Epitaxial Overgrowth of Gallium Nitride Nano-Rods on Silicon (111) Substrates by RF-Plasma-Assisted Molecular Beam Epitaxy

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2010 Jpn. J. Appl. Phys. 49 04DH06
(http://iopscience.iop.org/1347-4065/49/4S/04DH06)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 140.113.38.11
This content was downloaded on 25/04/2014 at 06:07

Please note that terms and conditions apply.
Epitaxial Overgrowth of Gallium Nitride Nano-Rods on Silicon (111) Substrates by RF-Plasma-Assisted Molecular Beam Epitaxy

Jui-Tai Ku, Tsung-Hsi Yang1,2, Jet-Rung Chang1, Yuen-Yee Wong3, Wu-Ching Chou1, Chun-Yen Chang1,2, and Chiung-Yao Chen4

Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan 30010, R.O.C.
1Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan 30010, R.O.C.
2Microelectronics and Information Systems Research Center, National Chiao Tung University, Hsinchu, Taiwan 30010, R.O.C.
3Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu, Taiwan 30010, R.O.C.
4Ulvac Taiwan Inc., Hsinchu, Taiwan 30078, R.O.C.

Received October 5, 2009; accepted November 26, 2009; published online April 20, 2010

1. Introduction

Group-III–nitride semiconductors such as aluminum nitride (AlN), gallium nitride (GaN), indium nitride (InN) and their ternary alloys has applications in high-electron mobility transistor devices (HEMTs)1 and light emitting devices (LEDs) operating in the UV–visible range.2 Most devices are prepared by metal organic chemical vapor deposition (MOCVD) using sapphire or SiC as substrates. Recently, GaN grown on Si substrate has attracted considerable academic and commercial attention because of its lower cost, larger sizes, higher crystalline quality and great potential for mature device processing and device integration with Si circuitry. However, growing device-quality GaN epilayers on Si substrates are challenging because of the large differences in the lattice constant (20%) and thermal expansion coefficient (56%) between GaN and Si, which lead to high dislocation density (108 – 109 m-2) and strain induced piezo-polarization field and further degrade the electrical and optical properties of the devices. Furthermore when thickness of nitride layers exceeds 1.0 \textmu m, a lot of cracks were observed in the film. A number of approaches to grow GaN layers with reduced density of crack and threading dislocation (TD) have been reported. The overgrowth of GaN on the patterned SiO\textsubscript{2} mask drastically reduced the TD density.3,4 The structural characteristics of the GaN epitaxial films grown on the patterned sapphire5 and Si substrate6 were also found to be improved effectively. Recently, the TD of GaN overgrowth layer on the patterned GaN nano-column7–9 can be further reduced down to 107 m-2. However, the high-cost and time-consuming etching process to produce the patterned substrates or nano-column is the major drawback. To overcome the problem, GaN epitaxial films could be overgrown on the GaN nano-rods which are self-organized on Si substrate at a reduced Ga surface diffusion under nitrogen rich condition.10 The GaN nano-rods have nice crystal quality and are perpendicular to the Si substrates.11 The GaN nano-rods of typically 20–200 nm in diameter and 0.2–2.0 \textmu m in height with a density of (0.2–1.8) \times 1010 m-2 could be grown by
9.7 × 10⁻⁷ Torr to enhance the lateral growth rate for the growth of the overgrowth GaN layers. The detailed growth process was described elsewhere. The optical property was examined by PL measurement. The 325 nm He–Cd laser was used as an excitation light source. The PL signal was analyzed by a 0.85 m SPEX-1403 double-grating spectrometer equipped with a photomultiplier tube. The residual strain in overgrowth GaN layers was evaluated by micro-Raman scattering at room temperature in backscattering geometry along the z-direction (parallel to the c-axis of GaN). The 488 nm line of an Ar⁺-ion laser was used as the excitation source and focused through a microscope (Olympus BX41) objective into a spot of around 1 μm in diameter. The spectra were obtained using a 0.85 m SPEX-1404 double-grating (1800 grooves/mm grating) spectrometer equipped with a multichannel LN₂-cooled charge-coupled device (CCD) of 1024 × 256 pixels. The pixel size of 26 × 26 μm² yields spectral resolution better than 1.25 cm⁻¹. The lattice constant of GaN was determined by high-resolution X-ray diffraction (HRXRD) on a Bede D1 system using the Cu Kα₁ line.

3. Results and Discussion

Figures 1 and 2 show the cross-sectional and top-view SEM images of overgrowth GaN with different nano-rod diameters. The diameters of samples A, B, and C are (a) 60, (b) 80, and (c) 90 nm, respectively. The N-rich nano-rod layers and the Ga-rich overgrowth layers can be clearly identified from the cross-section SEM images of Fig. 1. As the Ga flux was increased, the lateral overgrowth was enhanced. For sample A, the overgrowth GaN forms irregular terraces and without fully coalescence as shown in Fig. 2(a). By increasing the diameters of nano-rods, the gaps between the nano-rods decrease. The GaN terraces merge together to show better surface morphology in Figs. 2(b) and 2(c). The cross-sectional SEM image of sample B shows that the film is not continuous in lateral direction, and from boundaries gaps. From the top-view SEM image, one can see the spacing gradually shrank as the diameter of nano-rods was increased and the area of the terrace was also increased, as show in Fig. 2(b). The further increasing diameter of nano-rods results in continuous morphology in cross-section of sample C as shown in Fig. 1(c). In Fig. 2(c), the top-view SEM image shows that the overgrowth layer in sample C is not completely continuous, with pronounced trenches and some pits.

Figure 3 show the low-temperature (10 K) normalized PL spectra of three samples. Because the much lower PL probing depth at 325 nm excitation,17,18 the signals is primarily from the overgrowth layer. All three spectra are dominated by the strong narrow near-band-edge (NBE) excitonic emission near 3.47 eV and a weak broad emission from 3.32 to 3.42 eV. No deep-level emission or yellow-band transition at near 3.47 eV and a weak broad emission from 3.32 to 3.42 eV. No deep-level emission or yellow-band transition at 3.485 eV is attributed to the free B exciton transition (FXB). The strongest peak at 3.478 eV is identified as the free A exciton transition (FXA). The peak at 3.472 eV results from the recombination of A exciton bound to neutral donor (D³XA). The energy red-shift with temperature of FXA follows the Vashini’s equation. For D³XA peak, the intensity decrease abruptly due to the thermal excitation to higher energy FXA state. The thermal quenching of the donor-bound exciton (D³XA) peak occurs at 80–100 K.20 For sample A and B, the energy position of FXA at 3.478 eV implies that the overgrowth GaN is strain-free.20 The FXA stronger than D³XA also show that the overgrowth GaN is high quality with low density of defects, which was only observed in high-quality single-crystal nano-rod.22 On the other hand, the PL spectrum of sample C was dominated by the D³XA transition at 3.466 eV, shown in Fig. 4(c). Compare with the energy position of D³XA of samples A and B, the energy of D³XA for sample C red-shifts 6 meV. This indicates that the overgrowth GaN of sample C has tensile strain. By using the value of the proportionality factor from 10 to 120 K are presented in Fig. 4. In Fig. 4, the weak shoulder at 3.485 eV is attributed to the free B exciton transition (FXB). The strongest peak at 3.478 eV is identified as the free A exciton transition (FXA). The peak at 3.472 eV results from the recombination of A exciton bound to neutral donor (D³XA). The energy red-shift with temperature of FXA follows the Vashini’s equation. For D³XA peak, the intensity decrease abruptly due to the thermal excitation to higher energy FXA state. The thermal quenching of the donor-bound exciton (D³XA) peak occurs at 80–100 K.20 For sample A and B, the energy position of FXA at 3.478 eV implies that the overgrowth GaN is strain-free.20 The FXA stronger than D³XA also show that the overgrowth GaN is high quality with low density of defects, which was only observed in high-quality single-crystal nano-rod.22 On the other hand, the PL spectrum of sample C was dominated by the D³XA transition at 3.466 eV, shown in Fig. 4(c). Compare with the energy position of D³XA of samples A and B, the energy of D³XA for sample C red-shifts 6 meV. This indicates that the overgrowth GaN of sample C has tensile strain. By using the value of the proportionality factor.
For the strain-induced PL peak shift, a residual stress of 0.28 GPa built in the overgrowth layer can be estimated.

The tensile strain in these specimens was also investigated by the micro-Raman spectroscopy by measuring the frequency position of the E$_{2}$-high phonon mode. The normalized E$_{2}$-high mode of these specimens measured at room temperature is shown in Fig. 5. The peak of Raman shift in samples A, B, and C are 567.0, 567.0, and 565.7 cm$^{-1}$, respectively. The energy positions of E$_{2}$-high peak for samples A and B are at 567.0 + 0.1 cm$^{-1}$, which is believed to be the E$_{2}$-phonon from strain-free GaN. The energy difference in the Raman shift between sample C and sample A (and sample B) is 1.3 cm$^{-1}$. The residual stress could be calculated based on the stress coefficient of 4.24 cm$^{-1}$/GPa$^{-1}$. The estimated residual stress in the overgrowth GaN layer of sample C is 0.30 GPa, which is quite consistent with the result of PL spectral shift. The red-shift of PL peak energy and Raman shift value in sample C is due to the residual biaxial compressive stress in the c-plane of GaN and induced tensile uniaxial strain along the c-axis.

Fig. 2. Top-view SEM images of the overgrowth GaN: (a) sample A, (b) sample B, and (c) sample C. The scale bars are 1 μm.

Fig. 3. Low-temperature (10 K) normalized PL spectra.

Fig. 4. Temperature-dependent PL spectra of three samples.

Fig. 5. Room-temperature normalized Raman scattering spectra of three samples.
This residual stress can be further checked by measuring the X-ray 2θ-scans of XRD for samples A, B, and C. As shown in Fig. 6, the calculated c-axis lattice constants of samples A, B, and C are 5.1844, 5.1864 Å, and 5.1870 Å, respectively. The c-axis lattice constants of samples A and B are very close to the strain-free value of \(c_0 = 5.185 \) Å. The in-plane lattice constant of sample C indicates the existence of tensile strain along the c-axis of GaN. The in-plane stress (\(\sigma \)) of GaN grown on Si can be described by the lattice strain (\(\varepsilon \)) from the relationship:

\[
\varepsilon = \frac{\sigma}{E} = \frac{\sigma}{E_{\text{biax}}}
\]

where \(E_{\text{biax}} \) is the biaxial elastic modulus of GaN. The in-plane biaxial compressive stress in sample C can be calculated by using:

\[
\sigma = C_{11} \varepsilon_1 + C_{12} \varepsilon_2 + C_{13} \varepsilon_3 - \frac{1}{2} (C_{11} - C_{12}) \varepsilon_1 \varepsilon_2
\]

This residual stress can be further checked by measuring the X-ray 2θ-scan of (0002) diffraction. The respective peak positions of XRD for samples A, B, and C are at 34.560, 34.546, and 34.547°, respectively. This residual stress can be further checked by measuring the X-ray 2θ-scan of the symmetric (0002) diffraction. The calculated stress in sample C can be calculated by using:

\[
\varepsilon_1 = \frac{a - a_0}{a_0}, \quad \varepsilon_2 = \frac{b - b_0}{b_0}, \quad \varepsilon_3 = \frac{c - c_0}{c_0}
\]

where \(a_0, b_0, c_0 \) are the lattice constants of samples A and B, respectively. The axes lattice constants of samples A, B, and C are 5.1844, 5.1864, and 5.1870 Å, respectively. The in-plane biaxial compressive stress in sample C can be calculated by using:

\[
\sigma = \frac{1}{2} (C_{11} - C_{12}) \varepsilon_1 \varepsilon_2
\]

This residual stress can be further checked by measuring the X-ray 2θ-scan of (0002) diffraction. The respective peak positions of XRD for samples A, B, and C are at 34.560, 34.546, and 34.547°, respectively. This residual stress can be further checked by measuring the X-ray 2θ-scan of the symmetric (0002) diffraction. The calculated stress in sample C can be calculated by using:

\[
\varepsilon_1 = \frac{a - a_0}{a_0}, \quad \varepsilon_2 = \frac{b - b_0}{b_0}, \quad \varepsilon_3 = \frac{c - c_0}{c_0}
\]

where \(a_0, b_0, c_0 \) are the lattice constants of samples A and B, respectively. The axes lattice constants of samples A, B, and C are 5.1844, 5.1864, and 5.1870 Å, respectively. The in-plane biaxial compressive stress in sample C can be calculated by using:

\[
\sigma = \frac{1}{2} (C_{11} - C_{12}) \varepsilon_1 \varepsilon_2
\]

This residual stress can be further checked by measuring the X-ray 2θ-scan of (0002) diffraction. The respective peak positions of XRD for samples A, B, and C are at 34.560, 34.546, and 34.547°, respectively. This residual stress can be further checked by measuring the X-ray 2θ-scan of the symmetric (0002) diffraction. The calculated stress in sample C can be calculated by using:

\[
\varepsilon_1 = \frac{a - a_0}{a_0}, \quad \varepsilon_2 = \frac{b - b_0}{b_0}, \quad \varepsilon_3 = \frac{c - c_0}{c_0}
\]

where \(a_0, b_0, c_0 \) are the lattice constants of samples A and B, respectively. The axes lattice constants of samples A, B, and C are 5.1844, 5.1864, and 5.1870 Å, respectively. The in-plane biaxial compressive stress in sample C can be calculated by using:

\[
\sigma = \frac{1}{2} (C_{11} - C_{12}) \varepsilon_1 \varepsilon_2
\]

This residual stress can be further checked by measuring the X-ray 2θ-scan of (0002) diffraction. The respective peak positions of XRD for samples A, B, and C are at 34.560, 34.546, and 34.547°, respectively. This residual stress can be further checked by measuring the X-ray 2θ-scan of the symmetric (0002) diffraction. The calculated stress in sample C can be calculated by using:

\[
\varepsilon_1 = \frac{a - a_0}{a_0}, \quad \varepsilon_2 = \frac{b - b_0}{b_0}, \quad \varepsilon_3 = \frac{c - c_0}{c_0}
\]

where \(a_0, b_0, c_0 \) are the lattice constants of samples A and B, respectively. The axes lattice constants of samples A, B, and C are 5.1844, 5.1864, and 5.1870 Å, respectively. The in-plane biaxial compressive stress in sample C can be calculated by using:

\[
\sigma = \frac{1}{2} (C_{11} - C_{12}) \varepsilon_1 \varepsilon_2
\]