Inner functions of numerical contractions

Hwa-Long Gaua,*,1, Pei Yuan Wub,2

a Dept. of Mathematics, National Central University, Chungli 32001, Taiwan
b Dept. of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan

\textbf{ARTICLE INFO}

Article history:
Received 1 September 2008
Accepted 24 November 2008
Available online 30 December 2008
Submitted by A. Berman

\textbf{AMS classification:}
47A12
47B38

\textbf{Keywords:}
Numerical range
Numerical radius
Numerical contraction
Compression of the shift

\textbf{ABSTRACT}

We prove that, for a function \(f\) in \(H^\infty\) of the unit disc with \(\|f\|_\infty \leq 1\), the existence of an operator \(T\) on a complex Hilbert space \(H\) with its numerical radius at most one and with \(\|f(T)x\| = 2\) for some unit vector \(x\) in \(H\) is equivalent to that \(f\) be an inner function with \(f(0) = 0\). This confirms a conjecture of Drury [S.W. Drury, Symbolic calculus of operators with unit numerical radius, Linear Algebra Appl. 428 (2008) 2061–2069]. Moreover, we also show that any operator \(T\) satisfying the above conditions has a direct summand similar to the compression of the shift \(S(\phi)\), where \(\phi(z) = zf(z)\) for \(|z| < 1\). This generalizes the result of Williams and Crimmins [J.P. Williams, T. Crimmins, On the numerical radius of a linear operator, Amer. Math. Monthly 74 (1967) 832–833] for \(f(z) = z\) and of Crabb [M.J. Crabb, The powers of an operator of numerical radius one, Michigan Math. J. 18 (1971) 253–256] for \(f(z) = z^n\) \((n \geq 2)\).

\textcopyright 2008 Elsevier Inc. All rights reserved.
An operator A is a numerical contraction (resp., contraction) if $\|A\| \leq 1$ (resp., $\|A\| \leq 1$). In 1967, Sz.-Nagy and Foiaş [16] proved that every numerical contraction is similar to a contraction. Some years later, Okubo and Ando [13] gave another proof basing it on a factorization of the numerical contraction by Ando [1], which has the advantage of a sharp control on the invertible operator implementing the similarity. As a consequence, an estimate on the norm of a function of a numerical contraction can easily be obtained.

Theorem 1. (a) An operator A is a numerical contraction if and only if $A = 2(I - B^*B)^{1/2}B$ for some contraction B.

(b) If A is a numerical contraction, then $A = XCX^{-1}$ for some invertible operator X with $\|X\|, \|X^{-1}\| \leq \sqrt{2}$ and some contraction C.

(c) If A is a numerical contraction and $f : \mathbb{T} \to \mathbb{C}$ is a function analytic on $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and continuous on \mathbb{T}, then $\|f(A)\| \leq 2\|f\|_{\infty}$, where $\|f\|_{\infty} = \sup\{|f(z)| : z \in \mathbb{T}\}$.

For our later use, we briefly sketch a proof of Theorem 1(b) based on (a), which is slightly different from the one in [13, Theorem 2]. Let A be factored as in (a). If

$$g(t) = \begin{cases} \sqrt{2(1 - t)} & \text{if } 0 \leq t \leq 1/2, \\ 1/\sqrt{2t} & \text{if } 1/2 \leq t \leq 1, \end{cases}$$

then both g and $1/g$ are continuous functions on $[0, 1]$ with $\|g\|_{\infty} = 1/g(1) = \sqrt{2}$, where $\| \cdot \|_{\infty}$ denotes the supremum of a function over $[0, 1]$. It is easily seen that $X = g(B^*B)$ is invertible, $\|X\|, \|X^{-1}\| \leq \sqrt{2}$ and

$$\|X^{-1}AX\| \leq 2\|g(B^*B)^{-1}(I - B^*B)^{1/2}\| \cdot \|(B^*B)^{1/2}g(B^*B)\| \\ \leq 2 \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = 1.$$

More recently, Drury [7] in studying the norm and numerical radius of $f(A)$ proposed a conjecture on the sharpness of the inequality in Theorem 1(c). The purpose of this paper is to confirm this conjecture with a more detailed information on the structure of A.

In the following, we will consider a more general functional calculus than the one in Theorem 1(c) for numerical contractions. Indeed, if A is a numerical contraction on H, then the Berger dilation theorem [3] says that there is a unitary operator U on a space K containing H such that $A^n = 2P_HU^n|H$ for all $n \geq 1$, where P_H denotes the (orthogonal) projection from K onto H. Such a unitary 2-dilation U of A can be taken to be minimal in the sense that $K = \sqrt{U^nH} : n = 0, \pm 1, \pm 2, \ldots$. In this case, U is uniquely determined up to isomorphism, and, moreover, if A is completely nonunitary, that is, if A has no unitary direct summand, then U is absolutely continuous (cf. [8, Theorem 1] and [14, Proposition 2]).

(We thank G. Cassier and L. Kérchy for providing us the relevant references on this subject.) Hence if $A' = U' \oplus A$ on $L \oplus H$ is a numerical contraction, where U' is absolutely continuous unitary and A is completely nonunitary, then $f(A') = f(U') \oplus (2P_Hf(U)|H - f(0)I)$ for f in H^{∞} is well-defined, where U is the minimal unitary 2-dilation of A. Note that Theorem 1(c) is obviously true for A a numerical contraction with no singular unitary part and f in H^{∞}.

For an inner function ϕ (ϕ bounded analytic on \mathbb{D} with $|\phi| = 1$ almost everywhere on $\partial \mathbb{D}$), the compression of the shift $S(\phi)$ is defined on $H(\phi) = H^2 \ominus \phi H^2$ by

$$S(\phi)f = P_{H(\phi)}(zf(z))|H(\phi) \quad \text{for } f \in H(\phi).$$

Such operators have been studied extensively since the 1960s starting with the work of Sarason [15]. A nice account of their properties together with those of the more general C_0 contractions can be found in [2]. Sz.-Nagy and Foiaş [17] is the classical treatise on further developments of this subject. In particular, if ϕ is a Blaschke product with n zeros (counting multiplicity), then $H(\phi)$ is n-dimensional.

Its closure $\overline{W(A)}$ contains the spectrum $\sigma(A)$ of A. For other properties of the numerical range and numerical radius, the reader may consult [11, Chapter 22] or [10].
Our main result is the following:

Theorem 2. Let \(f \) be a function in \(H^\infty \) with \(\|f\|_\infty \leq 1 \). Then there exists a numerical contraction \(T \) with no unitary part such that \(\|f(T)x\| = 2 \) for some unit vector \(x \) if and only if \(f \) is inner and \(f(0) = 0 \). Moreover, any operator \(T \) satisfying the above conditions has a direct summand similar to \(S(\phi) \), where \(\phi(z) = zf(z) \) for \(|z| < 1 \).

A finite-dimensional version of this confirms Drury’s Conjecture 6 in [7].

Corollary 3. Let \(f : \mathbb{D} \to \mathbb{C} \) be analytic on \(\mathbb{D} \) and continuous on \(\overline{\mathbb{D}} \) with \(\|f\|_\infty \leq 1 \). Then there exists a numerical contraction \(T \) with \(\|f(T)x\| = 2 \) for some unit vector \(x \) if and only if \(f \) is a finite Blaschke product and \(f(0) = 0 \). In this case, \(f \) has \(n \) zeros (counting multiplicity), then any such \(T \) is unitarily equivalent to an operator of the form \(A \oplus A' \), where \(A \) can be represented by the \((n + 1)\times(n + 1)\) upper-triangular matrix \([a_{ij}]_{i,j=1}^{n+1} \) with \(a_i = a_j \) satisfying \(a_1 = a_{n+1} = 0 \) and \(|a_i| < 1 \) for all \(i \), and

\[
a_{ij} = \begin{cases}
\sqrt{2}b_{ij} & \text{if } 1 \leq i \leq j \leq n \text{ or } 2 \leq i < j = n + 1, \\
2b_{ij} & \text{if } i = 1 \text{ and } j = n + 1, \\
b_{ij} & \text{if } 2 \leq i < j \leq n, \\
0 & \text{if } i > j,
\end{cases}
\]

where

\[
b_{ij} = (-1)^{j-i}a_{i+1} \cdots a_{j-1}(1 - |a_i|^2)(1 - |a_j|^2)^{1/2} \quad \text{for } i < j.
\]

The matrix form of \(A \) here is a consequence of Theorem 8(b) below and the matrix representation of the finite-dimensional compression of the shift \(S(\phi) \) (cf. [9, Corollary 1.3]).

A special case of this yields a result of Crabb [5, Theorem 2].

Corollary 4. If \(T \) is a numerical contraction and \(\|T^n\| = 2 \) for some \(n \geq 1 \) and some unit vector \(x \), then \(T \) is unitarily equivalent to an operator of the form \(A \oplus A' \), where \(A \) is the \((n + 1)\times(n + 1)\) matrix

\[
\begin{bmatrix}
0 & \sqrt{2} \\
0 & 1 \\
\end{bmatrix}
\quad \text{or} \quad
\begin{bmatrix}
0 & \sqrt{2} \\
0 & 1 \\
\end{bmatrix}
\]

depending on whether \(n = 1 \) or \(n \geq 2 \).

The case \(n = 1 \) was obtained earlier by Williams and Crimmins [18]. It will be invoked in the proof of Theorem 8(b).

We start by proving the sufficiency part of Theorem 2.

Theorem 5. Let \(f \) be an inner function with \(f(0) = 0 \) and let \(\phi(z) = zf(z) \) for \(|z| < 1 \). Let \(X = \sqrt{2} \oplus I \oplus (1/\sqrt{2}) \) on \(H(\phi) = H_1 \oplus H_2 \oplus H_3 \), where \(H_1 = \ker S(\phi) \), \(H_3 = \ker S(\phi)^* \), and \(H_2 = H(\phi) \ominus (H_1 \oplus H_3) \), and let \(A = XS(\phi)X^{-1} \). Then \(A \) is a cyclic irreducible operator with no unitary part such that \(W(A) = \overline{\mathbb{D}} \) and \(\|f(A)x\| = 2 \) for some unit vector \(x \).

The next corollary is a special case (cf. [6, Theorem 3.1]).

Corollary 6. If \(f \) is a Blaschke product with \(n \) zeros (counting multiplicity), then there is an \((n + 1)\times(n + 1)\) matrix \(A \) with \(W(A) = \overline{\mathbb{D}} \) and \(\|f(A)\| = 2 \).
An operator A on H is cyclic with cyclic vector x if $H = \sqrt{\{A^nx : n \geq 0\}}$. It is easily seen that for a cyclic A the dimension of $\ker A^*$ is at most one.

An operator is irreducible if it is not unitarily equivalent to the direct sum of two other operators. To prove the irreducibility of the operator A in Theorem 5, we need the following lemma.

Lemma 7. If A is cyclic with a cyclic vector in $\ker A^*$, then A is irreducible.

Proof. Assume that $A = A_1 \oplus A_2$ on $H = H_1 \oplus H_2$. Let $x = x_1 \oplus x_2$, where $x_j \in H_j$, $j = 1, 2$, be a cyclic vector of A in $\ker A^*$. Then $A^*x = (A_1 \oplus A_2^*)(x_1 \oplus x_2) = 0$ implies that $(A_1 \oplus A_2^*)(x_1 \oplus 0) = (A_1 \oplus A_2^*)(0 \oplus x_2) = 0$. On the other hand, since $H_1 \oplus H_2 = \sqrt{\{A_1^n x_1 \oplus A_2^nx_2 : n \geq 0\}}$, we infer that $x_j \neq 0$ for $j = 1, 2$. Thus $x_1 \oplus 0$ and $0 \oplus x_2$ are linearly independent, and, therefore, $\dim \ker A^* = \dim \ker (A_1 \oplus A_2^*) \geq 2$, a contradiction. This proves our assertion. \(\square\)

Proof of Theorem 5. Since $\phi(0) = 0$, the function $g \equiv 1$ is in $H(\phi)$. It is a unit cyclic vector for $S(\phi)$ and generates the one-dimensional subspace H_1. The other hand, from the facts that f is inner and $\phi(z) = zf(z)$ on \mathbb{D} we can easily check that $f = P_H(\phi)f = f(S(\phi))g$ and $\phi(f) = 0$. Thus f is a unit vector which generates the one-dimensional H_1. That f and g are orthogonal follows from a simple computation using $f(0)$. Note also that

$$f(A)g = Xf(S(\phi))X^{-1}g = \sqrt{2}Xf(S(\phi))g = \sqrt{2}Xf = 2f,$$

which shows that $\|f(A)g\| = 2$. Since $g \in \ker S(\phi)^*$ is a cyclic vector for $S(\phi)$, $Xg = g/\sqrt{2} \in \ker A^*$ is cyclic for $A = XS(\phi)X^{-1}$. The irreducibility of A then follows from Lemma 7. Moreover, since $S(\phi)^n$ converges to 0 in the strong operator topology (SOT), the same is true for A^n. Hence A has no unitary part.

To prove that $\overline{W(A)} \subseteq \mathbb{D}$, let $B = S(\phi)X^{-1}/\sqrt{2}$. Since $\rank(I - S(\phi)^*S(\phi)) = 1$ and $S(\phi)^*S(\phi)f = 0$, we have $S(\phi)^*S(\phi) = 0 \oplus I \oplus 1$ and hence $B^*B = 0 \oplus (1/2)I \oplus 1$ on $H(\phi) = H_1 \oplus H_2 \oplus H_3$. Therefore, B is a contraction and

$$2(I - B^*B)^{1/2}B = 2 \left(1 \oplus \frac{1}{\sqrt{2}}I \oplus 0\right) \frac{1}{\sqrt{2}}S(\phi)X^{-1}$$

$$= XS(\phi)X^{-1} = A.$$

Theorem 1(a) then implies that $\overline{W(A)} \subseteq \mathbb{D}$.

To prove the converse, let λ be any point in \mathbb{D}. Then the operator $I - \lambda S(\phi)$ is invertible and $u = (I - \lambda S(\phi))^{-1}g - g = \sum_{n=1}^{\infty} \lambda^n S(\phi)^n g$ in norm. Let $v = u - \langle u, f \rangle f$. Note that

$$\langle v, g \rangle = \sum_{n=1}^{\infty} \lambda^n \langle S(\phi)^n g, g \rangle - \langle u, f \rangle \langle f, g \rangle$$

$$= 0 - \langle u, f \rangle \cdot 0 = 0$$

and

$$\langle v, f \rangle = \langle u, f \rangle - \langle u, f \rangle \langle f, f \rangle$$

$$= \langle u, f \rangle - \langle u, f \rangle = 0.$$

Hence v is in H_2. Finally, letting $y = \langle u, f \rangle f \oplus \sqrt{2}v \oplus g$ in $H(\phi) = H_1 \oplus H_2 \oplus H_3$, we show that $\tilde{\lambda}By = (I - B^*B)^{1/2}y$. Indeed, on the one hand, we have

$$\tilde{\lambda}By = \tilde{\lambda}S(\phi) \left(\frac{1}{2} \oplus \frac{1}{\sqrt{2}}I \oplus 1\right) \langle u, f \rangle f \oplus \sqrt{2}v \oplus g$$

$$= \tilde{\lambda} \left(\frac{1}{2} \langle u, f \rangle S(\phi)f + S(\phi)v + S(\phi)g\right)$$

$$= \tilde{\lambda} \langle S(\phi)(I - \tilde{\lambda} S(\phi))^{-1}g - S(\phi)g \rangle + \tilde{\lambda} S(\phi)g$$

On the other hand,
\[(I - B^*B)^{1/2}y = \left(1 \oplus \frac{1}{\sqrt{2}} I \oplus 0\right)(u,f) + \sqrt{2}v + g\]

\[= (u,f) + v\]

\[= u\]

\[= (I - \bar{\lambda}S(\phi))^{-1}g - g\]

\[= \bar{\lambda}S(\phi)(I - \bar{\lambda}S(\phi))^{-1}g.\]

Thus \(\bar{\lambda}By = (I - B^*B)^{1/2}y\) holds. Hence

\[|\lambda|^2\|By\|^2 = \|(I - B^*B)^{1/2}y\|^2 = \|y\|^2 - \|By\|^2,\]

which implies that \(\|By\|^2 = \|y\|^2/(1 + |\lambda|^2).\) Therefore,

\[\langle Ay, y \rangle = \langle (I - B^*B)^{1/2}By, y \rangle\]

\[= 2\langle By, (I - B^*B)^{1/2}y \rangle = 2\langle By, \bar{\lambda}By \rangle\]

\[= 2\lambda\|By\|^2 = \frac{2\lambda}{1 + |\lambda|^2}\|y\|^2.\]

This shows that \(2\lambda/(1 + |\lambda|^2)\) is in \(W(A)\) for any \(\lambda\) in \(\mathbb{D}\). Hence \(\mathbb{D} \subset W(A)\) and thus \(\overline{W(A)} = \overline{\mathbb{D}}\) as asserted. This completes the proof. \(\square\)

We now proceed to prove the necessity part of Theorem 2.

Theorem 8. Let \(f\) be a function in \(H^\infty\) with \(\|f\|_\infty \leq 1\). If \(T\) is a numerical contraction with no singular unitary part such that \(\|f(T)x\| = 2\) for some unit vector \(x\), then

(a) \(f\) is inner with \(f(0) = 0\), and

(b) \(T\) is unitarily equivalent to an operator of the form \(XS(\phi)X^{-1} \oplus A'\), where \(\phi(z) = zf(z)\) for \(|z| < 1\) and \(X = \sqrt{2} \oplus I \oplus (1/\sqrt{2})\) on \(H(\phi) = H_1 \oplus H_2 \oplus H_3\) (\(H_1 = \ker S(\phi)\) and \(H_3 = \ker S(\phi)^*\)).

For the proof of its part (b), we need the following lemma.

Lemma 9. Let \(A\) be a \(C_0\) contraction on \(H\) with minimal function \(\phi\). Then there is an operator \(\tilde{A}\) on \(\tilde{H} \supseteq H\) of class \(C_0\) such that (a) \(\tilde{A}H \subseteq H\), (b) \(A = \tilde{A}|H\), and (c) \(\tilde{A}\) is unitarily equivalent to \(\sum_{n=1}^{d} \oplus S(\phi)\), where \(d = \text{rank}(I - A^*A)^{1/2} \leq \infty\).

This appeared in [12, Lemma 4] (with \(T\) there replaced by \(A^*\)) and is dependent on the Sz.-Nagy–Foiaş contraction theory.

Proof of Theorem 8. (a) That \(f(0) = 0\) follows from Drury [7, Theorem 4]. Indeed, since the latter is also valid for functions \(f\) in \(H^\infty\) with \(\|f\|_\infty \leq 1\), we have \(\|f(T)\| \leq \nu(f(0))\), where

\[\nu(t) = (2 - 3t^2 + 2t^4 + 2(1 - t^2)(1 - t^2 + t^4)^{1/2})^{1/2} \leq 0 \text{ for } 0 \leq t \leq 1.\]

Our assumption yields that

\[2 = \|f(T)x\| \leq \|f(T)\| \leq \nu(f(0)) \leq 2\]

or \(\nu(f(0)) = 2\). This is equivalent to \(f(0) = 0\).

Let \(M = \sqrt{(T^*T : n \geq 0)}\) and \(A = T|M\). Then \(w(A) \leq 1\) and \(\|f(A)x\| = \|f(T)x\| = 2\). By Theorem 1(a), \(A = 2(I - B^*B)^{1/2}B\) for some contraction \(B\). Let \(g\) be as in (1) and \(X = g(B^*B)\). Then, as indicated before, \(X\) is positive definite and invertible with \(\|X\|, \|X^{-1}\| \leq \sqrt{2}\) and \(C = X^{-1}AX\) is a contraction. It is easily seen that \(C\), being similar to the operator \(A\) with no singular unitary part, is itself without singular unitary part. Thus \(f(C)\) is well-defined. The chain of inequalities
2 = \|f(A)x\| = \|Xf(C)X^{-1}x\|
\leq \|X\|\|f(C)X^{-1}x\| \leq \|X\|\|f(C)\|\|X^{-1}x\|
\leq \|X\|\|f(C)\|\|X^{-1}\| \leq \sqrt{2}\|f\|\infty \sqrt{2} \leq 2,

where \|f(C)\| \leq \|f\|\infty is by the von Neumann inequality, yields equalities throughout. In particular, we have

\|X\| = \|X^{-1}\| = \|f(C)X^{-1}x\| = \|X^{-1}x\| = \sqrt{2}

and \|f(C)\| = \|f\|\infty = 1. Note that for a positive semidefinite operator \(Y\) and vector \(u\), the equalities \(\|Yu\| = \|Y\|\|u\|\) and \(Yu = Y\|u\) are equivalent. Thus from \(\|X^{-1}x\| = \sqrt{2} = \|X^{-1}\|\|X\|\), we infer that \(X^{-1}x = \sqrt{2}x\) or \(Xx = (1/\sqrt{2})x\). Similarly, for \(y = f(C)x\), we have

\[\|y\| = \|f(C)x\| = \frac{1}{\sqrt{2}}\|f(C)X^{-1}x\| = 1\]

and

\[\|Xy\| = \|Xf(C)x\| = \frac{1}{\sqrt{2}}\|Xf(C)X^{-1}x\| = \frac{1}{\sqrt{2}}\|f(A)x\| = \sqrt{2} = \|X\|\|y\|\].

As above, this yields \(Xy = \sqrt{2}y\). Thus \(x\) and \(y\) are eigenvectors associated with the eigenvalues \(1/\sqrt{2}\) and \(\sqrt{2}\) of the positive definite \(X\), respectively. Hence they are orthogonal to each other. Since \(X = g(B^*B)\) with \(g\) defined in (1), we infer that 1 and 0 are eigenvalues of \(B^*B\) with corresponding eigenvectors \(x\) and \(y\), respectively. We also have

\[f(A)x = Xf(C)X^{-1}x = \sqrt{2}Xf(C)x = \sqrt{2}Xy = 2y.\] (2)

From \(B^*By = 0\), we obtain \(By = 0\). Thus

\[A^nf(A)x = A^n(2A^ny) = 2(l - B^*B)^{1/2}By = 0\]

and, consequently,

\[Af(A)A^nx = A^n(AF(A)x) = 0\]

for all \(n \geq 0\). Since \(M\) is generated by \(A^n\), \(n \geq 0\), this yields \(Af(A) = 0\). Hence \(Ce(C) = X^{-1}Af(A)X = 0\), which shows that \(C\) is a \(C_0\) contraction. Let \(\psi\) be its minimal (inner) function, and let \(\phi(z) = zf(z)\). Then \(\psi\) divides \(\phi\). We necessarily have \(\psi(0) = 0\) for otherwise \(\psi\) would divide \(f\), which would imply \(f(C) = 0\), contradicting \(\|f(C)\| = 1\). Hence \(\psi(z) = z\psi(z)\) for some inner function \(\eta\) and \(f(z) = \xi(z)\eta(z)\) for some \(\xi\) in \(H^\infty\) with \(\|\xi\|\infty = 1\). Let \(\xi(z) = \xi(0) + z\xi(z)\) for \(\xi\) in \(H^\infty\). We have \(f(z) = \xi(0)\eta(z) + \zeta(z)\psi(z)\) and thus \(f(C) = \xi(0)\eta(C)\). From

\[1 = \|f(C)\| = \|\xi(0)\|\|\eta(C)\| \leq \|\eta(C)\| \leq 1,\]

we obtain \(\|\xi(0)\| = 1\). Therefore, \(\xi(z) = \xi(0)\xi\) is constant and \(f = \xi(0)\eta\) is inner.

(b) We first show that \(C\) is unitarily equivalent to \(S(\phi)\), where \(\phi(0) = zf(z)\). Note that, from the proof of (a), \(\phi\) is the minimal function of \(C\). By Lemma 9, \(C\) can be extended to an operator unitarily equivalent to \(\sum_{n=1}^\infty \oplus S(\phi)\). Hence \(f(C)\) extends to \(\sum_{n=1}^\infty \oplus f(S(\phi))\). Let \(x = \sum_{n=1}^\infty \oplus g_n\) with \(g_n\) in \(H(\phi)\) for all \(n\). We infer from

\[1 = \|y\|^2 = \|f(C)x\|^2 = \sum_{n=1}^\infty \|f(S(\phi))g_n\|^2 \leq \sum_{n=1}^\infty \|g_n\|^2 = \|x\|^2 = 1\]

that \(\|f(S(\phi))g_n\| = \|g_n\|\) for all \(n\). Since \(f(S(\phi))\) is a contraction, we have \(f(S(\phi))^*f(S(\phi))g_n = g_n\). Thus \(g_n\) is in ran \((f(S(\phi))^*\), a one-dimensional space generated by the function \(g = 1\). Hence, for each \(n \geq 1\), \(g_n = a_ng\) for some scalar \(a_n\). Define the operator \(V : M \rightarrow H(\phi)\) by

\[V(p(C)x) = p(S(\phi))g\]
for any polynomial \(p \). Since \(p(C)x = \sum_{n=1}^{\infty} p(S(\phi))g_n \), we have
\[
\| p(C)x \| = \left(\sum_{n=1}^{\infty} \| p(S(\phi))g_n \|^2 \right)^{1/2} = \| p(S(\phi))g \| \left(\sum_{n=1}^{\infty} |d_n|^2 \right)^{1/2} = \| p(S(\phi))g \| \| x \| = \| p(S(\phi))g \|.
\]

Note that \(M \) being generated by \(A^\dagger x, \; n \geq 0 \), is also generated by \(C^nX^{-1}x = \sqrt{2}C^n x, \; n \geq 0 \). Thus the set of vectors \(p(C)x, \; p \) polynomial, is dense in \(M \). From above, we obtain that \(V \) is an isometry with \(VC = S(\phi)V \). Since \(\phi \) is the minimal function of \(C \) and \(S(\phi) \) follows.

Let \(H_1 \) and \(H_2 \) be the one-dimensional subspaces of \(M \) which are generated by \(y \) and \(x \), respectively, and let \(H_2 = M \oplus (H_1 \oplus H_3) \). On \(M = H_1 \oplus H_2 \oplus H_3 \), the operators \(X \) and \(B^*B \) can be decomposed as \(X = \sqrt{\overline{\mathcal{E}}} \oplus X_1 \oplus (1/\sqrt{\overline{\mathcal{E}}}) \) and \(B^*B = 0 \oplus D \oplus 1 \). Let \(B = [B_{ij}]_{i,j=1}^{3} \) on \(M = H_1 \oplus H_2 \oplus H_3 \). From \(B^*B = 0 \oplus D \oplus 1 \), we obtain \(B_{11}^*B_{11} + B_{21}^*B_{21} + B_{31}^*B_{31} = 0 \), which implies that \(B_{11}, B_{21} \) and \(B_{31} \) are all zero operators. Hence
\[
A = 2(I - B^*B)^{1/2}B
\]
\[
= 2\begin{bmatrix}
1 & (I - D)^{1/2} \\
(I - D)^{1/2} & 0 \\
0 & 0 & B_{12} & B_{13} \\
0 & 0 & B_{22} & B_{23} \\
0 & 0 & B_{32} & B_{33}
\end{bmatrix}
\]
\[
= \begin{bmatrix}
0 & 2B_{12} & 2B_{13} \\
0 & 2(I - D)^{1/2}B_{22} & 2(I - D)^{1/2}B_{23} \\
0 & 0 & 0
\end{bmatrix}
(3)
\]

We now show that \(X_1 = I \). This is done by proving \(DB_{22} = B_{22}/2 \) and \(DB_{23} = B_{23}/2 \). Note that
\[
C = X^{-1}AX
\]
\[
= \begin{bmatrix}
1/\sqrt{2} \\
X_1^{-1} \sqrt{2}X_1 \sqrt{2}X_1^{-1} \sqrt{2}X_1^{-1} \\
0 & 0 & 2B_{12} & 2B_{13} & 2(I - D)^{1/2}B_{22} & 2(I - D)^{1/2}B_{23}
\end{bmatrix}
\]
\[
= \begin{bmatrix}
0 & \sqrt{2}B_{12}X_1 \\
0 & 2X_1^{-1}(I - D)^{1/2}B_{22}X_1 & \sqrt{2}X_1^{-1}(I - D)^{1/2}B_{23}
\end{bmatrix}
= \begin{bmatrix}
0 & C_{12} & C_{13} \\
0 & C_{22} & C_{23}
\end{bmatrix}
\]

Since
\[
I - C^*C = \begin{bmatrix}
1 & 0 & 0 \\
0 & I - C_{12}C_{12} - C_{22}^*C_{22} & 0 \\
0 & 0 & 1 - |C_{13}|^2 - C_{23}^*C_{23}
\end{bmatrix}
\]

has rank one, we have
\[
C_{12}C_{12} + C_{22}^*C_{22} = I
(4)
\]

and
\[
|C_{13}|^2 + C_{23}^*C_{23} = 1.
(5)
\]

From (4), we obtain
\[
I = 2X_1^*B_{12}^*X_1 + 4X_1^*B_{22}^*(I - D)^{1/2}X_1^{*^{-1}}X_1^{-1}(I - D)^{1/2}X_{22}X_1
= 2X_1(B_{12}^*B_{12} + 2B_{22}^*X_1^{-2}(I - D)B_{22})X_1.
(6)
\]

Note that
yields $B_{12}^*B_{12} + B_{22}^*B_{22} + B_{32}^*B_{32} = D$. We derive from (6) that $(1/2)X_1^{-2} = D - B_{22}^*B_{22} - B_{32}^*B_{32} + 2B_{22}^*X_1^{-2}(I - D)B_{22}$ or

$$B_{32}^*B_{32} + B_{22}^*(I - 2X_1^{-2}(I - D))B_{22} = D - \frac{1}{2}X_1^{-2}. \tag{7}$$

Since $X_1 = g(D)$, a simple computation involving the expression of g in (1) yields that $I - 2X_1^{-2}(I - D) \succeq 0$. Hence (7) gives $D \geqslant X_1^{-2}/2 = g(D)^{-2}/2$. Again, from the expression of g in (1), we derive that $D \geqslant 1/2$ and thus

$$X_1 = g(D) = \frac{1}{\sqrt{2}}D^{-1/2}. \tag{8}$$

It follows from (7) that $B_{22}^*(I - 4D(I - D))B_{22} = 0$, which is the same as

$$0 = B_{22}^*(I - 4D + 4D^2)B_{22} = B_{22}^*(I - 2D)^2B_{22}. \tag{9}$$

We thus obtain $(I - 2D)B_{22} = 0$ or $DB_{22} = B_{22}/2$ as asserted.

To prove $DB_{23} = B_{23}/2$, we use (5) to derive that

$$1 = |B_{13}|^2 + 2B_{23}^*(I - D)^{1/2}X_1^{-2}(I - D)^{1/2}B_{23} = |B_{13}|^2 + 2B_{23}^*X_1^{-2}(I - D)B_{23}. \tag{10}$$

Since B is a contraction, we have $|B_{13}|^2 + B_{23}^*B_{23} \leqslant 1$. These two together yield $1 \leqslant 1 - B_{23}^*B_{23} + 2B_{23}^*X_1^{-2}(I - D)B_{23}$ or $B_{23}^*(I - 2X_1^{-2}(I - D))B_{23} \leqslant 0$. Since $I - 2X_1^{-2}(I - D) \succeq 0$ as was noted before, we obtain $B_{23}^*(I - 2X_1^{-2}(I - D))B_{23} = 0$ and thus

$$0 = B_{23}^*(I - 4D(I - D))B_{23} = B_{23}^*(I - 2D)^2B_{23} \tag{11}$$

by (8). Therefore, $(I - 2D)B_{23} = 0$ or $DB_{23} = B_{23}/2$ as required.

From $DB_{22} = B_{22}/2$ and $DB_{23} = B_{23}/2$, we have $(I - D)B_{22} = B_{22}/2$ and $(I - D)B_{23} = B_{23}/2$ and thus $(I - D)^{1/2}B_{22} = B_{22}/\sqrt{2}$ and $(I - D)^{1/2}B_{23} = B_{23}/\sqrt{2}$. It follows from (3) that

$$A = \begin{bmatrix} 0 & 2B_{12} & 2B_{13} \\ 0 & \sqrt{2}B_{22} & \sqrt{2}B_{23} \\ 0 & 0 & 0 \end{bmatrix} \text{ on } M = H_1 \oplus H_2 \oplus H_3. \tag{12}$$

On the other hand, since $M = \sqrt{(A^nx : n \geqslant 0)}$ and $H_2 = M \ominus (\sqrt{\langle x, y \rangle})$, we have $H_2 = \sqrt{(P_2A^nx : n \geqslant 1)}$, where P_2 denotes the (orthogonal) projection from M onto H_2. A simple computation with (9) shows that $P_2A^nx = (\sqrt{2}B_{22})^{-n-1}(\sqrt{2}B_{23})x$ for all $n \geqslant 1$. Therefore,

$$D(P_2A^nx) = D(\sqrt{2}B_{22})^{-n-1}(\sqrt{2}B_{23})x = \frac{1}{2}(\sqrt{2}B_{22})^{-n-1}(\sqrt{2}B_{23})x = \frac{1}{2}P_2A^nx$$

if $n \geqslant 2$, and

$$D(P_2Ax) = D(\sqrt{2}B_{23})x = \frac{1}{2}(\sqrt{2}B_{23})x = \frac{1}{2}P_2Ax. \tag{13}$$

These show that $D = I/2$ and hence $X_1 = D^{-1/2}/\sqrt{2} = I$ by (8) or $X = \sqrt{2} \oplus I \oplus (1/\sqrt{2})$.

Finally, we prove that M is a reducing subspace of T. Since f is inner with $f(0) = 0$, we have $w(f(T)) \leqslant 1$ (cf. [4, Theorem 4]). This, together with $\|f(T)x\| = 2$, yields that the subspace $K = H_1 \oplus H_3$ reduces

\begin{align*}
B^*B &= \begin{bmatrix} 0 & 0 & 0 & B_{12} & B_{13} \\ B_{12}^* & B_{22}^* & B_{23}^* & 0 & 0 \\ B_{13}^* & B_{23}^* & B_{33}^* & 0 & 0 \\ 0 & 0 & 0 & B_{32} & B_{33} \end{bmatrix} \begin{bmatrix} 0 & B_{12} & B_{13} \\ 0 & B_{22} & B_{23} \\ 0 & B_{32} & B_{33} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}. \end{align*}
\(f(T) \) and \(f(T)|K \) has the matrix representation \[
\begin{bmatrix}
0 & 2 \\
0 & 0
\end{bmatrix}
\] relative to the orthonormal basis \((y, x)\) of \(K\) (cf. Corollary 4 or [18]). In particular, this gives \(f(T)^*x = 0 \) and \(f(T)^*y = 2x \). Now we repeat these with \(T \) and \(f \) replaced by \(T^* \) and \(\tilde{f} \), where \(\tilde{f} \) is the inner function \(\tilde{f}(z) = f(\overline{z}) \) for \(|z| < 1 \). Since \(\tilde{f}(T^*) = f(T)^* \), we have \(\|f(T)^*y\| = 2 \). Letting \(\tilde{M} = \sqrt{(T^*n)y : n \geq 0} \), we infer from what were proved before for \(T \) and \(f \) that \(\tilde{A} = T^*|\tilde{M} = \tilde{X}\tilde{C}\tilde{X}^{-1} \) for some operator

\[
\tilde{C} = \begin{bmatrix}
0 & \tilde{c}_{12} & \tilde{c}_{13} \\
0 & \tilde{c}_{22} & \tilde{c}_{23} \\
0 & 0 & 0
\end{bmatrix}
\quad \text{on } \tilde{M} = \tilde{H}_1 \oplus \tilde{H}_2 \oplus \tilde{H}_3
\]

(\(\tilde{H}_1 = \sqrt{\{\tilde{f}(\tilde{C})y\} \) and \(\tilde{H}_3 = \sqrt{\{|y\}} \) which is unitarily equivalent to \(S(\tilde{\phi}) (\tilde{\phi}(z) = \tilde{f}(z) \) on \(\mathbb{D} \)), and \(\tilde{X} = \sqrt{2} \oplus I \oplus (1/\sqrt{2}) \) on \(\tilde{M} = \tilde{H}_1 \oplus \tilde{H}_2 \oplus \tilde{H}_3 \). We check that \(\tilde{A} \) is unitarily equivalent to \(A^* \). Indeed, since \(C^* \) is unitarily equivalent to \(S(\tilde{\phi}) \) and the latter is in turn unitarily equivalent to \(\tilde{C} \), there is a unitary operator \(U \) mapping \(M \) onto \(\tilde{M} \) such that \(UC^* = \tilde{C}U \). In particular, we have \(U(\ker C^*) = \ker \tilde{C} \) and \(U(\ker C) = \ker \tilde{C}^* \). Note that

\[
\tilde{f}(\tilde{C})y = \frac{1}{2} \tilde{f}(\tilde{A})y = \frac{1}{2} \tilde{f}(T^*)y = \frac{1}{2} f(T)^*y = x
\]

by the analogue of (2). Hence \(\ker C^* = \ker \tilde{C} = \sqrt{\{|x\}} \) and also \(\ker C = \ker \tilde{C}^* = \sqrt{\{|y\}} \). Therefore, \(Ux = \lambda_1 x \) and \(Uy = \lambda_2 y \) for some scalars \(\lambda_1 \) and \(\lambda_2 \) of modulus one. Thus \(U \) is of the form

\[
U = \begin{bmatrix}
\lambda_2 & U_1 \\
\lambda_1 & U_2
\end{bmatrix}
\]

from \(M = \tilde{H}_1 \oplus \tilde{H}_2 \oplus \tilde{H}_3 \) to \(\tilde{M} = \tilde{H}_1 \oplus \tilde{H}_2 \oplus \tilde{H}_3 \) and hence

\[
U^*\tilde{A}U = U^*\tilde{X}\tilde{C}\tilde{X}^{-1}U
= \begin{bmatrix}
\lambda_1 & U_1 \\
\lambda_2 & U_2
\end{bmatrix}
\begin{bmatrix}
\sqrt{2} & I & \tilde{C} & \lambda_1 \\
1/\sqrt{2} & I & \sqrt{2} & \lambda_2 \\
\lambda_2 & U_1 \\
\lambda_1 & \sqrt{2} & U_2 \\
\end{bmatrix}
\begin{bmatrix}
\frac{1}{\sqrt{2}} & I & \sqrt{2} & \lambda_2 \\
\lambda_1 & \sqrt{2} & U_1 \\
\end{bmatrix}
= \begin{bmatrix}
X^{-1}U^*\tilde{C}UX & X^{-1}C^*X = A^*
\end{bmatrix}
\]

Finally, we check that \(\tilde{M} \) is contained in \(M \). This is because, for any \(n \geq 0 \), the equalities

\[
\|T^*y\| = \|\tilde{A}^ny\| = \|UA^nU^*y\|
= \|UA^n(\lambda_2y)\| = \|A^n\| = \|(T|M)^ny\|
\]

hold, which yields that \(T^*y \) belongs to \(M \). Similarly, we can show that \(M \subseteq \tilde{M} \). Hence \(M = \tilde{M} \) and \(T^*M = T^*\tilde{M} \subseteq \tilde{M} = M \). Thus \(M \) reduces \(T \). This completes the proof. \(\square \)

Acknowledgments

We thank the (anonymous) referee for his suggestions which lead to considerable improvements in the exposition.

References