A new analytical solution solved by triple series equations method for constant-head tests in confined aquifers

Ya-Chi Chang, Hund-Der Yeh *

Institute of Environmental Engineering, National Chiao-Tung University, Hsinchu, Taiwan

A R T I C L E I N F O

Article history:
Received 21 May 2009
Received in revised form 18 March 2010
Accepted 18 March 2010
Available online 25 March 2010

Keywords:
Constant-head test
Aquifer
Mixed boundary value problem
Partially penetrating well

A B S T R A C T

The constant-head pumping tests are usually employed to determine the aquifer parameters and they can be performed in fully or partially penetrating wells. Generally, the Dirichlet condition is prescribed along the well screen and the Neumann type no-flow condition is specified over the unscreened part of the test well. The mathematical model describing the aquifer response to a constant-head test performed in a fully penetrating well can be easily solved by the conventional integral transform technique under the uniform Dirichlet-type condition along the rim of wellbore. However, the boundary condition for a test well with partial penetration should be considered as a mixed-type condition. This mixed boundary value problem in a confined aquifer system of infinite radial extent and finite vertical extent is solved by the Laplace and finite Fourier transforms in conjunction with the triple series equations method. This approach provides analytical results for the drawdown in a partially penetrating well for arbitrary location of the well screen in a finite thickness aquifer. The semi-analytical solutions are particularly useful for the practical applications from the computational point of view.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Hydraulic parameters such as hydraulic conductivity, specific storage and leakage factor are important for quantifying groundwater resources. To determine these parameters, the constant-head pumping test is generally employed if the aquifer has low permeability. During the test, the hydraulic head at the well is kept constant throughout the test period and the transient flow rate across the wellbore is measured at the same time. A pumping test performed in a fully or partially penetrating borehole is influenced by the well skin effect. The fully penetrating well can be simulated as a Dirichlet (also called the first type) boundary condition, and the relative models can be solved by the conventional integral transform techniques [11]. If the well skin effect is negligible in the model, the Dirichlet and Neumann (second type) boundary conditions are appropriate for describing the drawdown along the well screen and casing, respectively. Thus, the boundary condition along the well face in the partially penetrating well is a mixed-type condition. The term “mixed-type” boundary condition is used to distinguish this boundary condition from the “uniform” Dirichlet and Neumann boundary condition or a combination of Dirichlet and Neumann boundary conditions (which is usually defined as third type or Robin type boundary condition). If the well skin effect is considered in the model, a more appropriate description for such an aquifer system is to treat the skin zone as a different formation zone instead of using a skin factor. Thus, the aquifer system naturally becomes a two-zone formation (see, e.g., [26,27,34,35]).

Mixed boundary conditions are widely used to describe many boundary value problems of mathematical physics. Such problems arise in potential theory and its numerous applications to engineering, fracture mechanics, heat conduction, and many others. Only limited analytical solutions to mixed boundary problems (MBPs) in the field of well hydraulics have been found so far by special solution techniques including the dual integral/series equation [8,22], Weiner–Hopf technique [18], and Green’s function [12]. Most of the solutions to MBPs have been obtained numerically [29], or by approximate methods such as asymptotic analysis [2], or perturbation techniques [8,25].

For the mathematical model under the mixed boundary condition in a confined aquifer of semi-infinite thickness, Wilkinson and Hammond [25] used a perturbation method to give an approximate solution for drawdown changes at the well. Cassiani and Kabala [4] used the dual integral equation method to develop a Laplace-domain solution that accounts for the effects of wellbore storage, infinitesimal skin, and aquifer anisotropy. Cassiani et al. [5] further used the same method to develop the solutions in Laplace domain suited for constant-head pumping tests and double packer tests treated as the MBPs. Selim and Kirkham [21] used the Gram–Schmidt orthonormalization method to develop a steady state solution in a confined aquifer of finite horizontal extent. Similar problems under the mixed boundary conditions also arise in the field of heat conduction. Among others, Huang [13] used the Weiner–Hopf technique to develop a solution in a semi-infinite slab and Huang and Chang [12] combined...
the Green’s function with conformal mapping to develop the solution in an elliptic disk.

In reality, the thickness of aquifer is generally finite. Cassiani et al. [5] have developed the Laplace-domain solutions to MBPs for constant-head test based on the infinite aquifer thickness assumption. Their solutions are appropriate for the early time condition when the pressure change caused by the constant-head pumping has not reached the bottom of the aquifer or for the special condition, where the screen length is significantly shorter than the aquifer thickness. Chang and Chen [6] removed such constraints by assuming finite aquifer thickness and treated the well skin effect as a skin factor. They also treated the boundary along the well screen as a Robin (third type) boundary condition and replaced the mixed boundary by homogeneous Neumann boundary. They considered the wellbore flux entering through the well screen as unknown and discretized the screen length into M segments [7]. To avoid discretizing the well screen, Chang and Yeh [8] developed an analytical solution for a finite radius; (3) the initial head is constant and uniform throughout the whole aquifer; and (4) the well loss is not considered in the system. The mixed-type boundary condition at the well is handled via the triple series equations (TSE) method. This solution contains infinite series involving the summations of multiple integrals, trigonometric functions, and the modified Bessel functions of second kind, where the single and double integrals are presented in terms of trigonometric functions multiplying the associated Legendre functions. The infinite-series solution is difficult to accurately compute due to the oscillatory nature and slow convergence of the multiplied functions. Therefore, Shanks’ transform method [19,20] is used to accelerate the evaluation of the Laplace-domain solution and the numerical inversion scheme, Stehfest algorithm [24], is used to find the time domain solution. To the best of our knowledge, this is the first paper using the TSE method to solve the mixed boundary value problems in the area of water resources.

2. Mathematical model

2.1. Mathematical statement

Fig. 1 shows a schematic representation of a partially penetrating well in a confined aquifer of finite extent with a finite thickness of b. The drawdown at the distance r from the well and the distance z from the bottom of the aquifer at time t is denoted as s(r, z, t). The well screen which extends from arbitrary location d_1 to d_2 is of length l under a prescribed constant drawdown h_w. The hydraulic parameters of the aquifer are horizontal hydraulic conductivity K_h [L/T], vertical hydraulic conductivity K_v [L/T], and specific storage S_s [1/L]. The governing equation for the drawdown can be written as

\[K_h \left(\frac{\partial^2 s}{\partial r^2} + \frac{1}{r} \frac{\partial s}{\partial r} \right) + K_v \frac{\partial^2 s}{\partial z^2} = S_s \frac{\partial s}{\partial t}. \]

The prescribed Dirichlet boundary condition for a constant drawdown along the well screen is:

\[s(r_w, z, t) = s_w \quad d_1 \leq z \leq d_2. \]

A Neumann boundary condition of zero flux is specified as:

\[\frac{\partial s}{\partial r} \bigg|_{r = r_w} = 0 \quad 0 \leq z \leq d_1 \quad \text{and} \quad d_2 \leq z \leq b. \]

In addition, the initial condition and other boundary conditions are:

\[s(r, z, 0) = 0 \]

\[s(w, z, t) = 0 \]

and

\[\frac{\partial s}{\partial z} = 0, \quad z = 0, z = b. \]

The dimensionless parameters used hereafter are defined in Table 1. Eqs. (1)–(5) in dimensionless form are, respectively,

\[\frac{\partial^2 s^*}{\partial \xi^2} + \frac{1}{\beta} \frac{\partial s^*}{\partial \tau} + \alpha^2 \frac{\partial^2 s^*}{\partial \zeta^2} = \frac{\partial s^*}{\partial \tau} \]

\[s^*(\rho, \xi, \tau = 0) = 0 \]

\[s^*(\rho = \infty, \xi, \tau) = 0 \]

\[s^*(\rho = l, \xi, \tau) = 1, \quad \xi_1 \leq \xi \leq \xi_2 \]

\[\frac{\partial s^*}{\partial \tau} \bigg|_{\tau = 0} = 0, \quad 0 \leq \xi \leq \xi_1 \quad \text{and} \quad \xi_2 \leq \xi \leq \beta \]

\[\frac{\partial s^*}{\partial \zeta} \bigg|_{\zeta = 0, \zeta = \beta} = 0. \]

Note that Eqs. (6)–(10) constitute a MBP.
2.2. Laplace-domain solution

The detailed derivation for the solution of Eq. (6) with Eqs. (7)–(10) using Laplace transform, finite Fourier cosine transform, and TSE method is given in Appendix A. The solution for drawdown in an aquifer involving a partially penetrating well is obtained as:

$$\varphi^*(p, \xi, \eta) = \frac{1}{\sqrt{2 \pi}} B(0, p) K_0(\sqrt{p}) + \sum_{n=1}^{\infty} B(n, p) \frac{K_0(\lambda_n \eta)}{K_0(\lambda_n)} \cos(\eta \xi) \tag{11}$$

where K_0 is the modified Bessel functions of the second kind with order zero, $\eta_0 = (\pi n) / \beta$, and the coefficients $B(0, p)$ and $B(n, p)$ are expressed as

$$B(0, p) = C(0, p) + D(0, p) = C_0 + D_0 \tag{12}$$

and

$$B(n, p) = C(n, p) + D(n, p) = C_n + D_n \tag{13}$$

The coefficients C_0, C_n, D_0, and D_n in Eqs. (12) and (13) are calculated by the following equations

$$C_0 = \left[1 + \sqrt{\frac{\beta H_0}{\Omega_1(\eta_1)}} \right]^{-1} \left[\frac{4}{\beta m} \frac{\Omega_1(\eta_1)}{\lambda_1} \right] + \frac{2}{\beta} \left(1 - \frac{\eta_1}{\pi} \right) + \sum_{k=1}^{\infty} \frac{2}{\beta} \left(1 - \frac{\eta_k}{\pi} \right) \frac{\Omega_2(\eta_k, k) f_2(n, \eta_k)}{\Omega_2(1, k) f_2(n, 1)} \right] \tag{14}$$

and

$$D_n = (1 + \sqrt{\frac{\beta H_0}{\Omega_1(\eta_1)}})^{-1} \left[\frac{2}{\beta m} \frac{\Omega_1(\eta_1)}{\lambda_1} \right] \left[\frac{\Omega_2(\eta_1, 1) f_2(n, \eta_1)}{\Omega_2(1, 1) f_2(n, 1)} \right] \tag{15}$$

The flux entering the well screen and the total well discharge obtained using Eq. (11) are respectively given as:

$$\varphi^*(1, \xi, \eta) = -\frac{\partial \varphi^*(p, \xi, \eta)}{\partial p} \bigg|_{p=1} = \frac{1}{2} B_0 \sqrt{\beta} \frac{K_1(\sqrt{p})}{K_0(\sqrt{p})} \tag{28}$$

Table 2

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_1(x, a)$</td>
<td>$\frac{\sqrt{2} \sin(x/2)}{\sin(x/2)}$</td>
</tr>
<tr>
<td>$f_2(n, a)$</td>
<td>$\frac{P_n(\cos a) + P_{n-1}(\cos a)}{n \geq 1}$</td>
</tr>
<tr>
<td>$f_3(x, a)$</td>
<td>$\frac{1}{4} \ln(1 - \cos(a + x)) - \ln(1 - \cos(a - x))$</td>
</tr>
<tr>
<td>H_0</td>
<td>$K_0(\lambda_n)/K_0(\lambda_n)$</td>
</tr>
<tr>
<td>k_0</td>
<td>$n \pm \lambda_n$</td>
</tr>
<tr>
<td>k_0</td>
<td>$(n \pm \lambda_n)$</td>
</tr>
<tr>
<td>$\Omega_1(x)$</td>
<td>$\int_0^\infty f_1(u, x) \sin(\eta u) du$</td>
</tr>
<tr>
<td>$\Omega_2(x, k)$</td>
<td>$\int_0^\infty \Omega_1(y) f_2(u, x) dy$</td>
</tr>
</tbody>
</table>
and

\[
Q(p) = \frac{1}{K_0} \int_{\xi_1}^{\xi_2} q^*(1, \xi, p) d\xi = \frac{1}{2} B_0 \sqrt{p} \frac{K_1(\sqrt{p})}{K_0(\sqrt{p})} - \sum_{n=1}^{\infty} \left(\lambda \eta_n \right)^{-1} B_n H_n [\sin(n \mu_1) + (-1)^n \sin(n \mu_2)]
\]

(29)

where \(\lambda = \frac{l}{r_w} \) is the dimensionless length of the screen.

2.3. Simplified solutions

2.3.1. Partially penetrating well (well screen extends from the top of the aquifer)

When the well screen extends from \(d_1 \) to the top of the aquifer, the coefficients in Eqs. (14)–(17) can be found by setting \(\xi_2 = \beta \). The drawdown can then be determined from solving Eqs. (A17a) and (A17b) which should be identical to the results obtained using infinity-order perturbation approach in solving DSE in Chang and Yeh [8].

2.3.2. Fully penetrating well

When the well fully penetrates the entire thickness of the formation, i.e., \(\xi_1 = 0 \) and \(\xi_2 = \beta \), the drawdown and the well discharge can be obtained using Eqs. (11) and (29), respectively, as [11]

\[
s^*(p, \xi, p) = \frac{1}{p} \frac{K_0(\sqrt{p})}{K_0(\sqrt{p})}
\]

(30)

and

\[
Q(p) = K_1(\sqrt{p}) \sqrt{\rho \bar{K}_0(\sqrt{p})}
\]

(31)

Eqs. (30) and (31) are identical to the solutions of drawdown and flow rate in Laplace domain given in Yang and Yeh [28].

Fig. 2. The drawdown distribution at dimensionless time \(\tau = 1, 100, 10^4 \) and \(\tau = 10^6 \) for \(\beta = 100 \) and various \(\rho \).
3. Results and discussion

Numerical calculations for the aquifer drawdown and well flux are performed in PC using the FORTRAN code developed based on the present solutions. The first step in the development of solutions is to determine the coefficients of Laplace-domain solution in Eq. (11) from using Eq. (A50). The single and double integrals involved in the elements are then computed using the subroutines DQDAG and DTWODQ in IMSL [10,15], respectively. Once the coefficients are known, the second step is to find the infinite summation in Eq. (11) by Shank's transform method. Then the final step is to transform the Laplace-domain solution of Eq. (11) into time-domain using IMSL subroutine LINV for the Stehfest method [24] with eight weighting factors. The infinite summation in the solution can be found more efficiently using Shank's transform which consists of a family of nonlinear sequence-to-sequence transformations [20]. Shanks [20] concluded that these transformations are effective when applied to accelerate the convergence of some slowly convergent sequences and may also converge to some divergent sequences.

The solutions can be verified by calculating the values at the boundary along the test well in Eq. (11). Fig. 2 shows the dimensionless drawdown for $\beta = 100$, $\xi_1 = 30$, $\xi_2 = 80$ and various ρ at $\tau = 1, 100, 10^4$ and 10^6. As indicated in the figure, the dimensionless drawdown is constant along the well screen and decreases with the increasing dimensionless radial distance at $\tau = 1$. In addition, the dimensionless drawdown increases along with dimensionless time along the unscreened part of the well. The dimensionless drawdown has larger value in the screen part and smaller value along the unscreened part. Fig. 3 shows the plots of the flux along the well screen for $\beta = 100$, $\xi_1 = 30$ and $\xi_2 = 80$ at $\tau = 1, 100, 10^4$ and 10^6. The dimensionless flux is non-uniformly distributed and large at the screen edge due to the vertical flow induced by the presence of well partial penetration. Fig. 4 exhibits the behavior of dimensionless drawdown versus dimensionless time τ and illustrates the effect of screen length on the drawdown response, where the dimensionless radial distance ρ is 10, the vertical distance ξ is 50 and $\alpha = 1$ for different length of the screen. This figure indicates that the dimensionless drawdown increases with the length of the screen. To test the influence of anisotropy of the aquifer, Fig. 5 is plotted for $\rho = 5$, $\xi = 50$, $\xi_1 = 40$, $\xi_2 = 60$ and various anisotropy α. As can be observed, the drawdown increases with α. The spatial dimensionless drawdown contours at $\tau = 100, 10^3$ and 10^4 are plotted in Fig. 6. The dimensionless drawdown increases with dimensionless time at a fixed radial distance and flow is horizontal when the dimensionless radial distance is large than 80 and the dimensionless time is 10^4. Fig. 7(a) and (b) shows the spatial dimensionless drawdown contours for various α^2 with $\xi_1 = 200$ and $\xi_2 = 250$ at $\tau = 10^5$ and demonstrates the influence of anisotropy on the dimensionless drawdown. The flow is almost horizontal at the bottom of the aquifer when the dimensionless radial distance is large than 400 for $\alpha^2 = 1$; however, the flow is vertical at the bottom of the aquifer for $\alpha^2 = 0.5$. Fig. 8(a) and (b) plots the spatial dimensionless drawdown contours for the same length of 50 but different locations of well screen. In Fig. 8(a), the screen is symmetric with $\xi_1 = 12.5$ and $\xi_2 = 37.5$ and in Fig. 8(b) the screen extends from the top of the aquifer with $\xi_1 = 25$ and $\xi_2 = 50$ at $\tau = 10^5$. Since the screen is symmetric about the middle line of the aquifer, the drawdown contours are symmetric as shown in Fig. 6(a). Fig. 9 illustrates the spatial dimensionless drawdown contours for $\beta = 200$, $\xi_1 = 100$ and $\xi_2 = 150$ at $\tau = 10^7$. The direction of flow is upward when the radial distance is far from the pumping well and it is downward when the radial distance is close to the well screen.

4. Concluding remarks

This paper developed a new semi-analytical solution for describing the drawdown response for a constant-head test performed in a partially penetrating well in an aquifer of infinite radial extent and finite vertical extent, where the well screen is installed within any part of the well. The Laplace and finite Fourier transforms in conjunction with TSE method are used to solve the mixed-type boundary and initial values problem for a partially penetrating well in an aquifer of a finite thickness. The present solutions can be reduced to the solutions given in Yang and Yeh [28] for a fully penetrating well in an aquifer of a finite thickness. In addition, they are also equal to the results obtained using infinite-order perturbation approach for a partially penetrating well of a well screen extending from the top of the aquifer presented in Chang and Yeh [8]. The flux estimated from the solution is non-uniformly distributed along the screen and with a local peak at the edge, due to the vertical flow induced by the effect of well partial penetration.

These solutions are particularly useful for practical applications since they can be used to evaluate the sensitivities of the input parameters in a mathematical model (e.g., [14] and [9]), to identify the hydraulic parameters if coupling with the extended Kalman filter (e.g., [16] and [33]) or an optimization approach such as the nonlinear least-squares (e.g., [30] and [31]) or simulated annealing (e.g., [17] and [32]) in the analysis of aquifer data, and to validate a numerical solution [36].

Acknowledgements

This study was supported by the Taiwan National Science Council under the grant NSC 96-2221-E-009-087-MY3. The authors would like to thank three anonymous reviewers for their valuable and constructive comments that help improve the clarity of our presentation.

Appendix A

The Laplace-domain solution for dimensionless drawdown can be obtained by taking the Laplace transform with respect to time and the finite Fourier cosine transform with respect to ξ. The definition of Laplace transform is:

$$\mathcal{L}^{*}\left(\rho, \xi, \tau\right) = \mathcal{L}^{*}\left(\theta^{*}(\rho, \xi, \tau) ; \tau \rightarrow \rho\right) = \int_{0}^{\tau} \theta^{*}(\rho, \xi, \tau) e^{-\rho \tau} \, d\tau \quad (A1)$$

where $\theta^{*}(\rho, \xi, \rho)$ is the dimensionless drawdown in Laplace domain.
Fig. 4. Type curve for drawdown for $\rho = 10$, $\xi = 50$, $\alpha = 1$, $\beta = 100$ and various penetration lengths.

Fig. 5. Type curve for drawdown for $\rho = 5$, $\xi_1 = 40$, $\xi_2 = 60$, $\beta = 100$ and various anisotropy α.
Taking the Laplace transform of Eq. (6) and Eqs. (8)–(10) with the initial condition in Eq. (7), the problem reads:

\[
\begin{align*}
\frac{\partial^2 \sigma^*}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial \sigma^*}{\partial \rho} + \alpha^2 \frac{\partial^2 \sigma^*}{\partial \xi^2} - \rho \sigma^* &= 0, \\
\frac{\partial \sigma^*}{\partial \rho} \bigg|_{\rho = 1} &= 0, \\
\sigma^*(\rho = \infty, \xi, \rho) &= 0, \\
\sigma^*(\rho = 1, \xi, \rho) &= \frac{1}{\rho}, \quad \xi_1 \leq \xi \leq \xi_2
\end{align*}
\]

Fig. 6. The spatial drawdown contours at dimensionless time $\tau = 100, 10^3$ and 10^4 for $t = 50$.

Taking the Laplace transform of Eq. (6) and Eqs. (8)–(10) with the initial condition in Eq. (7), the problem reads:

\[
\begin{align*}
\sigma^*(\rho = \infty, \xi, \rho) &= 0 \quad \text{(A3)} \\
\sigma^*(\rho = 1, \xi, \rho) &= \frac{1}{\rho}, \quad \xi_1 \leq \xi \leq \xi_2 \quad \text{(A4a)} \\
\frac{\partial \sigma^*}{\partial \rho} \bigg|_{\rho = 1} &= 0, \quad 0 \leq \xi \leq \xi_1 \quad \text{and} \quad \xi_2 \leq \xi \leq \beta \quad \text{(A4b)}
\end{align*}
\]
Fig. 7. The spatial drawdown contours at dimensionless time $\tau = 10^5$ for $\beta = 250$ and various α^2.

Fig. 8. The spatial drawdown contours at dimensionless time $\tau = 10^7$ for $\beta = 50$ and various screen locations ($\xi_1 = 12.5$ and $\xi_2 = 37.5$; $\xi_1 = 25$ and $\xi_2 = 50$).
The finite cosine Fourier transform with respect to ξ is then defined as follows [23]:

$$\hat{s}^*(p, n, \rho) = F_c[s^*(p, \xi, \rho); \xi \rightarrow n] = \int_0^\beta s^*(p, \xi, \rho) \cos(\eta_\xi \xi) d\xi$$ \hspace{1cm} (A6)

where $\hat{s}^*(p, n, \rho)$ is the dimensionless drawdown after finite cosine Fourier transform. Substituting Eq. (A6) into Eqs. (A2), (A3) and (A5) results in the Bessel differential equation as follows

$$\frac{\partial^2 \hat{s}^*}{\partial p^2} + \frac{1}{\rho} \frac{\partial \hat{s}^*}{\partial \rho} - \lambda_n^2 \hat{s}^* = 0$$ \hspace{1cm} (A7)

with the boundary condition

$$\hat{s}^*(p = \infty, n, \rho) = 0.$$ \hspace{1cm} (A8)

The general solution to Eq. (A7) with the boundary condition (A8) is [3]

$$\hat{s}^*(p, \xi, \rho) = A(n, p)K_0(\lambda_n \rho)$$ \hspace{1cm} (A9)

where $A(n, p)$ can be found from using the mixed-type boundary condition (A4a) and (A4b). The inverse of the finite cosine Fourier transform is

$$s^*(p, \xi, \rho) = \frac{1}{\beta} \hat{s}^*(p, 0, \rho) + \sum_{n=1}^{\infty} A(n, p)K_0(\lambda_n \rho) \cos(\eta_\xi \xi).$$ \hspace{1cm} (A10)

Thus, the solution in ξ domain obtained by inserting Eq. (A9) into Eq. (A10) is

$$s^*(p, \xi, \rho) = \frac{1}{\beta} A(0, p)K_0(\sqrt{\rho} \beta) + \sum_{n=1}^{\infty} A(n, p)K_0(\lambda_n \rho) \cos(\eta_\xi \xi)$$ \hspace{1cm} (A11)

with its derivative with respect to ρ given by

$$\frac{\partial s^*}{\partial \rho}(p, \xi, \rho) = -\frac{1}{\beta} A(0, p)K_1(\sqrt{\rho} \beta) + \frac{A(n, p)}{\beta} \sum_{n=1}^{\infty} A(n, p) \lambda_n K_1(\lambda_n \rho) \cos(\eta_\xi \xi).$$ \hspace{1cm} (A12)

Substituting Eq. (A11) into Eqs. (A4a) and (A12) into Eq. (A4b) results in a system of TSE as

$$\frac{1}{\beta} \sum_{n=1}^{\infty} A(n, p) \lambda_n K_1(\lambda_n \rho) \cos(\eta_\xi \xi) = \frac{1}{\beta} \xi_1 \leq \xi \leq \xi_2$$ \hspace{1cm} (A13a)

and

$$\frac{1}{\beta} \sum_{n=1}^{\infty} B(n, p) \lambda_n K_1(\lambda_n \rho) \cos(\eta_\xi \xi) = 0, \quad 0 \leq \xi \leq \xi_1, \quad \xi_2 \leq \xi \leq \beta.$$ \hspace{1cm} (A13b)

Introduce

$$B(n, p) = 2A(n, p)K_0(\lambda_n) / \beta$$ \hspace{1cm} (A14)

and

$$x = \xi \pi / \beta.$$ \hspace{1cm} (A15)

Therefore, $\eta_\xi \xi = nx$ and the TSE of Eqs. (A13a) and (A13b) can be rearranged as [22]:

$$\frac{1}{2} B(0, p) \sqrt{\rho} H(0, p) + \sum_{n=1}^{\infty} B(n, p) \lambda_n H_n \cos(nx) = 0, \quad 0 \leq x \leq \frac{\xi_1}{\beta} \pi$$ \hspace{1cm} (A16a)

and

$$\frac{1}{2} B(0, p) + \sum_{n=1}^{\infty} B(n, p) \cos(nx) = \frac{1}{\beta} \frac{\xi_1}{\beta} \pi \leq x \leq \frac{\xi_2}{\beta} \pi.$$ \hspace{1cm} (A16b)

and

$$\frac{1}{2} B(0, p) \sqrt{\rho} H(0, p) + \sum_{n=1}^{\infty} B(n, p) \lambda_n H_n \cos(nx) = 0, \quad \frac{\xi_1}{\beta} \pi \leq x \leq \pi.$$ \hspace{1cm} (A16c)

The symbol H_n is defined in Eq. (24) and H_0 is from H_0 when $n = 0$. Our goal now is to determine the coefficients $B(0, p)$ and $B(n, p)$ in Eqs. (A16a)–(A16c). For convenience, the coefficients $B(0, p)$ and $B(n, p)$ are expressed as B_0 and B_n, respectively, as in Eqs. (12) and (13). To solve

Fig. 9. The spatial drawdown contours as at dimensionless time $\tau = 10^7$ for $\beta = 200, \xi_1 = 100$ and $\xi_2 = 150$.
the TSE in Eq. (A16a)–(A16c), we further split it into the following two DSE ([22], p. 192)

\[\frac{1}{2} (C_0 + D_0) \sqrt{H(0, p)} + \sum_{n=1}^{\infty} (C_n + D_n) \chi_n H_n \cos (nx) = 0, \quad 0 \leq x \leq \mu_1 \] (A17a)

\[\frac{1}{2} C_0 + \sum_{n=1}^{\infty} C_n \cos (nx) = \frac{1}{p}, \quad \mu_1 < x \leq \pi \] (A17b)

\[\frac{1}{2} D_0 + \sum_{n=1}^{\infty} D_n \cos (nx) = 0, \quad 0 < x \leq \pi - \mu_2 \] (A18a)

\[\frac{1}{2} (C_0 + D_0) \sqrt{H(0, p)} + \sum_{n=1}^{\infty} (C_n + D_n) \chi_n H_n \cos (nx) = 0, \quad \pi - \mu_2 < x \leq \pi \] (A18b)

where \(\mu_1 \) and \(\mu_2 \) are defined by Eqs. (18) and (19), respectively. With Eqs. (12) and (13), Eqs. (A17a) and (A18b) are equal to Eqs. (A16a) and (A16c), respectively, and the sum of Eqs. (A17b) and (A18a) in the range of \(\mu_1 < x < \pi - \mu_2 \) is equal to Eq. (A16b). Eqs. (A17a)–(A17b) and (A18a)–(A18b) are regarded as dual series relations and by means of them, the coefficients \(C_0, D_0, C_n, \) and \(D_n \) can be determined.

Eqs. (A17a) and (A17b) can be solved by the following procedure given in Sneddon ([22], p. 161). Assume that for \(0 \leq x \leq \mu_1 \)

\[\frac{1}{2} C_0 + \sum_{n=1}^{\infty} C_n \cos (nx) = \cos \left(\frac{x}{2} \right) \frac{h_1(y)dy}{\cos x - \cos x} \] (A19)

where \(h_1(y) \) is an unknown function to be determined. Using Eqs. (A17b) and (A19), for the full range \(0 \leq x \leq \pi \), the coefficients \(C_0 \) and \(C_n \) can then be expressed as ([22], (5.456), (5.457))

\[C_0 = \frac{2}{\pi} \left(\int_0^\pi h_1(y)dy + \int_0^\pi \frac{1}{p} dy \right) \] (A20)

and

\[C_n = \frac{2}{\pi} \left(\int_0^\pi h_1(y) [p_n(cos y) + p_{n-1}(cos y)]dy + \int_0^\pi \frac{1}{p} \cos (ny) dy \right) \] (A21)

The function \(h_1(y) \) can be determined using Eq. (A17a) for \(0 \leq x \leq \mu_1 \). Integrating Eq. (A17a), one can obtain

\[\frac{1}{2} C_0 \sqrt{H(0, p)} x + \sum_{n=1}^{\infty} C_n \sin (nx) \quad \text{or} \quad \int_0^x \frac{1}{2} C_0 \sqrt{H(0, p)} du + \sum_{n=1}^{\infty} D_n \chi_n H_n \sin (nx) \quad \text{or} \quad \int_0^x F(u)du \] (A22)

where \(F(u) \) is defined as the integral on the RHS of Eq. (A22). Substituting Eq. (A21) into Eq. (A22), one can find that \(h_1(y) \) satisfies the following equation: ([22], p. 161, Eq. (5.458))

\[\int_0^x h_1(y) \frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} [p_n(cos y) + p_{n-1}(cos y)] \sin nxdy = \int_0^x F(u)du - \frac{1}{2} \sqrt{pH(0, p)} C_0 x - \int_0^x \frac{1}{\pi} \sin (ny) du \sin (nx). \] (A23)

The summation term on the left-hand side of Eq. (A23) can be expressed as ([22], p. 59, Eq. (2.631))

\[\frac{1}{\sqrt{2}} \sum_{n=1}^{\infty} |p_n(cos \mu_1) + p_{n-1}(cos \mu_1)| \sin \mu_1 \] (A24)

where \(H_{eiw}(x) \) is the Heaviside step function defined as

\[H_{eiw}(x) = \begin{cases} 0 & x < 0 \\ 1/2 & x = 0 \\ 1 & x > 0 \end{cases} \] (A25)

Substituting Eq. (A24) into Eq. (A23) yields

\[h_1(y) \int_0^x F(u)du - \frac{1}{2} \sqrt{pH(0, p)} C_0 x - \int_0^x \frac{1}{\pi} \sin (ny) du \sin (nx) = \int_0^x \frac{1}{\pi} \sin (ny) du \sin (nx) \] (A26)

With Eq. (A25), Eq. (A26) can be expressed alternatively as

\[\int_0^x F(u)du - \frac{1}{2} \sqrt{pH(0, p)} C_0 x - \int_0^x \frac{1}{\pi} \sin (ny) du \sin (nx) \] (A27)

Then, the function \(h_1(y) \) found based on Sneddon ([22], p. 162, Eq. (5.460)) is

\[h_1(y) = \frac{2}{\pi} \left(\int_0^x \frac{1}{\pi} \sin (ny) du \right) \] (A28)

By integrating Eq. (A28) and substituting it into Eqs. (A20) and (A21), the coefficients \(C_0 \) and \(C_n \) can then be expressed as Eqs. (14) and (15), respectively.

For computational convenience, Eqs. (14) and (15) can be written as a vector equation

\[C = (I - X)^{-1} Y D + (I - X)^{-1} Z \] (A29)

where \(I \) is an \((n + 1) \times (n + 1)\) identity matrix; \(X = [x_{ij}] \) and \(Y = [y_{ij}] \) are \((n + 1) \times (n + 1)\) matrices; \(C' = [C_0, C_1, ..., C_n], D' = [D_0, D_1, ..., D_n], \) and \(Z' = [z_1, z_2, ..., z_{n+1}] \) are column vectors. The elements in the matrices and vectors are defined as

\[x_{i,j} = 1 \] (A30)

\[x_{i,j} = \frac{1}{2} \sqrt{pH(0, p)} \Omega_i (y, j - 1) \] (A31)

\[y_j = \left(\frac{1}{j - 1} \right) \int_0^y \Omega_j (y, j - 1) f_j (y, j - 1) dy - \int_0^y \Omega_j (y, j - 1) \frac{df_j (y, j - 1)}{dy} dy \] (A32)

\[x_{i} = 1 \] (A33)

\[y_j = -\sqrt{pH_0} \] (A34)
\[y_{ij} = \frac{1}{2} \sqrt{n} \eta_{ij} H_{ij} \Omega_{ij}(y_i, j-1) \]

\[y_{ii} = \frac{1}{2} \sqrt{n} \eta_{ii} \Omega_{ii} \left(\frac{d^2 f_i(y_i, y_i-1)}{dy} - \Omega_{ij}(y_i, j-1) f_j(y_i, j-1) \right) \]

\[y_{ij} = \frac{1}{2} \sqrt{n} \eta_{ij} \Omega_{ij} \left(\frac{d^2 f_i(y_i, y_j-1)}{dy} - \Omega_{ij}(y_i, j-1) f_j(y_i, j-1) \right) \]

\[z_i = \frac{2}{\pi} \Omega_{ij}(y_i, j-1) \int_{0}^{\Omega_{ij}(y_i, j-1)} \frac{d^2 f_i(y_i, y_j-1)}{dy} dy - 2 \sin \left(\frac{1}{2} \mu_j \right) \]

\[z_i = \frac{2}{\pi} \Omega_{ij}(y_i, j-1) \int_{0}^{\Omega_{ij}(y_i, j-1)} \frac{d^2 f_i(y_i, y_j-1)}{dy} dy - 2 \sin \left(\frac{1}{2} \mu_j \right) \]

\[j = 1, 2, \ldots, N + 1 \]

\[c_j = \frac{N + 1}{i} \Omega_{ij} z_i, j = 1, 2, \ldots, N + 1 \]

where \(i \) and \(j \) goes from 2 to \(n \) and the functions \(f_1(\cdot), f_2(\cdot) \) and \(f_3(\cdot) \) are defined in Eqs. (25)–(27), respectively.

Similarly, Eqs. (A18a)–(A18b) can be solved by setting \(x' = \pi - x \) and \(D' = (\pi, \pi) \). Eqs. (A18a)–(A18b) is rewritten as

\[\frac{1}{2} (D_0 + C_0) \sqrt{n} \Omega_{ij} \left(\frac{d^2 f_i(y_i, y_j-1)}{dy} - \Omega_{ij}(y_i, j-1) f_j(y_i, j-1) \right) \]

\[\frac{1}{2} (D_0 + C_0) \sqrt{n} \Omega_{ij} \left(\frac{d^2 f_i(y_i, y_j-1)}{dy} - \Omega_{ij}(y_i, j-1) f_j(y_i, j-1) \right) \]

\[\frac{1}{2} (D_0 + C_0) \sqrt{n} \Omega_{ij} \left(\frac{d^2 f_i(y_i, y_j-1)}{dy} - \Omega_{ij}(y_i, j-1) f_j(y_i, j-1) \right) \]

The vector equation for solving coefficients \(D_0 \) and \(D_n \) is expressed as

\[\mathbf{D} = (1 - \hat{X}) \mathbf{Y} \mathbf{C} \]

where \(\hat{X} = [\hat{x}_{ij}] \) and \(\mathbf{Y} = [\hat{y}_{ij}] \) are \((n+1) \times (n+1)\) matrices with the elements

\[\hat{x}_{11} = 0 \]

\[\hat{x}_{ij} = \frac{1}{2} \sqrt{n} \eta_{ij} \Omega_{ij} \left(\frac{d^2 f_i(y_i, y_j-1)}{dy} - \Omega_{ij}(y_i, j-1) f_j(y_i, j-1) \right) \]

\[\hat{y}_{11} = \frac{-\sqrt{n} \Omega_{ij}(y_i, j)}{1 + \sqrt{n} \Omega_{ij} \Omega_{ij}(y_i, j)} \]

\[\hat{y}_{ij} = \frac{-\sqrt{n} \eta_{ij} \Omega_{ij}(y_i, j)}{1 + \sqrt{n} \Omega_{ij} \Omega_{ij}(y_i, j)} \]

\[\hat{y}_{ij} = \frac{-\sqrt{n} \eta_{ij} \Omega_{ij}(y_i, j)}{1 + \sqrt{n} \Omega_{ij} \Omega_{ij}(y_i, j)} \]

\[\hat{y}_{ij} = \frac{-\sqrt{n} \eta_{ij} \Omega_{ij}(y_i, j)}{1 + \sqrt{n} \Omega_{ij} \Omega_{ij}(y_i, j)} \]

\[\hat{y}_{ij} = \frac{-\sqrt{n} \eta_{ij} \Omega_{ij}(y_i, j)}{1 + \sqrt{n} \Omega_{ij} \Omega_{ij}(y_i, j)} \]

\[\hat{y}_{ij} = \frac{-\sqrt{n} \eta_{ij} \Omega_{ij}(y_i, j)}{1 + \sqrt{n} \Omega_{ij} \Omega_{ij}(y_i, j)} \]

If \(n \) tends to infinity, Eq. (11) would give the exact solution for the drawdown. However, it would give a relatively accurate result even a

finite number of \(n \) is considered. Let \(n \) vary from 1 to \(N \), where \(N \) is an arbitrary finite number. Substituting Eq. (A41) into Eq. (A29), the elements in \(\mathbf{C} \) column vector can be expressed as

\[c_{j-1} = \frac{N + 1}{i} \Omega_{ij} z_i, j = 1, 2, \ldots, N + 1 \]

with \(\omega_j \) represents \((i,j)\)th element in the matrix \([1 - (1 - X)^{-1}]^{-1} \]

Once the coefficients \(C_0 \) and \(C_n \) are known, the coefficients \(D_0 \) and \(D_n \) can then be obtained from Eq. (A41).

References

