Synthesis and dielectric properties of polyaniline/titanium dioxide nanocomposites

Te-Cheng Mo, Hong-Wen Wang,*, San-Yan Chen, Yun-Chieh Yeh

Department of Materials Science and Engineering, National Chiao-Tung University, Hsinchu 30049, Taiwan, ROC
Department of Chemistry, Chung-Yuan Christian University, Chungli 32023, Taiwan, ROC

Received 26 April 2007; received in revised form 9 May 2007; accepted 12 June 2007
Available online 10 August 2007

Abstract

Two series of polyaniline–TiO₂ nanocomposite materials were prepared in base form by in situ polymerization of aniline with inorganic fillers using TiO₂ nanoparticles (P25) and TiO₂ colloids (Hombikat), respectively. The effect of particle sizes and contents of TiO₂ materials on their dielectric properties was evaluated. The as-synthesized polyaniline–TiO₂ nanocomposite materials were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermal analysis (DTA/TGA), and X-ray diffraction (XRD). Dielectric properties of polyaniline–TiO₂ nanocomposites in the form of films were measured at 1 KHz–1 MHz and a temperature range of 35–150 °C. Higher dielectric constants and dielectric losses of polyaniline–TiO₂ nanocomposites than those of neat PANI were found. PANI–TiO₂ nanocomposites derived from P25 exhibited higher dielectric constants and losses than those from Hombikat TiO₂ colloids. Electrical conductivity measurements indicate that the conductivity of nanocomposites is increased with TiO₂ content. The dielectric properties and conductivities are considered to be enhanced due to the addition of TiO₂, which might induce the formation of a more efficient network for charge transport in the base polyaniline matrix.

Keywords: B. Nanocomposite; C. Dielectric properties; Polyaniline/TiO₂

1. Introduction

The creation of polymer/inorganic nanoparticle composites having unique physical properties has attracted intensive research recently [1–8]. Polymeric materials with high-dielectric constants are highly desirable for use in actuators, artificial muscles, and charge-storage devices [1,2]. To raise the dielectric constant of polymers, high-dielectric constant ceramic powders such as BaTiO₃ and PbTiO₃ were added to the polymers to form nanocomposites [3–8]. Polyaniline (PANI) is the most attractive conducting polymer due to its low cost, high environmental stability, good electrical conductivity and potential applications in molecular electronics. The electrical properties of polyaniline could be modified by the addition of inorganic fillers [18–23]. Nanoscale fillers are the most attractive, due to intriguing properties arising from the nanosize and large surface area. The insertion of nanoscale fillers may improve the electrical and dielectric properties of host polyaniline materials. A very high-dielectric constant – up to 3700 for polyaniline–TiO₂ nanocomposite materials – was reported by Dey et al. [22]. However, high-dielectric constants are usually accompanied with high-dielectric losses [9–17,23]. Xu et al. [24] noticed that the electrical conductivity of a PANI–TiO₂ nanocomposite with a low TiO₂ content is much higher than of neat PANI. Su et al. [25] reported that the PANI–TiO₂ nanocomposite has suitable conductivity (1–10 S/cm), and increases after thermal treatment at 80 °C for 1 h. The reason for the ultrahigh dielectric properties of PANI–TiO₂ nanocomposites is not clear [22]. In the present study, TiO₂ with two different particle sizes is employed to modify base form polyaniline. The dielectric properties of polyaniline–TiO₂ nanocomposites were characterized. Enhanced, but not ultrahigh, dielectric constants were observed.

2. Experimental procedure

Aniline (99%, Fluka) was doubly distilled under a reduced pressure. Both 1.0 M NH₄OH and 1.0 M HCl were prepared by...
diluting concentrated ammonia and hydrochloric acid with de-ionized water for the acidic and basic aqueous media, respectively. 1-Methy-2-pyrrolidinone (NMP) (99.7%, Mallinckrodt) was used as received without further purification. Ammonium persulfate (Showa, 98%) was employed as oxidant. Two types of TiO\textsubscript{2} were employed. P-25, average particle size 50 nm, was purchased from Showa Tokyo Japan. Hombikat TiO\textsubscript{2} colloids, average particle size 25 nm, were purchased from Sachtleben Chemie Germany.

An appropriate amount of organophilic TiO\textsubscript{2} (1–5 wt% to that of polyaniline) was introduced into 400 ml of 1.0 M HCl while magnetically stirring overnight at room temperature. An aniline monomer (0.1 mol) was subsequently added to the solution and stirred for 24 h. Upon addition of ammonium persulfate (0.025 mol) into 20 ml of 1.0 M HCl, the solution was stirred for 3 h at 5°C in an ice bath. The as-synthesized HCl-doped lamellar nanocomposites precipitates were obtained by filtering and drying under a dynamic vacuum at room temperature for 48 h. The final products were bathed using 400 ml of 10.0 M NH\textsubscript{4}OH at room temperature while magnetically stirring for 4 h, followed by filtration and drying under vacuum for 48 h.

Characterization of the structures of as-synthesized nanocomposites was accomplished using wide-angle powder X-ray diffraction (WAXRD) in order to examine the TiO\textsubscript{2} phase. Transmission electron microscopy (TEM) was employed to image the TiO\textsubscript{2} dispersion in the polyaniline matrix. The WAXRD studies were performed on a Rigaku D/MAX-3C X-ray diffractometer with a Cu target and Ni filter at a scanning rate of 4°/min. The sample for the TEM study was prepared by hardening polyaniline–TiO\textsubscript{2} nanocomposites thin films into an epoxy resin at 80°C for 24 h in a vacuum oven. Then, the cured epoxy resin containing nanocomposites was microtomed into 60–90 nm slices with a Reichert-June Ultracut-E. Subsequently, one layer of carbon about 10 nm thick was deposited on the slices on mesh 300 copper nets for TEM observations on a JEOL-200FX with an acceleration voltage of 120 kV. Fourier transform infrared (FTIR) spectra were obtained at a resolution of 4.0 cm-1 with an FTIR (BIO-RAD FTS-7) at room temperature ranging from 4000 to 400 cm-1. The FTIR spectra provided further evidences that TiO\textsubscript{2} was dispersed within the polyaniline matrix.

A vacuum evaporated gold electrode was deposited on both sides of the nanocomposite film (electrode area 0.5625 cm2) after drying at 80°C overnight before the dielectric characterization. ac resistance and dielectric parameters such as the capacitance and dissipation factor (tan δ) were measured by a Agilent 4284 LCR precision meter at various frequencies (1 KHz–1 MHz) under temperatures from 30–100°C. The thickness of the sample was 60–80 μm. The dielectric constants (ε\textsubscript{r}) of the specimens were calculated by the equation:

\[C = \varepsilon_0 \varepsilon_r \frac{A}{d} \]

where ε\textsubscript{0} is the vacuum permittivity, which equals 8.85 \times 10-12 F/m; “A” is the electrode area; and “d” is the thickness of the specimen. The ac conductivities, \(\sigma_a \), of the specimens were calculated from the measured resistance by the LCR meter at a frequency of 1 kHz–1 MHz.

3. Results and discussion

3.1. XRD and FTIR

Fig. 1 shows the WAXRD diffraction patterns for a series of pure polyaniline and PANI–TiO\textsubscript{2} nanocomposite materials. The anatase TiO\textsubscript{2} had 2\textdegree\textsubscript{θ} values at 25.27°, 37.78°, 48.07°, 53.92°, 55.11°, 62.72°. Fig. 1(a) shows that a small peak is around 2\textdegree\textsubscript{θ} = 25°, indicating the PANI also exhibits some degree of crystallinity. For PANI–TiO\textsubscript{2} (P25) nanocomposites, peaks of the TiO\textsubscript{2} anatase phase are clear, as shown in Fig. 1(b)–(d). Comparing curves (b)–(d) with (e), it is clear that diffraction

Fig. 1. The XRD diffraction patterns for polyaniline–TiO\textsubscript{2} nanocomposites obtained from (a) pure PANI, (b) PANI with 1 wt% TiO\textsubscript{2}-P25, (c) PANI with 3 wt% TiO\textsubscript{2}-P25, (d) PANI with 5 wt% TiO\textsubscript{2}-P25, (e) pure TiO\textsubscript{2}-P25, (f) PANI with 1 wt% TiO\textsubscript{2}-Hombikat, (g) PANI with 3 wt% TiO\textsubscript{2}-Hombikat, (h) PANI with 5 wt% TiO\textsubscript{2}-Hombikat, and (i) pure TiO\textsubscript{2}-Hombikat. The arrows indicated the peaks of the anatase phase.

Fig. 2. FTIR curves for PANI and polyaniline–TiO\textsubscript{2} nanocomposites. P: P25, H: Hombikat.
patterns of the polyaniline–TiO$_2$ composites are identical to those of TiO$_2$ P25 particles. This implies that polyaniline deposited on the surface of nano-TiO$_2$ particles has no effect on the crystallization performance of P25 nanoparticles. However, for the PANI–TiO$_2$ (Hombikat) nanocomposites, very broad peaks are exhibited (curve (f)–(h)), which implies the poor crystallinity nature of Hombikat TiO$_2$ colloids.

Fig. 2 shows the FTIR spectra for pure polyaniline and the PANI–TiO$_2$ nanocomposite materials. The main characteristic peaks are assigned as follows: the band at 1576 cm$^{-1}$ is attributed to C=N stretching mode, 1242 and 1304 cm$^{-1}$ have been attributed to the C–N stretching mode for the quinonoid and benzenoid units. The peak at 824 cm$^{-1}$ is associated with C–C and C–H for a benzenoid unit. Both PANI–TiO$_2$ nanocomposites show very similar spectra to that of pristine PANI. TiO$_2$ peaks at 629 cm$^{-1}$ are very weak in the studied nanocomposites. This result was similar to those of Yang’s report [26].

3.2. TEM and SEM

Fig. 3(a) and (b) show the TEM images for the PANI-3% TiO$_2$-hombikat and the PANI-3% TiO$_2$ P25, respectively. As shown in Fig. 3(a), particles of TiO$_2$-hombikat, having a crystal size of about 25 nm, tend to be agglomerated. In Fig. 3(b), particles of P25, having crystal sizes of 50 nm, are more discretely distributed. SEM micrographs for the crack surface of PANI–TiO$_2$ nanocomposites are showed in Fig. 4(a) and (b). In Fig. 4(a), the small and uniform spheres of Hombikat TiO$_2$ are observed. However, some flat large lumps within the PANI matrix are also identified (arrow indicates). In Fig. 4(b), the particles of P25 are clear and covered by PANI materials. The distribution and packing of P25 in the PANI matrix is more uniform, and no large lumps are observed.

3.3. Dielectric properties and conductivity

To illustrate the effect of TiO$_2$ on the electrical properties of PANI materials, a comparison of PANI and PANI–TiO$_2$ nanocomposites was made. Figs. 5 and 6 show the dielectric
constants and dielectric losses of polyaniline at various TiO₂
contents from room temperature to 100 °C. As the content of
TiO₂ increased, the dielectric constant and loss also increased.
P25, with a particle size of about 50 nm, exhibits higher
dielectric constants and losses than those of Hombikat TiO₂
colloids. The pristine PANI film in base form has a dielectric
constant around 8.9 at 1 MHz, as shown in Fig. 5. P25 enhances
the dielectric constant up to 25.5 at 5 wt% content under
1 MHz. However, high-dielectric constants accompanied with
higher dielectric losses were observed in this study. From
Figs. 5 and 6, 50 nm P25 TiO₂ enhances dielectric constants and
losses, while 25 nm Hombikat TiO₂ colloids appear insignif-
icant. Fig. 7 illustrates the diagram for dielectric constants
versus frequencies for all PANI–TiO₂ nanocomposites. It was
observed that 5 wt% P25 enhanced the dielectric constant of the
PANI–TiO₂ nanocomposite up to 146 at 1 kHz, which is about 8
times that of pristine PANI under the same conditions. In the
mean time, the dielectric loss for PANI-5% TiO₂ (P25) is also
high (~0.8 at 1 kHz at room temperature), 10 times of pristine
PANI at the same condition.

Fig. 8 shows the effect of P25 and Hombikat TiO₂ materials
on the AC conductivity of PANI under 1 kHz, 10 kHz, and
1 MHz. Curves a–c are for 25 nm TiO₂–Hombikat and curves
d–f are for 50 nm P25. In general, the conductivity of PANI-P25
is higher than those of PANI-Hombikat. Moreover, the
conductivity of nanocomposites increases as the addition of
TiO₂ increases from 1 to 5 wt%. The increasing tendency of
conductivity for PANI–TiO₂ was also reported by Xu [24] and
Su [25]. From the results described above, it has been
considered that the enhanced dielectric constants and losses
might originate from the increased conductivity. The addition
of TiO₂ might induce the formation of a more efficient network

![Fig. 5. Dielectric constant of PANI–TiO₂ nanocomposites at various temperatures.](image)

![Fig. 6. Dielectric loss of PANI–TiO₂ nanocomposites at various temperatures.](image)

![Fig. 7. Dielectric constant of PANI–TiO₂ nanocomposites at various frequencies.](image)

![Fig. 8. ac conductivities of PANI–TiO₂ nanocomposites at 35 °C.](image)
for charge transport in the base polyaniline matrix, resulting in higher conductivities [24,27]. As shown in TEM and SEM micrographs, the distribution of 50 nm TiO2 particles (P25) is more uniform than that of 25 nm TiO2 powders. The uniformity of particle distribution in the case of P25 may result in a better network for charge transport than the non-uniform case (Hombikat).

4. Conclusion

A series of polyaniline–TiO2 nanocomposite materials were prepared using an in situ polymerization process. From the characterization of SEM, TEM and X-ray diffraction, it was identified that the fine TiO2 colloids (Hombikat) form a relatively non-uniform distribution in the PANI matrix, while P25 is more uniformly distributed. Dielectric characterization demonstrated that TiO2 nanoparticles exhibit a strong effect on the dielectric properties of resultant PANI–TiO2 nanocomposites. The uniform packing of P25 TiO2 results in an enhanced conductivity of the base form of the polyaniline film and thus enhances dielectric constants and losses. The increased conductivity is attributed to the formation of a better charge transport network in the relatively insulating polyaniline matrix.

References