Highly selective fluorescent sensing of Cu^{2+} ion by an arylisoxazole modified calix[4]arene

Kai-Chi Chang, Li-Yang Luo, Eric Wei-Guang Diau, Wen-Sheng Chung

Department of Applied Chemistry, National Chiao-Tung University, Hsinchu 30050, Taiwan, ROC

A R T I C L E I N F O

Article history:
Received 25 February 2008
Revised 10 June 2008
Accepted 13 June 2008
Available online 18 June 2008

A B S T R A C T

A novel fluorescent chemosensor 1 with two anthraceneisoxazolymethyl groups at the lower rim of calix[4]arene has been synthesized, which revealed a dual emission (monomer and excimer) when excited at 375 nm. This chemosensor displayed a selective fluorescence quenching only with Cu^{2+} ion over all other metal ions examined. When Cu^{2+} ion was bound to 1, the fluorescence intensities of both monomer and excimer were quenched. Furthermore, the association constant for the 1:1 complex of 1/Cu^{2+} was determined to be \((1.58 \pm 0.03) \times 10^4 \text{ M}^{-1}\).

The development of specific fluorescent chemosensors for the efficient detection of metal ion analytes is one of the most important areas in supramolecular chemistry due to their fundamental role in biological, environmental, and chemical processes. In particular, chemosensors for the detection and measurements of Cu^{2+} ions are actively investigated as this metal ion is a significant environmental pollutant and an essential trace element in human body.

Calix[4]arenes have been shown to be useful molecular scaffold in the development of fluorescent chemosensors especially for metal ion recognition. Most calix[4]arene-based fluorescent sensors have been designed based on photophysical changes upon metal ion binding and their mechanisms include photoinduced electron transfer (PET), photoinduced charge transfer (PCT), formation of monomer/excimer, and energy transfer.

In continuation of our interests in the design and synthesis of chromogenic and fluorogenic chemosensors, we report here the synthesis of a novel fluorogenic calix[4]arene using the 1,3-dipolar cycloaddition of an alkylene and a nitrile oxide to form an isoxazole cationic binding site.

The synthetic routes of host 1 and control compound 2 are depicted in Scheme 1. The 25,27-bisfluoroionophores 1^1^ was synthesized in 45% yield starting from 25, 27-bis(O-propargyl)-p-tolylbutylcalix[4]arene 3^1^ using a 1,3-dipolar cycloaddition reaction methodology recently reported by us in capping the lower and upper rims of calix[4]arenes. In this work, 10-chloroanthracene (CA) instead of anthracene was chosen as the fluorophore because the preparation of parent anthracene hydroximoyl chloride requires an extremely careful control of the chlorination process, otherwise mixture of products is usually obtained. Therefore, excess chlorination reagents were used which produced pure CA related products in high yield. Similar procedure was employed in the synthesis of control compound 2^1^ from precursor 4^1^.

Fluorogenic calix[4]-arene 1 was found to be in cone conformation based on the information obtained from ^1^H and ^13^C NMR spectra data.
The UV/vis spectra of the anthracene group(s) 1 and 2 showed four absorption bands at 338, 357, 375, and 396 nm in CH₃CN/CHCl₃ (v/v = 1000:4) (see Fig. S7). The fluorescence spectrum of 1 (20 μM) in CH₃CN/CHCl₃ (v/v = 1000:4) exhibits a dual emission (i.e., monomer and excimer) when excited at 375 nm (Fig. 1). The emission spectrum of 1 is composed of a structured feature, culminating at 430 nm and assigned to the locally excited CA referred to as monomer (similar in shape to the emission spectrum of monofluorophore 2) and a red-shifted, broad and structureless band with λmax at 511 nm, ascribable to the emission from an intramolecular excimer (CA-CA). The excimer formation comes from the interaction of one CA unit in the singlet excited state with the other CA in the ground state.

Excess perchlorate salts (10 equiv) of Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Ba²⁺, Cr³⁺, Pb²⁺, Cu²⁺, Hg²⁺, Cd²⁺, Ag⁺, Ni²⁺, Mn²⁺, and Zn²⁺ (total 15 metal ions) were tested to evaluate the metal ion binding properties of 1 and 2. The results are shown in Figures 2 and S8. Ligand concentration in all titration experiments was fixed at 20 μM in CH₃CN/CHCl₃ (v/v = 1000:4). The fluorogenic chemosensor 1, having two isoxazole units as the metal ligating groups, is found to exhibit remarkable selectivity toward Cu²⁺ over all other metal ions. The fluorescence of 1 (20 μM) was strongly quenched by Cu²⁺ ion; however, no such quenching effect was found for the control compound 2 by any of the fifteen metal perchlorates used above. Moreover, the UV/vis spectra of 1 did not show any new absorption band after adding 10 equiv of Cu²⁺ ion (see Fig. S9). We have also carried out fluorescence quenching experiments on 1 using more polar solvents such as DMSO and MeOH/CHCl₃ (v/v = 1000:4) instead of CH₃CN/CHCl₃ (v/v = 1000:4) (see Figs. S10 and S11) and found that CH₃CN/CHCl₃ is by far the most efficient solvent system in sensing Cu²⁺ ion.

The fluorescence quenching of 1 may be explained by either a reverse PET17 or a heavy atom effect.18 In the former case, when the Cu²⁺ ion is bound by two isoxazole oxygen atoms and two phenol moieties, the CA units probably behave as PET donors whereas the metal ion bound isoxazole groups behave as electron acceptors.

The fluorescence spectra of 1 (20 μM) at various concentrations of Cu(ClO₄)₂ are depicted in Figure 3, as can be seen, no shift in the fluorescence emission maximum was observed. However, the fluorescence intensities of both the monomer and excimer emission of 1 gradually decreased as the Cu(ClO₄)₂ concentration increased from 12 μM to 300 μM. Based on the fluorescence intensity of 1 as a function of [Cu²⁺], the association constant for complex 1Cu²⁺ in CH₃CN/CHCl₃ (v/v = 1000:4) was calculated to be (1.58 ± 0.03) x 10⁴ M⁻¹ by Stern–Volmer plot.19 (Fig. S12) In the Job plot,20 the maximum fluorescence change was observed when the molar fraction of ionophore 1 versus Cu²⁺ was 0.5, indicative of a 1:1 complex (Fig. 4).
Metal ion-induced chemical shift changes in the 1H NMR spectrum of 1 in the presence of 5.0 equiv of Cu$^{2+}$, the peaks of H$_2$–H$_8$ were downfield shifted by 0.23, 0.22, 0.21, and 0.22 ppm, respectively, and the peak of H$_9$ in the hydroxyl of the phenol units was also downfield shifted by 0.22 nm with a reduced intensity. Furthermore, the peak of H$_1$ on the OCH$_2$-isoxazole unit was downfield shifted by 0.24 ppm; however, the peak of H$_2$ on the isoxazole group was significantly downfield shifted by 1.30 ppm, suggesting that the two isoxazole groups were involved in the complexation of Cu$^{2+}$. In contrast, the chemical shifts of protons H$_3$–H$_8$ on the anthracene groups were modestly downfield shifted and the peak shapes were slightly broadened. However, upon adding 5.0 equiv of Cu$^{2+}$ to the solution of 2, the peak of H$_3$ on the isoxazole group was downfield shifted by only 0.26 ppm (Fig. S13). Its downfield shift is much smaller than that for Cu$^{2+}$, which is a highly selective host for the redox observed in the addition of Cu$^{2+}$ to 1. We have also carried out experiments using [(CH$_3$CN)$_4$Cu]PF$_6$ to affect the fluorescence of 1 in the presence of excess Cu$^+$ ion (Fig. S14). The above results suggest that Cu$^{3+}$ might have been reduced to Cu$^{2+}$. The auto-reduction of Cu$^{2+}$ by a phenol is well documented, which is probably the source for the redox observed in the addition of Cu$^{2+}$ to 1. We have also examined the formation of Cu$^{2+}$ in the presence of excess Cu$^{2+}$ (Fig. S14). The above results suggest that Cu$^{3+}$ might have been reduced to Cu$^{2+}$ by the phenols of the host 1 and the oxidized phenols then help to trap the reduced Cu$^{2+}$ ions (Fig. S15). Thus, the compound 1 is a highly selective fluorogenic chemodosimeter for Cu$^{2+}$ ion.

In conclusion, we have synthesized a new bisisoxazolyl-methylene[4]arene 1 bearing two anthracene groups, which displayed a dual fluorescent emission (monomer and excimer) and showed an extreme selectivity toward Cu$^{2+}$ ion over all other metal ions examined.

Acknowledgments

We thank the National Science Council (NSC) and MOE ATU program of the Ministry of Education of Taiwan, ROC for financial support.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2008.06.060.

References and notes

11. Compound 1: A mixture of 3 (0.200 g, 0.276 mmol) and 10-chloroanthracene-9-hydroximoyl chloride (10.0 equiv) in toluene (50 mL) was stirred. Then, Et$_3$N (25.0 equiv) was added dropwise and the mixture was refluxed for 24 h. The solvent was removed under vacuum, and the residue was dissolved in chloroform (30 mL) washed with water, and dried over MgSO$_4$. The residue
obtained after evaporation of the solvent was subjected to a silica gel column chromatography using a gradient polarity (eluents: ethyl acetate/n-hexane, 1:14 to 1:6) to afford 0.153 g (45%) of 1:14 to 1:6) to afford 0.153 g (45%) of 1 as a white solid; mp 172–174 °C; Rf = 0.93 (ethyl acetate/n-hexane = 1:3); 1H NMR (CDCl3, 300 MHz) δ 8.49 (d, J = 8.7 Hz, 4H), 7.83 (d, J = 8.7 Hz, 4H), 7.60–7.49 (m, 4H), 7.47–7.36 (m, 4H), 7.22 (s, 4H), 6.94 (s, 4H), 6.91 (s, 2H), 6.55 (s, 2H), 5.34 (s, 4H), 4.41 (d, J = 13.2 Hz, 4H), 3.49 (d, J = 13.2 Hz, 4H), 1.43 (s, 18H), 1.07 (s, 18H); 13C NMR (CDCl3, 75.4 MHz) δ 153.2 (Cq), 150.3 (Cq), 149.5 (Cq), 147.7 (Cq), 141.9 (Cq), 132.4 (Cq), 131.0 (Cq), 130.7 (Cq), 128.1 (Cq), 127.7 (Cq), 126.5 (CH), 125.8 (CH), 125.8 (CH), 125.2 (CH), 124.8 (CH), 124.4 (Cq), 108.0 (CH), 67.6 (CH2), 33.9 (Cq), 33.8 (Cq), 31.8 (CH2), 31.7 (CH3), 30.9 (CH3); FABMS m/z = 1231 (M+); HRMS calcd for C96H78Cl2N2O6, 1230.5098; found, 1230.5089.

14. Compound 2: A mixture of 4 (0.200 g, 0.926 mmol) and 10-chloroanthracene-9-hydroximoyl chloride (2.50 equiv) in toluene (50 mL) was stirred. Then, Et3N (15.0 equiv) was added dropwise and the mixture was refluxed for 4 h. The solvent was removed under vacuum and the residue was dissolved in chloroform (30 mL), washed with water, and dried over MgSO4. The solid residue was purified by column chromatography with ethyl acetate/n-hexane (v/v = 1:10) to give 0.292 g (67%) of 2 as a yellowish green powder; mp 172–174 °C; Rf = 0.91 (ethyl acetate/n-hexane = 1:1); 1H NMR (CDCl3, 300 MHz) δ 8.61 (d, J = 8.8 Hz, 2H), 7.78 (d, J = 8.8 Hz, 2H), 7.57–7.47 (m, 2H), 7.09 (s, 2H), 6.62 (s, 1H), 5.13 (s, 2H), 2.40 (s, 6H), 1.32 (s, 9H); 13C NMR (CDCl3, 75.4 MHz) δ 141.9 (Cq), 132.4 (Cq), 131.0 (Cq), 130.7 (Cq), 128.1 (Cq), 127.7 (Cq), 126.5 (CH), 125.8 (CH), 125.8 (CH), 125.2 (CH), 124.8 (CH), 124.4 (Cq), 108.0 (CH), 67.6 (CH2), 33.9 (Cq), 33.8 (Cq), 31.8 (CH2), 31.7 (CH3), 30.9 (CH3); FABMS m/z = 1231 (M+); HRMS calcd for C96H78Cl2N2O6, 1230.5089; found, 1230.5089.

15. Compound 4: A solution of 4-tert-buty1-2,6-dimethylyphenol (0.200 g, 1.12 mmol), potassium carbonate (2.00 equiv) and propargyl bromide (1.50 equiv) in acetonitrile (50 mL) was stirred and heated at reflux for 4 h. The solvent was removed under vacuum and the residue was purified by column chromatography with ethyl acetate/n-hexane (v/v = 1:6) to give 0.206 g (85%) of 4 as a colorless oil; Rf = 0.83 (ethyl acetate/n-hexane = 1:3); 1H NMR (CDCl3, 300 MHz) δ 7.05 (s, 2H), 4.50 (d, J = 2.1 Hz, 2H), 2.53 (t, J = 2.1 Hz, 1H), 2.35 (s, 6H), 1.32 (s, 9H); 13C NMR (CDCl3, 75.4 MHz) δ 146.9 (Cq), 130.2 (Cq), 125.7 (CH), 79.3 (Cq), 74.7 (CH), 59.8 (CH2), 34.1 (Cq), 31.4 (CH3), 16.7 (CH3); EIMS m/z 216 (M+, 39), 177 (100), 119 (81); HRMS calcd for C11H16O, 216.1514; found, 216.1515.

22. It was found that if compound 1 in CH3CN/CH3OH (v/v = 1000:4) was pretreated with 3 equiv of Cu2+, then, any added Cu2+ (ca. 10–30 equiv) showed significant quenching of the fluorescence of 1; however, no such quenching effect was found if compound 1 was directly titrated with 30 equiv of Cu2+ (see Fig. S15).