Intelligent Video Smoother for Multimedia Communications

Maria C. Yung, Member, IEEE, Po L. Tien, and Shih T. Liang

Abstract—Multimedia communications often require intrame-
dia synchronization for video data to prevent potential playout
discontinuity resulting from network delay variation (jitter) while
still achieving satisfactory playout throughput. In this paper, we
propose a neural network (NN) based intravideo synchronization
mechanism, called the intelligent video smoother (IVS), operating
at the application layer of the receiving end system. The IVS
is composed of an NN traffic predictor, an NN window deter-
mator, and a window-based playout smoothing algorithm. The
NN traffic predictor employs an on-line-trained back-propagation
neural network (BPNN) to periodically predict the characteristics
of traffic modeled by a generic interrupted Bernoulli process
(IBP) over a future fixed time period. With the predicted traffic
characteristics, the NN window determinator determines the
corresponding optimal window by means of an off-line-trained
characteristics, the NN window determinator determines the
IBP) over a future fixed time period. With the predicted traffic
characteristics, the NN window determinator determines the
optimal window by means of an off-line-trained BPNN in an effort to achieve a maximum of the playout quality (Q) value. The window-based playout smoothing algorithm then dynamically adopts various playout rates according to the window and the number of packets in the buffer. Finally, we show that via simulation results and live video scenes, compared to two other playout approaches, IVS achieves high-throughput and low-discontinuity playout under a mixture of IBP arrivals.

Index Terms—Back-propagation neural network (BPNN), in-
terrupted Bernoulli process (IBP), intramedia synchronization,
multimedia communications, network delay variation.

I. INTRODUCTION

RECENT EVOLUTION in high-speed communication
technology enables the deployment of distributed
multimedia applications combining a variety of media data,
such as text, audio, graphics, images, and full-motion video
[15]. For supporting distributed multimedia communications,
researchers have encountered various design problems
including intermedia and intramedia synchronization [17],
[19]. In particular, intramedia synchronization for video data
has been considered essential to prevent potential playout
discontinuity resulting from network delay variation while
still achieving satisfactory playout throughput. As opposed
to several existing approaches attempting to reduce delay
variation from networks [5], [8], we tackle the problem from
the end system perspective.

Several existing intramedia synchronization methods, which
perform at the end system, exhibit various performance merits.
They can be categorized into one of three categories: static
delay-based, dynamic feedback-based, and dynamic delay-
based. Static delay-based methods preserve playout continuity
by buffering massive packets at the receiving end system
[13], [14] or delaying the playout time of the first packet
received [3], [12], [13], [18]. These methods have been shown
to be feasible but at the expense of a drastic decrease in
playout throughput. On the other hand, dynamic feedback-
based methods [11], [17] perform intramedia synchronization
through adjusting the source generation rate by means of send-
ing feedback from receiving end systems. These methods are
effective, but are unviable for most live-source applications.

Unlike the two methods described above, the dynamic
delay-based method [9] employs reduced playout rates if the
current number of packets in the playout buffer falls below a
given threshold, which is analytically computed in advance in
accordance with a predetermined arrival process. This method
has been shown to be viable; however, it may result in the
misjudgment of playout rates should the traffic arrival fail to
follow the predetermined arrival process.

In this paper, we propose a neural network (NN) based
intravideo synchronization mechanism, called the intelligent
video smoother (IVS), operating at the application layer of
the receiving end system. The IVS is composed of an NN
traffic predictor, an NN window determinator, and a window-
based playout smoothing algorithm. The source traffic to IVS
is modeled as any discrete-time interrupted Bernoulli process
(IBP) with unknown probabilistic parameters.

Initially, the NN traffic predictor employs an on-line-trained
back-propagation neural network (BPNN) to periodically pre-
dict two traffic characteristics (mean busy period and mean
idle period) of an IBP arrival over a future fixed time period.
With the predicted traffic characteristics, the NN window
determinator determines the corresponding optimal window
by means of an off-line-trained BPNN, in an attempt to achieve a
maximum of the playout quality (Q) value defined as a function
of mean playout throughput and playout discontinuity. The window-based
playout smoothing algorithm then dynamically
adopts various playout rates according to the window and the
number of packets in the buffer. Finally, we show simulation
results which demonstrate that compared to two other playout
approaches, IVS achieves superior Q under a mixture of IBP
arrivals.

The remainder of this paper is organized as follows.
Section II presents the main concept and the architecture of
the IVS system. Section III describes the NN traffic predictor.
Under a predicted traffic arrival, since the off-line training data
for the determination of the optimal window are collected by
performing the playout smoothing algorithm, the window-
based playout smoothing algorithm is first introduced in

Manuscript received February 1996; revised July 1, 1996.
The authors are with the Department of Computer Science and Information
Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.
Publisher Item Identifier S 0733-8716(97)00482-4.
Section IV. The determination of the optimal window through the NN window determinator is then provided in Section V. Section VI shows performance comparisons and experimental results of the entire IVS system. Finally, conclusion remarks are given in Section VII.

II. INTELLIGENT VIDEO SMOOTHER

A. Concept

The protocol stack on which IVS is established is shown in Fig. 1. Video frames are often captured, encoded, and repacketized into fixed-size packets. These packets are in turn sent through a transport network including lower layers of the sending end system and the relay network, such as an asynchronous transfer mode (ATM) network [5], until reaching the receiving end system. Upon receiving packets which are assumed to arrive in accordance with any IBP (described below) with unknown probabilistic parameters, IVS determines the playout time at which packets are transferred from the IVS playout buffer to the decoder from which frames are resumed and playbacked.

It is worth noting that IVS has been designed as a general synchronization solution for any generic video encoder/decoder system. It can be implemented in hardware physically co-located with the decoder, or in software functioning as the front end of the decoder. In the case of supporting a primitive compression-less decoder card, IVS indispensably furnishes intramedia synchronization by directly treating captured fixed-size frames as packets. The IVS can also support sophisticated synchronization-equipped video decoder systems, such as the moving pictures expert group (MPEG) [1], [6], [15], [19]. In this case, video frames are encoded, packetized, and multiplexed [19] as fixed-size packets. These fixed-size packets are eventually received and saved in the decoder buffer from which frames are resumed and played back.

For the example given in Fig. 2, \(F = 3 \) (7 Mb/s/2.32 Mb/s). It is worth noting that packets are "played out" from IVS at a maximum rate of \(\frac{1}{F} \), i.e., \(\frac{1}{3} \) in this example, to prevent the decoder buffer from overflowing in the case of supporting MPEG.

Fig. 1. Protocol stack around IVS.
at the transport layer of the sending end system. In that case, packets are played out without discontinuity at the maximum rate, as shown in Fig. 2(d). However, due to delay jitters [16] induced in networks, different packets yield different end-to-end delays [Fig. 2(e)] causing playout discontinuity. Define the variance of discontinuity (VOD) as

\[
\text{Variance of discontinuity (VOD)} = E\{D_i - E[D_i]\}^2
\]

where \(E \) is the expectation function and \(D_i \) is the \(i \)-th discontinuity duration during the playout. For example, \(D_1 \) in Fig. 2(f) is three slots in length, whereas both \(D_3 \) and \(D_5 \) in Fig. 2(g) are one slot long. Fig. 2(f) and (g) depict the playout of packets without and with intravideo synchronization, respectively.

Moreover, playout discontinuity can be reduced at the expense of a rise in playout delay or a decrease in playout throughput. Define the mean playout throughput (MPT) as

\[
\text{Mean playout throughput (MPT)} = E\left[\frac{1}{\text{packet sojourn time}}\right]
\]

where the packet sojourn time is defined as the elapsed time between packet arrival and departure in IVS. In this example, the sojourn times of Packet #2 in Fig. 2(f) and (g) are two and four slots, respectively. Apparently, for any high-burstiness arrival, the playout of packets without intravideo synchronization achieves the highest MPT at the expense of an increase in the VOD, as shown in Fig. 2(f). In contrast, as shown in Fig. 2(g), the playout of packets with intravideo synchronization exhibits a lower VOD but at the expense of a decrease in the MPT. The IVS has thus been designed to achieve a minimum of VOD and a maximum of MPT. Define playout quality \((Q)\) as a function of the MPT and VOD

\[
\text{Playout quality (}Q\text{)} = f(MPT, VOD),
\]

Three issues have been raised in the design of IVS. First, how can future traffic be foreseen? Second, how can the playout rates be determined achieving a maximum of \(Q\) value? Finally, how can one select a \(Q\) which can be soundly associated with the perceptional demand of the video application under consideration? The solutions to these three issues are addressed in the following sections after the source traffic model and the architecture of IVS are first presented in the next two subsections.

B. Source Traffic Model

The source traffic to IVS is modeled by a generic discrete-time IBP [7], which has been widely accepted to model the traffic which is bursty in nature. The process alternates between the busy and the idle states, as shown in Fig. 3. Notice that rather than confine the source traffic model to a given IBP, IVS adopts a generic IBP allowing any combination of transitional probabilities. In the figure, \(\alpha \) defines the probability of switching from the busy to the idle state and \(\beta \) defines the opposite probability. Moreover, in any time slot packets arrive in a rate of \(\lambda_1 = \lambda \) during the busy state and in a rate of \(\lambda_0 = 0 \) during the idle state. That is, one packet is generated

with probability \(\lambda \) per time slot during the busy state, and no packet is generated during the idle state. The steady-state probability of being at each state, denoted as \(\Pi_{busy} \) and \(\Pi_{idle} \), can be computed using \(\Pi = \Pi \Pi_0 \), where \(\Pi = [\Pi_{busy}, \Pi_{idle}] \), as

\[
\Pi_{busy} = \frac{\beta}{\alpha + \beta} \quad \text{and} \quad \Pi_{idle} = \frac{\alpha}{\alpha + \beta}.
\]

In our work, we approximate this source traffic distribution by four characteristics: mean packet rate \((\bar{P})\), mean busy period \((\bar{B})\), mean idle period \((\bar{I})\), and burstiness \((b)\) [16]. Accordingly, for an IBP arrival defined by parameters \(\alpha \), \(\beta \), and \(\lambda \), the four traffic characteristics in terms of \(\alpha \), \(\beta \), and \(\lambda \) are given by

\[
\bar{P} = \Pi_{busy} \times \lambda = \frac{\beta \times \lambda}{\alpha + \beta},
\]

\[
\bar{B} = \frac{1}{\alpha},
\]

\[
\bar{I} = \frac{1}{\beta},
\]

and

\[
b = \frac{1}{\Pi_{busy}} = \frac{\alpha + \beta}{\beta}.
\]

Table I summarizes nine different traffic arrivals with various \(P\)'s and \(I\)'s under a fixed \(B\), which are used throughout the rest of the paper. For ease of illustration, arrival rate \(\lambda \) is assumed to be one in all cases. As a result, \(\bar{P} \) becomes a function of \(B \) and \(I \), i.e., \(\bar{P} = \bar{B}/(\bar{B} + \bar{I}) \). These two traffic characteristics, namely \(\bar{B} \) and \(\bar{I} \), as will be shown, are to be predicted by the NN traffic predictor of IVS. Notice that for traffic arrivals exhibiting \(b \) higher than six, we observe that playout discontinuity or underflowing of the decoder buffer can no longer be avoided regardless of the consideration of synchronization.

C. System Architecture

IVS is composed of three major components (see Fig. 4): NN traffic predictor, NN window determinator, and the window-based playout smoothing algorithm. For a future fixed time interval, the NN traffic predictor employs a BPNN to predict two traffic characteristics, \(\bar{B} \) and \(\bar{I} \), under a fixed \(\bar{B} \), which are used throughout the rest of the paper. For ease of illustration, arrival rate \(\lambda \) is assumed to be one in all cases. As a result, \(\bar{P} \) becomes a function of \(B \) and \(I \), i.e., \(\bar{P} = \bar{B}/(\bar{B} + \bar{I}) \). These two traffic characteristics, namely \(\bar{B} \) and \(\bar{I} \), as will be shown, are to be predicted by the NN traffic predictor of IVS. Notice that for traffic arrivals exhibiting \(b \) higher than six, we observe that playout discontinuity or underflowing of the decoder buffer can no longer be avoided regardless of the consideration of synchronization.
TABLE I
NINE TRAFFIC ARRIVALS

<table>
<thead>
<tr>
<th>IBP arrival</th>
<th>Mean Packet Rate (P packets/slot)</th>
<th>Mean Busy Period (B slots)</th>
<th>Mean Idle Period (I slots)</th>
<th>Burstiness (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>β</td>
<td>λ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.333</td>
<td>0.142</td>
<td>0.300</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>0.333</td>
<td>0.125</td>
<td>0.273</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>0.333</td>
<td>0.111</td>
<td>0.250</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>0.333</td>
<td>0.100</td>
<td>0.230</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>0.333</td>
<td>0.090</td>
<td>0.214</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>0.333</td>
<td>0.083</td>
<td>0.200</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>0.333</td>
<td>0.077</td>
<td>0.188</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>0.333</td>
<td>0.071</td>
<td>0.176</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>0.333</td>
<td>0.066</td>
<td>0.167</td>
<td>3</td>
<td>15</td>
</tr>
</tbody>
</table>

Fig. 4. IVS system architecture.

packets in the buffer within this interval. The complete process repeats for the next future time interval until the end of the connection. In the following sections, each component is described in detail followed by the demonstration of experimental results of the entire IVS system.

III. NEURAL NETWORK TRAFFIC PREDICTOR

Substantially, we have discovered several strengths of NN’s with respect to the training of traffic distributions. On the whole, while the off-line learning of traffic distributions has been shown to be feasible and straightforward, the on-line training [22] of highly bursty traffic is more challenging. In principle, a viable video smoother should refrain from predicting specific but perhaps biased local traffic behavior. In lieu, it should adopt more general traffic characteristics (e.g., mean behavior) in an attempt to capture both local and global traffic behavior, still without susceptible suffering from playout quality degradation should the traffic be occasionally imperfectly predicted. The NN traffic predictor, coupled with the window-based playout mechanism, has been designed to satisfy this need.

The NN traffic predictor employs an on-line trained BPNN to predict \bar{B} and \bar{T} of the traffic over a fixed future time duration based on traffic characteristics taken from a set of overlapping past time intervals. More explicitly, the NN is modeled, as shown in Fig. 5, as

$$\hat{M}(t_c, \bar{F}I) = \text{NN}_f[M(t_c, [\bar{P}I]_n, C), WG]$$

In the equation, NN_f denotes the NN function and WG represents the weight matrix of the links between neurons. $M(t_c, [\bar{P}I]_n, C)$ denotes the n sets of input vectors (\bar{B}’s and \bar{T}’s) representing the traffic characteristics respectively taken from n overlapping past time intervals each of which is of same length and of distance C from the adjacent interval, up to the present time t_c. $\hat{M}(t_c, \bar{F}I)$ denotes the output vector (\bar{B} and \bar{T}) representing the traffic characteristics over the time duration $\bar{F}I$. At any of the following time instants, $t_c, t_c + \bar{F}I$, in addition to predicting future traffic as described above, the NN also performs the back-propagation training operation by updating the WG based on the traffic measurements (\bar{B} and \bar{T}) over the past time duration $t_c + \bar{F}I$.

The selections of the $\bar{P}I$, $\bar{F}I$, and C are crucial to the performance of the NN traffic predictor. Generally, we have observed that the larger the number of overlapping $\bar{P}I$’s
and the smaller the C is, the more precisely traffic characteristics \bar{B} and \bar{I} can be predicted. Moreover, decreasing the FI yields more accurate prediction but imposes higher computational overhead. In contrast, increasing the FI incurs inferior prediction and delayed training of the NN. However, we have surprisingly noticed that as the FI falls below a value, inaccurate prediction is revealed. In a subsequent section, we show this phenomenon by demonstrating the Q value with respect to the FI. Our goal is to offer the determination of an appropriate FI aiming to achieve acceptable Q at the expense of reasonable computational overhead.

IV. WINDOW-BASED PLAYOUT SMOOTHING ALGORITHM

Generally, IVS dynamically adopts various playout rates according to the window (W) (described later) and the current number of packets in the playout buffer. For example, given a window size of 18 slots long, a maximum playout rate (i.e., immediate playout without delay) is applied if the number of packets in the playout buffer equals or exceeds 18 (slot time) \div 3 (slot time/packet time) = 6 packets. Otherwise, if the number of packets is less than six, a reduced playout rate is applied for the playout of the next packet in the buffer. In this example, if there are five packets in the buffer, these five packets (15 slots of playout time) are to be evenly played out within 18 slots. That is, the remaining three slots should be evenly spread in six gaps among packets within the window. Consequently, the playout of the next packet incurs 1 slot of a delay. Upon finishing the playout of this packet, the number of packets in the buffer is re-examined and the new playout time of the next packet is redetermined. The same procedure repeats until the end of the connection. It is worth noticing that the playout without intravideo synchronization corresponds to the playout through IVS using a window size of \mathcal{F}, i.e., $W = \mathcal{F}$. In this case, employing window size $W = 3$ corresponds to the playout without synchronization. Fig. 8 depicts the detailed playout smoothing algorithm.

To examine the effect of the window size on the VOD and MPT of the playout based on the playout smoothing algorithm under a variety of traffic arrivals, we carried out an experiment via simulation. Results are plotted in Figs. 9 and 10. Unsurprisingly, both the VOD and MPT decrease with the window size. As shown in Fig. 9, to gain an acceptably low VOD, traffic of higher burstiness requires larger window sizes. However, as shown in Fig. 10, to achieve a satisfactory MPT, high-burstiness traffic requires smaller window sizes. Namely, increasing the window size results in a reduction in the VOD but at the expense of a decrease in the MPT, and vice versa.

In principle, the optimal window size should be selected by balancing the rise in the VOD against the fall in the MPT. Two problems now arise. First, how can one define the combinatorial function of VOD and MPT, i.e., the Q
The second problem is then how to determine the optimal window size in an attempt to achieve a maximum of Q value? Notice that formally solving the first problem is beyond the scope of this paper. Nevertheless, in the next section, we define and examine four different Q’s which are used to correspond to four perceptual requirements. The second problem is afterward discussed in great detail in the same section.

V. NN WINDOW DETERMINATOR

Multimedia applications often have different grades of perceptual requirements in terms of VOD and MPT. For example, while teleconferencing systems demand stringent MPT’s, video-on-demand systems require bounded VOD’s. To quantify perceptual requirements, we define four different types of Q’s (Q_1, Q_2, Q_3, and Q_4) exhibiting various significances of VOD and MPT, as summarized in Table II. It is worth noting that these four Q types are ranked in order of an increasing significance of MPT and decreasing significance of VOD.

<table>
<thead>
<tr>
<th>Type</th>
<th>Definition</th>
<th>MPT Significance</th>
<th>VOD Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q₁</td>
<td>$\frac{MPT}{VOD}$</td>
<td>Fair</td>
<td>High</td>
</tr>
<tr>
<td>Q₂</td>
<td>$\frac{MPT}{VOD^2}$</td>
<td>Fair</td>
<td>Fair</td>
</tr>
<tr>
<td>Q₃</td>
<td>$\frac{MPT}{VOD^3}$</td>
<td>Fair</td>
<td>Low</td>
</tr>
<tr>
<td>Q₄</td>
<td>$\frac{MPT^2}{VOD^3}$</td>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>

For each type of Q, based on the playout smoothing algorithm, we attained normalized Q values (between 0–1) under all traffic arrivals and window sizes. Results of four types of Q’s are plotted in Fig. 11(a)–(d), respectively. Saliently, we discover that under any given traffic arrival, the optimal window (the window achieving a maximum of Q value) declines from Q_1 through Q_4. For example, the optimal window size for Q_1 through Q_4, under the traffic arrival of a burstiness of 6, drops from 23, 18, 15, until 4. This is because achieving a maximum of Q value entails a smaller window size under an increasing weight of MPT and a decreasing weight of VOD. The result agrees with that revealed in Figs. 9 and 10.

To determine the optimal window size in real time for any Q type, we design a NN-based window determinator which has been off-line trained via the experimental results from Fig. 11. Fig. 12 depicts the optimal window size for the Q_2 type under a variety of B’s and T’s. Clearly, as shown in the figure, the optimal window size W increases with the burstiness of the traffic arrival. We also surprisingly discover that W is also dependent on T other than the burstiness. For instance, optimal window sizes W’s are 22, 30, and 36, respectively, for three arrivals (B, T) = (3, 15), (B, T) = (4, 20), and (B, T) = (5, 25) all exhibiting the same burstiness ($b = 6$). Specifically, the higher the T the larger the W.

The NN window determinator uses a three-layer fully connected NN and the back-propagation learning algorithm. During the off-line training phase, the input signals to the NN

(Previously defined as a function of the VOD and MPT), so as to associate it with the perceptual requirement in mind?

Fig. 8. Video playout smoothing algorithm.

Fig. 9. VOD attained based on the window-based playout smoothing algorithm.

Fig. 10. MPT achieved based on the playout smoothing algorithm.
VI. EXPERIMENTAL RESULTS OF THE IVS SYSTEM

We experimented on the entire IVS system via simulation. In the experiment, we considered the Q_2 type and assumed that the ratio (\mathcal{F}) of packet time to slot time is three and any traffic is comprised of a mixture of IBP arrivals. To demonstrate the viability of the IVS system, we employed three playout approaches: dynamic-window-based (IVS), static-window-based, and synchronization—less (i.e., $W = 3$ in this case).

The dynamic-window-based approach corresponds to the playout through the IVS system. In this case, we applied a variety of FI's to the NN traffic predictor. For any given FI, say $FI = 50$, for instance, the NN traffic predictor predicted \mathcal{B} and \mathcal{I} within the first 50-slot interval. The NN window determinator determined the optimal window for this interval. Based on the optimal window attained, the playout smoothing algorithm then performed the playout of packets within the interval. The same procedure repeated for the next 50-slot interval until all 1450 slots have been playbacked.

The static-window-based approach corresponds to the deployment of previously surveyed dynamic delay-based method [9] which was regarded as one of the most promising approaches should the traffic follow the pre-assumed arrival process. It is worth noting that the optimal static window is logically identical to the threshold [9]. In this case, we experimented on all different windows for the entire playout duration assuming the arrival process is known in advance, and selected the one yielding a maximum of Q_2 value. Finally, for the playout without synchronization, a maximum playout rate (i.e., playout without any delay) was employed.

Fig. 13 shows the Q_2 value of the playout based on these three playout approaches. In the experiment, we adopted three types of arrivals each of which is composed of a mixture of IBP arrivals with the same burstiness. In addition, we employed different FI's under different FI's in the NN

![Fig. 11. Four Q's corresponding to four perceptional requirements. (a) Fair MPT and high VOD. (b) Fair MPT and fair VOD. (c) Fair MPT and low VOD. (d) High MPT and low VOD.](image)

![Fig. 12. Optimal window achieving a maximum of Q_2 value.](image)
traffic predictor. The figure shows that on the basis of the IVS approach, the Q_2 value first grows with the FI. This result is reasoned by the fact that excessively short FI’s incur poor traffic prediction resulting from being deceived by the local burstiness. However, as the FI increases to the degree that both local and global traffic characteristics can be greatly captured, the Q_2 value then declines with the FI. This is because shorter FI yields better prediction, and higher dynamism (i.e., frequent adjustment of WG) leads to better playout quality. Furthermore, the Q_2 value achieved based on the static-window approach is invariantly lower than that based on the IVS approach. Unsurprisingly, the playout without synchronization results in the lowest Q_2 value.

Fig. 14 depicts the playout of video packets over time using an FI of 50-slot long under a combination of three back-to-back IBP arrivals: $(B, T) = (2, 10)$ in time period $(0–650)$, $(B, T) = (3, 15)$ in time period $(650–1050)$, and $(B, T) = (4, 20)$ in time period $(1050–1450)$. In the figure, “1” represents the playout of a packet, whereas “0” represents the lack of any packet being played out. Fig. 14(a) exhibits the synchronization-less playout achieving the highest MPT but the poorest VOD. Fig. 14(b) depicts the playout based on the static-window approach. The playout incurs a lower MPT but achieves a better VOD. Fig. 14(c) achieves the most superior playout yielding a maximum of the Q_2 value.

We further carried out an experiment via a simulation on the playout of a series of snow-skiing scenes by means of the three playout approaches. First of all, using the generated simulation results shown in Fig. 14, we attained the playout epochs (in time slot) of video packets numbered from 1–60, as shown in Table III(a). For example, the playout of Packet #1, based on the synchronization-less, static-window, and dynamic-window (IVS) approaches, takes place at time slots 400, 416, and 418, respectively. Then, we captured a series of 34 consecutive skiing scenes (from a snow-skiing video program) corresponding to packets #20–#53. Within these 34 scenes, we playbacked 18 scenes every 14 time slots starting from the 567th time slot. These 18 scenes are referred to as a01–a18,
TABLE III
VIDEO PACKETS AND CORRESPONDING SKIING SCENES. (a) PLAYOUT EPOCHS FOR VIDEO PACKETS. (b) PLAYOUT WITHOUT SYNCHRONIZATION. (c) PLAYOUT BASED ON STATIC-WINDOW APPROACH. (d) PLAYOUT BASED ON DYNAMIC-WINDOW APPROACH (IVS).

<table>
<thead>
<tr>
<th>S#</th>
<th>P01</th>
<th>P02</th>
<th>P03</th>
<th>P04</th>
<th>P05</th>
<th>P06</th>
<th>P07</th>
<th>P08</th>
<th>P09</th>
<th>P10</th>
<th>P11</th>
<th>P12</th>
<th>P13</th>
<th>P14</th>
<th>P15</th>
<th>P16</th>
<th>P17</th>
<th>P18</th>
</tr>
</thead>
<tbody>
<tr>
<td>a01</td>
<td>567</td>
<td>20</td>
<td>a10</td>
<td>693</td>
<td>49</td>
<td>a02</td>
<td>581</td>
<td>22</td>
<td>a11</td>
<td>707</td>
<td>47</td>
<td>a03</td>
<td>595</td>
<td>24</td>
<td>a12</td>
<td>721</td>
<td>49</td>
<td>a04</td>
</tr>
<tr>
<td>b01</td>
<td>567</td>
<td>20</td>
<td>b10</td>
<td>693</td>
<td>45</td>
<td>b02</td>
<td>581</td>
<td>22</td>
<td>b11</td>
<td>707</td>
<td>47</td>
<td>b03</td>
<td>595</td>
<td>24</td>
<td>b12</td>
<td>721</td>
<td>49</td>
<td>b04</td>
</tr>
<tr>
<td>c01</td>
<td>567</td>
<td>20</td>
<td>c10</td>
<td>693</td>
<td>39</td>
<td>c02</td>
<td>581</td>
<td>22</td>
<td>c11</td>
<td>707</td>
<td>47</td>
<td>c03</td>
<td>595</td>
<td>24</td>
<td>c12</td>
<td>721</td>
<td>43</td>
<td>c04</td>
</tr>
</tbody>
</table>

Legend: P#: packet number; S#: scene number; PSL: epoch (in slot time) of playout based on synchronization-less approach; PSW: epoch (in slot time) of playout based on static-window approach; PWS: epoch (in slot time) of playout based on dynamic-window approach (IVS).

b01–b18, and c01–c18 in the cases of synchronization-less, static-window-based, and IVS approaches, respectively. The packet numbers, playout epochs, and corresponding scene numbers are summarized in Table III(b)–(d). In the table, for instance, at time slot 567, the scene displayed based on the synchronization-less playout is a01 or Packet #20. After an elapsed time of 56 (14 × 4) slots (567 + 56 = 623), the scene displayed becomes a05 or Packet #36, as shown in Table III(b). On the other hand, if the static-window or IVS approach is applied, 56 slots after the 567th time slot, the scene displayed becomes b05 (Packet #32) or c05 (Packet #30), as shown in Table III(c) and III(d).

These three sets of 18 skiing scenes are exhibited in Figs. 15–17. First of all, comparing the gesture of the skier between a10 and a11, and a12 and a13 in Figs. 16 and 17, we have observed that synchronization-less approach causes noticeable playout discontinuity. Second, focusing on the landing of the skier from a14–a17 in Fig. 17, we reveal a severe playout pause. Third, despite the superior playout at the beginning of the scenes from b01–b03 as shown in Fig. 15, the static-window approach still yields unacceptable playout discontinuity toward the end of scenes (b15–b17 in Fig. 17).

Finally, compared to both approaches, IVS achieves superior playout for the entire series of scenes. Notice that even though the playout has been gradually delayed in IVS, the playout of c18 (Packet #53) is synchronized with that of a18 and b18. These observations justify that IVS achieves high quality playout with inevitable but acceptable delays.

VII. CONCLUSION

In this paper, we have proposed an NN-based intravideo synchronization mechanism, i.e., IVS. The IVS is composed of an NN traffic predictor, an NN window determinator, and a window-based playout smoothing algorithm. The NN traffic predictor employs an on-line-trained BPNN to predict the mean busy period and mean idle period of any mixture of IBP traffic distributions. The NN window determinator then determines the corresponding optimal window achieving a maximum of Q_2 value, i.e., the ratio of mean playout throughput to variance of discontinuity, by means of an off-line-trained BPNN. The window-based playout smoothing algorithm then dynamically adopts various playout rates according to the window and the number of packets in the buffer. Finally, we have shown that via simulation results and live video scenes,
Fig. 16. Playout of snow-skiing scenes based on synchronizationless (a07–a12), static-window-based (b07–b12), and IVS (c07–c12) approaches. Compared to two other playout approaches, IVS achieves high-throughput and low-discontinuity playout.

ACKNOWLEDGMENT

The authors would like to express their thanks to anonymous reviewers, the editors, Prof. C. T. Lin, and Prof. H. M. Hang for their valuable comments.

REFERENCES

Maria C. Yüang (M’91) received the B.S. degree in applied mathematics from the National Chiao Tung University, Taiwan, R.O.C., in 1978, the M.S. degree in computer science from the University of Maryland, College Park, MD, in 1981, and the Ph.D. degree in electrical engineering and computer science from the Polytechnic University, Brooklyn, NY, in 1989.

From 1981 to 1990, she was with AT&T Bell Laboratories and Bell Communications Research (Bellcore), where she was a Member of the Technical Staff working on high-speed networking and protocol engineering. She has been an Associate Professor, Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., since 1990. Her current research interests include high speed networking, multimedia communications, performance modeling and analysis, and ATM network management.

Po L. Tien was born in Taiwan, R.O.C., in 1969. He received the B.S. degree in applied mathematics and the M.S. degree in computer and information science from the National Chiao Tung University, Hsinchu, Taiwan, R.O.C., in 1992 and 1995, respectively, where he is currently a Ph.D. candidate in the Department of Computer Science and Information Engineering.

His current research interests include high speed networking, multimedia communications, and applications of artificial neural networks.

Shih T. Liang was born in Taiwan, R.O.C., in 1968. He received the B.S. degree in computer information science from the Tunghai University, Taiwan, R.O.C., in 1990, and the M.S. and Ph.D. degrees in computer science and information engineering from National Chiao Tung University, Hsinchu, Taiwan, R.O.C., in 1992 and 1996, respectively.

His current research interests include high speed networking, multimedia communications, and performance modeling and analysis.