4. CONCLUSION

A novel design of broadband dual CP square slot antenna has been investigated and successfully implemented. Two orthogonal modes of the proposed antenna are excited in series through the coupling between the T-junction and the T-shaped strip. By loading the four metallic strips at the slot corners, high port isolation level is achieved. The measured 3-dB AR bandwidth is 480 MHz or 19.6% and the isolation between two ports is better than 20 dB over the band. The proposed antenna has excellent dual CP characteristics and is suitable for polarization diversity operation.

REFERENCES

© 2008 Wiley Periodicals, Inc.
2. CIRCUIT DESIGN

The divide-by-two frequency divider is composed of a single-to-differential clock buffer, a D-type flip-flop and an output buffer, as shown in Figure 1. The D-type flip-flop is cascade by two-stage bi-level (series-gated) D-latch, which senses data and clock input simultaneously. For the divide-by-two function, the slave output is cross-connected to the master input. Every D-latch is composed of the differential pair and the cross-coupled regenerative pair. For the purpose of high-speed and low input sensitivity, emitter-couple logic (ECL) topology is employed. When signal swing is higher than 4 V_T, an ECL can provide the voltage gain more than 1, and easily differentiate logic levels.

As illustrated in Figure 2, the dash and solid lines indicate the current directions of the static and HLO-FF structures, respectively. In HLO-FF structure, the current paths of latch pairs are separated from that of read pairs. Latch current are usually chosen from one-half to one-third of the read current. During the latching period, the low logic-level is pre-pulled to $V_{CC} - I_{latch} \times R_L$. The smaller voltage-swing makes the cross-point of the differential signal shift forward about Δt in the next read-period, as illustrated in Figure 3(a). The shorter transitional period implies that the operating frequency can be prompted. Therefore, the HLO-FF can operate at the higher frequency.

Since the speed of the clock pair is twice as high as the other pairs, the current density will be biased at the peak of cut-off frequency (f_T). The sizes of read (Q_3-Q_4) and latch (Q_5-Q_6) transistors are chosen as the half of clock pair. It not only reduces the output capacitance contributed by latch pairs [5], but also keeps read pairs operating near the peak of f_T. For the specified output swing, the value of R_L must be reduced as the increasing I_{read}. The storage ability of the latch pairs becomes weak unless the latch current is raised to compensate the smaller cross-loop gain caused by the decreasing of R_L. Figure 4 shows the D-latch half-circuit and its output resistance of $R_L/(l/gm \times R_L)$. If the negative transconductance ($-gm$) of the latch pair is larger than positive conductance (l/R_L), the initial logic level can be amplified and then stored. It also implies that I_{latch} must be larger than V_T/R_L, otherwise the latch pair fails to store the logic level, as illustrated in Figure 4(b).

In Figure 3(b), the logic level in the read-period does not reach full voltage swing at higher frequency due to the finite slew-rate. When operating near the maximum frequency, the voltage swing will be like the waveform of Figure 3(c). Except smaller voltage swing, it is similar to the condition of static structure. If boosting operation to much higher frequency, voltage-swing and slew-rate are still the keys of design issue. The former has a limitation in maximum shifting amount of cross-point, Δt_{max}, which occurs under zero latch-current. But, the behavior of the HLO-FF gradually becomes more dynamic, so as to make the bandwidth-ratio narrower. On the other hand, the speed of HLO-FF will be limited under the voltage swing, $I_{latch} \times R_L$, unless the slew-rate is increased to obtain shorter transition-time again. The highest slew-rate of HBT depends on whether the HBT is biased at maximum f_T or not, especially the transistors of read or clock pairs. Briefly, there exists an optimization ratio of I_{latch}/I_{read} between the speed and bandwidth ratio under the specified voltage swing.
3. MEASUREMENT RESULTS

For comparison, the static and HLO-FF frequency dividers are simultaneously fabricated in 2 \mu m GaInP/GaAs HBT technology, whose peak value of \(f_T \) is around 35 GHz. Although the transistors of read and clk pairs are biased near maximum \(f_T \), these must avoid entering the high current density region, where small-signal current gain and \(f_T \) will be reduced due to Kirk-effect. Figure 5 shows die photos of GaInP/GaAs HBT Static and HLO-FF frequency dividers, whose sizes including probing pads are 0.85 \times 0.83 mm\(^2\) and 0.77 \times 0.75 mm\(^2\), respectively.

In HLO-FF core circuit, the emitter size of the clock transistors, \(Q_1 \), with the double of read current is chosen as 2 \times 4 \mu m\(^2\). The other HBT devices, \(Q_2 \sim Q_6 \), used in the D-type flip-flop are 2 \times 2 \mu m\(^2\). At the supply voltage of 5 V, the transistors \(Q_1 \), \(Q_2 \) and read pairs with 0.278, 0.297, and 0.275 mA/\mu m\(^2\) operate near the peak of \(f_T \). As the ratio of \(I_{\text{latch}}/I_{\text{read}} \) is reduced to 0.53, the operating frequency of the HLO-FF frequency divider is up to 11.8 GHz.

However, the size of all transistors in static D-FF is 2 \times 4 \mu m\(^2\). The maximum frequency is only 8 GHz because of extra capacitance contributed by larger latch transistors, lower current density in read-pairs, and higher voltage-swing during latching period. Their spectrums at maximum operating frequency are shown in Figures 6 and 7, respectively. The speed of the HLO-FF structure is obviously faster than that of static.
structure at the cost of fewer low-frequency operating range. The core circuits of the static and HLO-FF frequency dividers consume 12.1 and 13 mA at the supply voltage of 5 V, respectively. Figure 8 shows the measured input sensitivity. The HLO-FF and static frequency dividers operate from 4.1 to 11.8 GHz and from 1.8 to 8 GHz, respectively. The improved amount of maximum frequency is increased to 48%.

Another interesting phoneme is that low-frequency boundary is shrunk quickly when reducing $I_{\text{latch}}/I_{\text{read}}$ ratio. But, maximum frequency is merely raised about 150 MHz. The latter means that the forward shifting of cross-point by reducing I_{latch} is almost close to Δt_{max} and reaches the limit of speed. If requiring higher-speed operation, it is not enough to only reduce I_{latch} for smaller voltage-swing without considering size ratio and technology limitation.

4. CONCLUSION

This article describes the design and performance of the dynamic frequency divider based on HLO-FF structure in the 2 μm GaInP/GaAs HBT technology. By basing current density and reducing latching voltage swing, the operating frequency of divide-by-two function is from 4.1 to 11.8 GHz under the optimized $I_{\text{latch}}/I_{\text{read}}$ of 0.53 and the supply voltage of 5 V. On the other hand, the static frequency divider using identical HBT only operates up to 8 GHz. As the compared results, HLO-FF is greatly faster than static structure, and the improved amount of maximum frequency can be up to 48%.

ACKNOWLEDGMENT

This work is supported by National Science Council of Taiwan, Republic of China under contract numbers NSC 96–2752-E-009–001-PAE, NSC 95–2221-E-009–043-MY3, by the Ministry of Economic Affairs of Taiwan under contract number 95-EC-17-A-05-S1–020, and by MoE ATU Program under contract number 95W803. The authors would like to thank National Chip Implementation Center (CIC) for technical support.

REFERENCES

© 2008 Wiley Periodicals, Inc.