻率合成器所產生的 925MHz 的振盪訊號，調變控制單元所送來的基頻訊號 (在此我們使用 ASK 調變)，調變後的訊號再經由功率放大器將信號的功率放大，最後經由方向耦合器、天線將訊號傳送給 tag。

\[
\begin{align*}
\text{PD} & \quad \text{LPF} & \quad \text{VCO} \\
\text{div} &= \frac{f_{\text{out}}}{25} \\
\text{\(f_{\text{in}} = \frac{37}{25} \text{MHz} \)} & \quad \text{\(f_{\text{out}} = 25 \cdot f_{\text{in}} \)} & \quad \text{\(= 925 \text{MHz} \)}
\end{align*}
\]

圖表 17 鎖相迴路設計

3.2.2 功率放大器

功率放大器(以下簡稱 PA)的主要功用為把所要發射出去的訊號的功率做一個提升，如此訊號被送到天線時才有足夠的能量發送到 tag。功率放大器與一般放大器最大的分別在於正常操作時的效率，一般來說，PA 的效率為輸出功率除以電源功率，由於耗電及熱效應的問題，PA 必須盡可能在有限的功率消耗下，使用大信號操作，以提供大功率輸出，相對於一般放大器，雖然電流消耗低，但正常操作下輸出的功率也低，如此效率便遠低於 PA 了。PA 的基本特性列表如下表 6。

表格 6 功率放大器基本特性

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

目前 PA 的分類以輸出輸入電壓的關係來看的話可分為線性 PA 跟非線性 PA。線性 PA 包含在電子學中所學過的 A 類、B 類及 AB 類三種，而非線性放大器則有 C 類、D 類、E 類及 F 類。而在本次計畫中，預計採用 E 類 PA，故以下
將對其簡短的介紹。如圖，包含一個並聯 NMOS 的電容 C_s，及一組串聯的諧振電感 L_{dc}，L_s，還有一個負載電阻 R_l。至於 NMOS 則是拿來當做開關 (Switch) 使用。首先當 NMOS 導通時，電流流過 NMOS，電晶體上的電壓降到最低。而當 NMOS 關閉時，電流轉流向負載。注意我們必須盡量使 NMOS 在導通期間，跨於其汲極 (Drain) 與源極 (Source) 間的電壓降到最低，因為在 NMOS 切換過程中，暫態功率消耗主要是來自 NMOS 上的電壓跟切換電流相乘所產生的，故減小導通電壓對減低暫態功率有很大的幫助。圖 18 為 E 類功率放大器最理想的操作狀態，在電晶體切換瞬間，暫態功率消耗達到最小。在計畫中預計使用的 E 類 PA 即是希望能達到下圖 19 所展現的操作情形。因為 E 類 PA 有著較大輸出振幅，其輸出電流最大可達 1.7A，輸出電壓最大甚至可以超過 Vdd，可以提供相當大的輸出功率，所以很適合拿來當做 Reader 中 RF 訊號功率的放大器。

![圖表 18 E 類功率放大器](image-url)
3.3 接收機設計

接收機的好壞設計可從下列幾點來討論：

- **靈敏度** (Sensitivity)：能夠偵測低功訊號以及從中獲取資料，但錯誤或位元錯誤率 (BER) 必須減到最低。通常不同的調變方式在達到一定通信品質的 BER 要求時，會有不同的信號與背景雜訊比的要求，而在天線接收端所收到最低強度的訊號，經過解譯後誤判的資料能低於系統要求，此時訊號能量的值即稱作靈敏度。訂定其靈敏度標準時，會考慮到(1)系統要求的通訊距離、(2)傳遞介質的環境、(3)傳輸端的功率。靈敏度愈低，愈能在吵雜的天空接收到小訊號。

- **交互調變失真** (Intermodulation)：理想接收機所含的放大器或是混波器操作應該都是線性的，但受限於主動元件的線性操作區間有限，使得所組成的接收機產生非線性的效應，一般交互調變失真產生多是發生於接收機同時收到相同射頻帶但不同頻道的信號時，通過接收機的非線性效應而產生許多諧波，萬一不幸有諧波的頻率與所接收的頻道相同，則會干擾到收到的信號，要解決此問題，除了提高接收機電路的線性度，規劃接收機中頻頻率，避免產生的諧波落到接收的頻帶中也是很重要的。

- **選擇性** (Selectivity)：需能從強烈干擾性雜訊中偵測需要的低電位訊號，有關的干擾可能是同頻道、頻帶內或頻帶外的雜訊，許多訊號會同時進入接收器的前端，但只有一種訊號是需要的，因其他訊號必須全部加以抑制，令其減弱不會影響或損害所需的訊號強度，否則位元錯誤率便會上升。強烈的干
3.3.1 接收機架構

目前在射頻接收機的設計架構上，我們採用低中頻接收機的架構，因超外差式接收機結構較複雜且適合較高的頻帶，如此內部設計的方式越有助於降低鏡像頻率的干擾。而直接轉換式雖然結構簡單，但是容易有直流補償(DC offset)及 LO洩漏的問題。低中頻的做法是將接收到的訊號降至很低的中頻位置，多為訊號頻道寬的數倍，如此一來，就可以利用帶通濾波器將頻道內的信號取出，且移除掉直流電壓的漂移。另外為了克服鏡像頻率，乃透過電路技巧使其鏡像頻率混波後的訊號相位旋轉，進而產生相消的效果。其架構如圖20所示：

![低中頻接收機架構](image)

圖表 20 低中頻接收機架構

圖是接收器的類比和混合訊號零件，類比前端包含射頻自動增益控制器(RF AGC)、低雜訊放大器(LNA)、射頻混波器、可程式增益放大器(PGA)和類比數位轉換器。射頻混波器提供兩組輸出，隨後則是複雜的鏡像拒斥(image rejection)處理作業。

3.3.2 低雜訊放大器

經過帶通濾波器濾出的訊號頻帶(922~928MHz)，需再經過低雜訊放大器的放大，以抵抗後面數級電路的雜訊干擾，而低雜訊放大器必須要能接受大的訊號而不致受 distortion，因此它必須有良好的線性度，且通常我們設計低雜訊放大器的輸入阻抗為 50 欧姆，為此是為前一級帶通濾波器的關係。由以上敘述可知，一個低雜訊放大器必須符合一些特性，如表7:
下圖 21 為一低雜訊放大器的電路，圖中電感 L_s 串聯電晶體 M_s 的輸入寄生電容 C_{m2}，此 $L_s - C_{m2}$ 串聯共振提供了一個低的阻抗在電晶體 M_s 的汲極端，使 M_s 的開汲電容 C_{gd} 所看到的電阻很小，因此降低 M_s 受到 Miller effect 的影響。

由於 Drain 電感 L_s、Gate 電容 C_{gs} 及 Gate 電感 L_g 只有在諧振時，才能產生輸入阻抗 50Ω，故此電路架構適合用於窄頻低雜訊放大器。Drain 電感通常不大，固可用 bonwire 電感來做，gate 電感則使用高 Q 值晶片外電感以避免增加放大器雜訊指數。圖中，此兩個共源放大器共用一樣的偏壓電流，因此可以減少 power 的損耗。

$$Z_o = s(L_s + L_g) + \frac{1}{sC_{gs}} + \frac{g_{m1}}{C_{gs}}L_s$$

$$\approx \omega_f L_s = 50\Omega$$

其中 $\omega_f = \frac{g_{m1}}{C_{gs}}$ 為電晶體電流的單位增益頻寬

<table>
<thead>
<tr>
<th>LNA Basic Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise Figure</td>
</tr>
<tr>
<td>1/f3</td>
</tr>
<tr>
<td>Gain</td>
</tr>
<tr>
<td>Input and Output Impedance</td>
</tr>
<tr>
<td>Input and Output Return Loss</td>
</tr>
<tr>
<td>Reverse Isolation</td>
</tr>
<tr>
<td>Stability Factor</td>
</tr>
</tbody>
</table>
3.3.3 混波器

接收的 RF 訊號，經過 LNA 的放大後，需再經由混波器降至基頻。混波器的電路如下圖 22，其中 \(V_{\text{BIAS}} \) 提供此電路的偏壓電流，RF 訊號透過一個 DC blocking 電容 \(C_g \) 被接在電晶體 \(M_1 \) 的開極。首先電晶體 \(M_1 \) 將 RF 訊號的電壓訊號轉換成電流訊號，然後在電流 domain 做相乘的動作。在這個混波器中，\(V_{LO} \) 必須被選的夠大，使得電晶體 \(M_2 \)、\(M_1 \) 能夠完全地交互切換流經 \(M_1 \) 的電流，因此，流經 \(M_1 \) 的電流，等效上來說被乘上一個方波，而此方波的頻率就是等於共振頻率 \(L_0 \):

\[
i_{\text{out}}(t) = \text{sgn}[\cos \omega_{LO}t][I_{\text{BIAS}} + I_{\text{RF}} \cos \omega_{RF}t]
\]

因為一個方波由 fundamental 的奇數個 harmonics 所組成，所以此方波乘上 \(I_{\text{BIAS}} + I_{\text{RF}} \cos \omega_{RF}t \) 會在輸出端的頻譜上產生許多不想要的頻譜部份，因此我們會在混波器的下一级接上濾波器，以過濾掉不想要的頻譜。

\[\frac{1}{2\pi \sqrt{(L_s + L_g)C_{gs}}} \approx 925\text{MHz} \]

因而在接收路徑中，由於 LO 與混波器的輸入訊號與 LNA 的輸入訊號是無法完全的被隔離(isolation)；換句話說，有一部分的 LO 訊號會 feedthrough 到混波器與 LNA 的輸入，這些 leakage 的訊號再與 LO 做混波(mix)，因此造成在混波器的輸出端有一直流的 offset 電壓，因而 corrupt baseband 的訊號。所以在混波器的設計中，訊號 LO 與 IF 的 isolation 也是一個設計非常重要的考量。為了避免上述現象的發生，我們可利用下圖 23 的混波器電路來改善此一現象。圖中，LO

![混波器電路](image)
訊號在輸出端的總和為零，而 RF 訊號在輸出端被放大兩倍，因此此混波器電路大大地提供了 LO-IF 的 isolation，使得輸出端更容易地率出所想要的訊號頻率。

\[I_{\text{DC}} + I_{\text{RF}} \cos \omega_{\text{RF}} t \]
\[I_{\text{DC}} - I_{\text{RF}} \cos \omega_{\text{RF}} t \]

圖表 23 混波器電路

3.4 PCB 版佈局

當整體系統設計完畢，需將電路及元件佈局在PCB印刷電路版來實現，目前所使用的高頻PCB基板主要為三大系統：氟系(PTFE)基板、聚苯醚(PPO)基板及玻纖環氧(FR-4)基板。在UHF頻段以及成本考量之下，我們選用常見的FR-4 玻纖環氧基板即可達到所需的技術要求，其材質為環氧樹酯及玻璃纖維，介電系數 \(\varepsilon_r = 4.1~4.6 \)。

在佈局之前，先了解所謂的電磁干擾(Electromagnetic Interference，EMI)，其來源包括微處理器、開關電路、靜電放電、發射器、暫態電源元件、電源以及閃電。在一個微處理器為基礎的電路板內，數位時序電路通常是寬頻帶雜訊的最大產生者，這所謂的寬頻帶即指分佈於整個頻譜的雜訊。隨著快速半導體以及更快的邊緣變化率的增加，這些電路可能產生高達 300 MHz 的諧波干擾，這些高頻諧波應予以遮蔽或濾除。我們需要了解雜訊如何傳輸有助於辨識電路內部的電磁干擾問題，雜訊的發生必需要有來源(source)、耦合路徑(coupling path)以及易感染的接收器(susceptible receptor)，若是三者之一被排除於系統之外或被減少，干擾才會消失或降低。

基本上所有的電子電路都會發射 EMI 同時又受到 EMI 的干擾，因此電子裝置的設計，應該既不受外在 EMI 干擾源的影響，本身也不應成為 EMI 的干擾源，此一設計理念即為電磁相容性(Electromagnetic Compatibility, EMC)。大多數電子設備的 EMI 是藉由傳導性方式接收，少數則來自無線電頻率之輻射接收。在數位電路中，最臨界(most critical)的信號通常最易受到 EMI 的干擾，例如重置、中斷以及控制線路信號。在類比電路中，類比低階放大器、信號轉換器、補償電路
等，則對電路干擾最為敏感。電磁干擾的防治主要可歸納為兩種不同的型式：降低電磁干擾的散佈與提高電磁干擾的免疫能力。經由適當的系統設計可以抑制電磁干擾的散佈；如果問題仍然持續，就得研究不同方式的遮蔽去包住發射體。電路對電訊的敏感性可藉由電路設計的加強以及使用遮蔽物來降低電路對電磁干擾敏感性。

3.4.1 元件佈局

PCB 佈局之前應先注意將元件放置在適當的位置，一方面需考慮電路板外部接線端子的位置，另一方面也需考慮不同性質的電路應予以適當的區隔。不良的元件擺置將使得 EMI 雜訊很高。所以較佳的設計中，低階類比、高速數位以及雜訊電路(繼電器、高電流開關等等) 應加以分隔以降低子系統間的耦合。當放置元件時，應同時考慮子系統電路間的內部電路繞線，元件間的擺置影響元件間相連接的線路問題，若放的不好，會將彼此間的走線拉的很長，而使得電路更有效經由線路進路系統，若能夠將走線設計的很短，EMI 的影響將會減少，此在數位電路中的時序及震盪電路特別重要。為了去除 EMI 的潛在問題，應該系統化的檢查元件放置與線路佈局，返覆檢視及修正佈線一直到確定所有的 EMI 風險降低到最低為止，簡而言之，事先的防範是降低 EMI 干擾問題的首要原則。

3.4.2 地線佈局

接地可視為所有好的 PCB 設計的基礎。大部分的 EMI 問題皆可藉由良好的接地來解決。良好的接地 PCB 設計可減少共模雜訊的生成，在高速數位電路中設計接地要儘可能包含有多個平行接地線路，這樣可以減少電路中的電感，此概念推至極至，即形成接地平面，若有接地平面，則最能有效降低接地雜訊，通常是使用多層板，但是相對價格也會提高。如果有成本考量，那就使用單點接地。單點或星狀接地連結所有接地線路到終端接地點，此法可降低系統間的共同阻抗。雖然由於空間的限制，使得此法在實際佈線時可能造成困難，但降低共同阻抗則是設計的基本原則。下圖 24 為單點接地的做法，不同性質電路的地線，應當分別拉線，彼此隔離，再以單點方式予以連接。

30
此外電路在佈局時會盡量不用 90 度走線以減低傳輸反射，建議使用 45 度或以圓弧路徑來佈局，如圖 25 所示佈線的角度的產生代表電容的效應，有如在傳輸線突然增加一個電容負載，對於需要上升時間較快的電路而言，會產生誤動作的情況。接地要注意幾點：一、在可允許的面積下，地的配線愈短愈寬愈好，因為導體電感與其直徑或寬度成反比但正比於其長度，這樣有助於降低電感量。二、因為電流最後終會流回源端，不適當的電路佈局會形成一個種對電輻射極為敏感的大迴路，並將雜訊耦合到接地系統中。一般規則是儘可能減少接地迴路(ground loop)的尺寸。

3.4.3 電源線佈局

![圖表 24 單點接地的電源系統](image)

![圖表 25 佈線的較佳角度](image)
PCB 的地線佈局完成之後，接下來就是電源線的佈局。若空間許可，電源線應與地線平行，但從實際觀點而言，此點未必可行。電源線的雜訊通常可藉由適當的電源濾波電容與解耦電容將之濾除，所以應先考慮地線的佈局，再考慮電源線的佈局，在佈完接地線及電源線後，就是訊號線的佈局，訊號線的佈局以最敏感的系統線路最先考慮，並去除電路間的耦合路徑，此外還要注意到在印刷電路板的正面與反面的電源線與接地線盡量避免有重疊的現象，以免產生電源線與接地線之間有電容的產生。如圖 26 所示：

![布線差異造成的電容效應](image)

PCB 的解耦電容可分為兩類，一類是放置 IC 旁的削尖電容 (despiking capacitor)，另一類則是放置電源端的大型解耦電容 (bulk decoupling capacitor)。IC 旁的削尖電容其特質為容量小、頻寬高，目的在於提供 IC 開關時的瞬間脈衝電流。另一類為電源端的大型解耦電容，其數值雖然不是很關鍵，但至少應 10 倍於所有 IC 削尖電容的總和，也應放置於 PCB 的電源輸入端。小的 0.1 μF 電容也可應用於電源端與之並聯以去除高頻雜訊，這些電容應該儘量靠近電源端。
[17] Robertson, I.D. and Blewett, M. and Amin, J. and Butt, I. and Donnelly, F. and

[21] 元智大學電機工程研究所,楊承翰, ”以 0.35um CMOS 積體電路技術設計 13.56Mhz 無線射頻身分識別系統讀卡機” 民國 91 年 7 月.

[22] 國立成功大學電機工程學系,顏呈機,”2.4GHz ISM 頻帶收發機射頻前端 CMOS RFIC 及使用二極體線性器 CMOS PA 之研製”, 民國 91 年 6 月.

[23] 國立中正大學電機工程研究所,吳宗和,”5.2GHz 無線區域網路之射頻模組模擬、組製與整合測試”, 民國 91 年 7 月.

