ON MINIMUM CRITICALLY n-EDGE-CONNECTED GRAPHS*

MARGARET B. COZZENS† AND SHU-SHIH Y. WU‡

Abstract. Let n be an integer with $n \geq 2$. A graph G is called critically n-edge-connected if the edge-connectivity $\lambda(G) = n$ and for any vertex v of G, $\lambda(G - v) = n - 1$. The sizes of critically n-edge-connected graphs are important and interesting in applications in communication networks. The maximum graphs with this property have been characterized [2]. In this paper, we first discuss some properties of minimum graphs, then show that the problem of finding a minimum critically n-edge-connected spanning subgraph of a given graph G is NP-complete.

Key words. graph theory, edge-connectivity $\lambda(G)$, connectivity $\kappa(G)$, NP-completeness

AMS(MOS) subject classification. 05C41

1. Introduction. Let n be a fixed integer with $n \geq 2$. A graph G shall be called n-edge-connected if the edge-connectivity $\lambda(G) = n$. A graph G is called critically n-edge-connected if G is n-edge-connected and for any vertex v of G, $\lambda(G - v) = n - 1$. A graph G is called n-connected if the vertex connectivity, $\kappa(G) = n$. A graph G is called critically n-connected if G is n-connected and for any vertex v in G, $\kappa(G - v) = n - 1$. A graph G is a minimum (maximum) critically n-edge-connected graph if no critically n-edge-connected graphs with the same number of vertices has fewer (more) edges than G.

In a communication network and circuit design, reliability is often determined by the connectivity and edge-connectivity of the corresponding graph. Therefore it is important to investigate, for fixed n, critically n-connected graphs ([3], [7]), and critically n-edge-connected graphs. We characterized the maximum graphs in a subset of critically n-edge-connected graphs, for each $n \geq 2$ in [2]. Here we investigate the minimum critically n-edge-connected graphs.

We use $\{x\}$ to denote the least integer greater than or equal to x, and $[x]$ the greatest integer less than or equal to x.

2. An example of a minimum critically n-edge-connected graph. For any fixed integers n, m, $m \geq n + 1$, Harary [5] constructed classes of graphs $H_{n,m}$, that are minimum n-connected. These same graphs are minimum critically n-edge-connected graph with order m. $H_{n,m}$ is constructed as follows:

Case 1. n is even. Let $n = 2r$. Then $H_{2r,m}$ has vertices $0, 1, 2, 3, \ldots, m - 1$ and two vertices i and j are adjacent if $i - r \leq j \leq i + r$ (where addition is taken modulo m). $H_{4,8}$ is shown in Fig. 1.

Case 2. n is odd ($n > 1$), m is even. Let $n = 2r + 1$ ($r > 0$). Then $H_{2r+1,m}$ is constructed by first drawing $H_{2r,m}$, and then adding edges joining vertex i to vertex $i + m/2$ for $1 \leq i < m/2$. $H_{5,8}$ is shown in Fig. 2.

Case 3. n is odd ($n > 1$), m is odd. Let $n = 2r + 1$ ($r > 0$). Then $H_{2r+1,m}$ is constructed by first drawing $H_{2r,m}$, and then adding edges $[0, (m - 1)/2]$ and $[i, i + (m + 1)/2]$ for $1 \leq i < (m - 1)/2$. $H_{5,9}$ is shown in Fig. 3.

In Case 1 and Case 2, $\deg_{H_{n,m}}(i) = n$, for all $i \in V(H_{n,m})$ so that $|E(H_{n,m})| = \frac{1}{2} \sum_{i \in V(H_{n,m})} \deg_{H_{n,m}}(i) = \frac{1}{2} n \cdot m$.

* Received by the editors October 1, 1986; accepted for publication (in revised form) April 30, 1987.
† Department of Mathematics, Northeastern University, Boston, Massachusetts 02115.
‡ Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan, Republic of China.
\[H_{4,8} \]

Fig. 1

\[H_{5,8} \]

Fig. 2

\[H_{5,9} \]

Fig. 3
In Case 3, \(\text{deg}_{H_{n,m}}(i) = n \) for \(i = 1, 2, \ldots, m - 1 \), and \(\text{deg}_{H_{n,m}}(0) = n + 1 \). So that
\[
\sum_{i \in V(H_{n,m})} \text{deg}_{H_{n,m}}(i) = nm + 1 = 2 \cdot |E|. \quad \text{So} \quad |E(H_{n,m})| = \frac{(nm + 1)/2}.
\]
Therefore for any fixed integers \(n, m, m \geq n + 1 \), \(|E(H_{n,m})| = \{nm/2} \).
Now we show that \(H_{n,m} \) is a minimum critically \(n \)-edge-connected graph. \(\delta(G) \) is the least degree over all vertices of \(G \).

Theorem 1. The graph \(H_{n,m} \) is \(n \)-connected [5].
From the construction of \(H_{n,m} \), it is clear that \(\delta(H_{n,m}) = n \), and since
\[
n \leq \kappa(H_{n,m}) \leq \lambda(H_{n,m}) \leq \delta(H_{n,m}) = n,
\]
we have \(\lambda(H_{n,m}) = \delta(H_{n,m}) = n \). Therefore, we have the following theorem.

Theorem 2. The graph \(H_{n,m} \) is \(n \)-edge-connected.

For vertices \(j \) and \(k \) in a graph \(G \), a \((j, k) \)-cutset of \(G \) is a vertex cutset \(T \) such that
\[
\delta(G - T) = n - 1 \quad \text{and} \quad |T| = n - 1.
\]

Theorem 3. The graph \(H_{n,m} - \{i\} \) is \((n - 1) \)-connected, for any vertex \(i \) in \(H_{n,m} \).
Proof. Let \(n = 2r \) if \(n \) is even, \(2r + 1 \) if \(n \) is odd. The minimum degree,
\[
\delta(H_{n,m} - \{i\}) = n - 1 \quad \text{so there exists a vertex cutset of size } n - 1. \quad \text{We will show that}
\]
there is no vertex cutset with fewer than \(n - 1 \) vertices. Suppose there exists a vertex cutset \(T \) such that \(2 \leq |T| < n - 1 \). Let \(j \) and \(k \) be vertices belonging to different components of \((H_{n,m} - \{i\}) - T \) such that if \(i \) is between \(j \) and \(k \) then \(0 \leq k < i < j \), and if \(i \) is not between \(j \) and \(k \) then \(j < k \). Define two vertex sets \(A \) and \(B \) in \(H_{n,m} - \{i\} \) (addition is modulo \(m \)):
\[
A = \{j, j+1, j+2, \ldots, k-1, k\},
\]
\[
B = \{k, k+1, k+2, \ldots, i-1, i+1, \ldots, j-1, j\}.
\]
Note that \(A \cup B = V(H_{n,m} - \{i\}) \) and \(A \cap B = \{j, k\} \). Since \(|T| < n - 1 \), \(|T| < 2r \).

Therefore not both \(T \cap A \) and \(T \cap B \) can have \(r \) or more elements.

Case 1. \(|T \cap A| < r \). \(A - T = A - (A \cap T) \) so no more than \(r - 1 \) consecutive elements are removed from \(A \) by \(T \). Hence \(A - T \) has a sequence of distinct vertices starting with \(j \) and ending with \(k \) with no difference greater than \(r \) between any pair of consecutive vertices. This sequence is a \((j, k) \)-path in \((H_{n,m} - \{i\}) - T \), a contradiction to \(T \) being a \((j, k) \)-cutset.

Case 2. \(|T \cap B| < r \).

Subcase (i). \(|T \cap B| < r - 1 \). As in Case 1, no more than \(r - 2 \) consecutive elements are removed from \(B \) by \(T \). Hence \(B - T \) has a sequence of distinct vertices starting with \(k \) and ending with \(j \), and the difference between any two consecutive vertices is at most \((r - 1) + 1 = r \). (There is an additional 1 in the gap between \(i - 1 \) and \(i + 1 \).) This sequence is a \((k, j) \)-path of \((H_{n,m} - \{i\}) - T \), a contradiction to \(T \) being a \((j, k) \)-cutset.

Subcase (ii). \(|T \cap B| = r - 1 \). Since \(j \) and \(k \) are not in \(T \),
\[
|T \cap A| = |T| - |T \cap B| < n - 1 - (r - 1) = n - r < r + 1.
\]
If \(|T \cap A| < r \) then Case 1 applies. Therefore \(|T \cap A| = r \), \(|A| + |B| = (m + 2) - 1 = m + 1 \). Therefore not both of \(|A| \) and \(|B| \) can be greater than \(\{(m + 1)/2} \), but at least one is greater than or equal to \(\{(m + 1)/2} \).

Suppose \(|A| \geq \{(m + 1)/2} \). If there exists a sequence of vertices in \(A - T \) beginning with \(j \) and ending with \(k \) such that no pair of consecutive terms has a difference \(\geq r + 1 \), then this sequence is a \((j, k) \)-path in \((H_{n,m} - \{i\}) - T \), a contradiction to \(T \) being
a \((j, k)\)-cutset. Thus we may assume that every sequence of vertices in \(A - T\) beginning with \(j\) and ending with \(k\) has a pair of consecutive terms with difference \(\geq r + 1\). In fact, since \(|T \cap A| = r\), this difference is exactly \(r + 1\), and there is only one such consecutive pair with difference \(r + 1\). All other consecutive pairs have a difference of 1. Call the pair of vertices with difference \(r + 1\), \(s\) and \(s + r + 1\), in the sequence \(A - T\). Thus we can write \(A - T\) as \(\{j, j + 1, j + 2, \ldots, s - 1, s, s + r + 1, \ldots, k - 1, k\}\). (Note that \(j\) can be \(s\).) Split \(A - T\) into two parts:

\[A_1 = \{j, j + 1, \ldots, s - 1, s\} \quad \text{and} \quad A_2 = \{s + r + 1, s + r + 2, \ldots, k - 1, k\} \]

The difference in consecutive terms in each \(A_i\) is 1, so there is an edge in \((H_{n,m} - \{i\}) - T\) between them. But \(m \geq n + 1 \geq 2r + 1\) implies \(m/2 \geq r + \frac{1}{2} > r\) if \(m\) is even, and \((m + 1)/2 \geq r + 1 > r\) if \(m\) is odd. Thus there are some \(a_1 \in A\) and \(a_2 \in A_2\) such that \(a_2 = a_1 + [(m + 1)/2]\). The sequence \(\{j, j + 1, \ldots, a_1, a_2, \ldots, k - 1, k\}\) is a \((j, k)\)-path in \((H_{n,m} - \{i\}) - T\), a contradiction to \(T\) being a \((j, k)\)-cutset.

If \(|B| \geq \{(m + 1)/2\}\) then the same argument applies since \(n - 1 > |T| \geq 2\) implies \(n \geq 4\), hence \(r \geq 2\), so there is an edge between \(i - 1\) and \(i + 1\) in \(H_{n,m} - \{i\}\).

All that remains is to show that no vertex cutset of only one vertex exists for \(H_{n,m} - \{i\}\). Suppose \(T = \{p\}\) is a vertex cutset of \(H_{n,m} - \{i\}\). Since \(|T| < n - 1\), \(n \geq 3\).

Case 1. If \(p = i - 1\) (equivalently \(i = p + 1\)), then \(i + 1, i + 2, \ldots, m - 1, 0, \ldots, i - 2\) is a path containing all the vertices of \(H_{n,m} - \{i, p\}\), a contradiction to \(T\) being a cutset of \(H_{n,m} - \{i\}\).

Case 2. \(p \neq i - 1\) and \(p \neq i + 1\). Without loss of generality assume \(i < p < m - 1\). Now \(P_1 = p + 1, p + 2, \ldots, m - 1, 0, \ldots, i - 1\) is a path and \(P_2 = i + 1, i + 2, \ldots, p - 1\) is a path in \((H_{n,m} - \{i\}) - \{p\}\). If \(n\) is even then \(r \geq 2\) and

\[\{i - 1, i + 1\} \in E(H_{n,m})\]

so there is only one component of \((H_{n,m} - \{i\}) - \{p\}\). If \(n\) is odd then there exists an edge between some \(x\) in \(P_1\) and \(x + [(m + 1)/2]\) in \(P_2\), again contradicting \(T = \{p\}\) being a cutset of \(H_{n,m} - \{i\}\). Therefore, there exists no cutset with only one vertex, and the theorem is proved.

QED

Since \(n - 1 \leq \kappa(H_{n,m} - \{i\}) \leq \lambda(H_{n,m} - \{i\}) \leq \delta(H_{n,m} - \{i\}) = n - 1\), we have \(\lambda(H_{n,m} - \{i\}) = \delta(H_{n,m} - \{i\}) = n - 1\). Therefore, we have the following theorem.

Theorem 4. The graph \(H_{n,m} - \{i\}\) is \((n - 1)\)-edge-connected, for any vertex \(i\) in \(H_{n,m}\).

Now we can show the main theorem of this section.

Theorem 5. *For any given positive integers \(m, n\), \(m \geq n + 1\), there exists a minimum critically \(n\)-edge-connected graph with order \(m\).*

Proof. By Theorem 2 and Theorem 4, \(H_{n,m}\) is critically \(n\)-edge-connected.

\[|E(H_{n,m})| = \{mn/2\} \quad \text{and} \quad |V(H_{n,m})| = m.\]

Let \(G = (V, E)\) be a critically \(n\)-edge-connected graph with \(|V| = m\). Thus \(\lambda(G) = n\), and for any vertex \(v\) in \(G\), \(\lambda(G) \leq \delta(G) \leq \deg_G v\). Hence

\[2 \cdot |E| = \sum_{v \in V(G)} \deg_G v \geq m \cdot \delta(G) = m \cdot n.\]

So \(|E| \geq mn/2\). \(|E|\) is an integer, hence \(|E| \geq \{mn/2\} = |E(H_{n,m})|\). So no critically \(n\)-edge-connected graph with \(m\) vertices has fewer edges than \(H_{n,m}\). Therefore \(H_{n,m}\) is a minimum critically \(n\)-edge-connected graph with order \(m\). QED
3. Characterizations of minimum critically \(n \)-edge-connected graphs. In addition to \(H_{n,m} \), there are other minimum critically \(n \)-edge-connected graphs. First we discuss some properties of minimum critically \(n \)-edge-connected graphs.

From the discussion of the graph \(H_{n,m} \), it is easy to obtain the following lemma.

Lemma 6. If \(G \) is a minimum critically \(n \)-edge-connected graph with order \(m \), then \(|E(G)| \geq \lceil mn/2 \rceil \).

A graph \(G \) is called almost regular of degree \(n \) if there is at most one vertex of degree \(n+1 \) and all other vertices have degree \(n \). Clearly, an \(n \)-regular graph is almost regular of degree \(n \).

Theorem 7. If \(G = (V, E) \) is a minimum critically \(n \)-edge-connected graph, then \(G \) is almost regular of degree \(n \). The proof follows from Lemma 6.

The converse of Theorem 7 is not true. \(G \), as shown in Fig. 4, is almost regular of degree 5, but \(G \) is not critically 5-edge-connected, since \(\lambda(G) = 5 \), and \(\lambda(G - a_{10}) = 3 \neq 5 - 1 \).

If \(G \) is \(n \)-edge-connected, then the order of \(G \), \(m \), is such that \(m \geq n + 1 \). For \(n + 1 \leq m \leq 2n \), we have a characterization of minimum critically \(n \)-edge-connected graphs.

Theorem 8. Let the order of \(G \) be \(m \). For any \(n \) such that \(n + 1 \leq m \leq 2n \), \(G = (V, E) \) is a minimum critically \(n \)-edge-connected graph if and only if \(G \) is almost regular of degree \(n \).

To prove Theorem 8, we will use the following lemma.

Lemma 9. If \(G \) has \(m \) vertices and \(\delta(G) \geq \lceil m/2 \rceil \), then \(\lambda(G) = \delta(G) \) [1].

Proof of Theorem 8. By Theorem 7, if \(G \) is a minimum critically \(n \)-edge-connected graph, then \(G \) is almost regular of degree \(n \).

Conversely, if \(G \) is almost regular of degree \(n \), then \(\delta(G) = n \geq m/2 \geq \lceil m/2 \rceil \). By Lemma 9, we have \(\lambda(G) = \delta(G) = n \). For any vertex \(u \in V(G) \), \(\delta(G - u) = n - 1 \geq m/2 - 1 \). Since \(n - 1 \) is an integer, \(n - 1 \geq \lfloor m/2 \rfloor \).

Case 1. \(m \) is odd.

\[
\delta(G-u) = n-1 \geq \left\lfloor \frac{m}{2} - 1 \right\rfloor, \quad n-1 \geq \frac{m+1}{2} - 1 = \frac{m-1}{2} = \left\lfloor \frac{m-1}{2} \right\rfloor.
\]

Case 2. \(m \) is even.

\[
\delta(G-u) = n-1 \geq \left\lfloor \frac{m}{2} - 1 \right\rfloor = \frac{m-2}{2} = \left\lfloor \frac{m-1}{2} \right\rfloor.
\]
By Lemma 9, we have \(\lambda(G - u) = \delta(G - u) = n - 1 \).

\[
\frac{|E(G)|}{2} = \sum_{v \in V(G)} \deg_G v
\]

\[
= \begin{cases}
\frac{mn}{2}, & \text{or} \\
\frac{1}{2}((m-1)n+n+1) = \frac{1}{2}(mn+1)
\end{cases}
\]

Therefore, \(G \) is a minimum critically \(n \)-edge-connected graph. QED

The reader should note that \(G \) need not be \(n \)-connected in Theorem 8.

In general, the converse of Theorem 7 is not true, but if the vertex connectivity \(\kappa(G) = n \), then we can give a characterization of minimum critically \(n \)-edge-connected graphs.

Theorem 10. Let \(\kappa(G) = n \). \(G = (V, E) \) is a minimum critically \(n \)-edge-connected graph if and only if \(G \) is almost regular of degree \(n \).

Proof. Let the order of \(G \) be \(m \). By Theorem 7, we obtain the “only if part.”

Conversely, if \(G \) is almost regular of degree \(n \), then \(\delta(G) = n \). Since \(n = \kappa(G) \leq \lambda(G) \leq \delta(G) = n \), we have \(\lambda(G) = n \).

For any vertex \(u \) in \(G \), \(\kappa(G - u) \leq \lambda(G - u) \leq \delta(G - u) = n - 1 \). Suppose that \(\lambda(G - u) < \delta(G - u) \), for some vertex \(u \) in \(G \), then \(\kappa(G - u) \leq \lambda(G - u) < n - 1 \). Thus, the connectivity \(\kappa(G) < n \), a contradiction. So for any vertex \(u \) in \(G \), we have \(\lambda(G - u) = \delta(G - u) = n - 1 \).

\(G \) is almost regular of degree \(n \), so by the proof of Theorem 8, \(|E(G)| = \{mn/2\} \).

Therefore, \(G \) is a minimum critically \(n \)-edge-connected graph. QED

The condition \(\kappa(G) = n \) in Theorem 10 is necessary, since we can find a graph \(G \), the one shown in Fig. 4, which is almost regular of degree \(n \) with \(\kappa(G) < n \), \(G \) is a minimum \(n \)-edge-connected graph, but \(G \) is not critical with respect to \(\lambda(G) \). Here \(\kappa(G) = 4 \), since \(\{a_2, a_9, a_{10}, a_{11}\} \) is a vertex cutset.

For \(m \geq 2n + 1 \), we can give some characterizations of minimum critically \(n \)-edge-connected graphs.

Theorem 11. For any given positive integers \(m, n, m \geq 2n + 1 \), and \(|V(G)| = m \), \(G = (V, E) \) is a minimum critically \(n \)-edge-connected graph if and only if \(G \) is almost regular of degree \(n \), and for each vertex \(u \) in a vertex cutset \(T \) with \(|T| \leq n - 1 \), \(\lambda(G - u) \geq n - 1 \).

Proof. By Theorem 7, if \(G \) is a minimum critically \(n \)-edge-connected graph, then \(G \) is almost regular of degree \(n \). Since \(G \) is critical with respect to \(\lambda(G) \), for each vertex \(u \) in \(G \), \(\lambda(G - u) = n - 1 \). So “the only if part” is complete.

Conversely, if \(G \) is almost regular of degree \(n \), then \(\delta(G) = n \). Since \(\lambda(G - u) \geq n - 1 \) for some vertex \(u \) in \(G \), and \(\delta(G) = n \), we have \(\lambda(G) \geq n - 1 \).

Suppose \(\lambda(G) = n - 1 \). Let \(E_1 \) be a minimum edge-cutset and \(G_1, G_2 \) be two components of \(G - E_1 \). \(\delta(G) = n \) and \(|E_1| = n - 1 \), so \(|V(G_1)| \geq 2 \) and \(|V(G_2)| \geq 2 \). Since \(m \geq 2n + 1 \), without loss of generality, we may let \(|V(G_1)| \geq n + 1 \). Let \(A \) be the set of vertices in \(G_1 \), which are incident with \(E_1 \), \(|A| \leq n - 1 \), since \(|E_1| = n - 1 \). So \(A \) is a vertex cutset with \(|A| \leq n - 1 \), and for any vertex \(u \) in \(A \), \(\lambda(G - u) \leq n - 2 \), a contradiction.
Therefore \(\lambda(G) > n - 1 \). \(n - 1 < \lambda(G) \leq \delta(G) = n \), so \(\lambda(G) = n \). Therefore \(G \) is \(n \)-edge-connected. We show next that \(G \) is critically \(n \)-edge-connected.

For each vertex \(u \) in \(G \), we consider the following two cases for a cutset containing it.

Case 1. \(u \) is in a vertex cutset \(T \) with \(|T| \leq n - 1 \), then \(\lambda(G - u) \geq n - 1 \). Since \(\lambda(G - u) \leq \delta(G - u) = n - 1 \), we have \(\lambda(G - u) = n - 1 \).

Case 2. Every vertex cutset containing \(u \) has at least \(n \) vertices. Suppose \(\lambda(G - u) < n - 1 \). Let \(\mathcal{E} \) be a minimum edge-cutset of \(G - u \), and \(H_1, H_2 \) be two components of \((G - u) - \mathcal{E} \). \(|V(H_1)| + |V(H_2)| = m - 1 \leq (2n + 1) - 1 = 2n \). Without loss of generality, let \(|V(H_1)| \geq n \). Since \(|\mathcal{E}| < n - 1 \), \(u \) must be adjacent to some vertices in \(H_1 \) and some vertices in \(H_2 \), as shown in Fig. 5.

Let \(T_1 \) be the set of vertices in \(H_1 \) which are incident with \(\mathcal{E} \). \(|T_1| < n - 1 \), since \(|\mathcal{E}| < n - 1 \). \(|V(H_1) - T_1| > 1 \). Thus \(T_1 \cup \{u\} \) is a vertex cutset of \(G \) and \(|T_1 \cup \{u\}| \leq n - 1 \), a contradiction to the assumption of this case. So \(\lambda(G - u) \geq n - 1 \). Since \(\lambda(G - u) \leq \delta(G - u) = n - 1 \), we have \(\lambda(G - u) = n - 1 \). Therefore \(G \) is critical with respect to \(\lambda(G) \).

\(G \) is almost regular of degree \(n \), by the proof of Theorem 8, \(|E(G)| = \frac{mn}{2} \), where \(m \) is the order of \(G \). Therefore, \(G \) is a minimum critically \(n \)-edge-connected graph with order \(m \). QED

A vertex \(u \) of a graph \(G \) is called **critical** if \(u \) is contained in a minimum vertex cutset. Thus, we have the following lemma.

Lemma 12. A vertex \(u \) in graph \(G \) is critical if and only if \(\kappa(G - u) = \kappa(G) - 1 \).

Corollary 13. For any given positive integers \(m, n \), such that \(m \geq 2n + 1 \), \(|V(G)| = m \), and \(\kappa(G) \geq n - 1 \), \(G = (V, E) \) is a minimum critically \(n \)-edge-connected graph if and only if \(G \) is almost regular of degree \(n \), and for any critical vertex \(u \), \(\lambda(G - u) \equiv n - 1 \).

Next, we give some examples to illustrate Theorem 11 and Corollary 13.

Example 1. \(G \) is shown in Fig. 6.

\(G \) is almost regular of degree \(5 \), \(\kappa(G) = 3 \). For any vertex \(u \) in a vertex cutset \(T \) with \(|T| \leq 4 \), \(\lambda(G - u) \geq 4 \). By Theorem 11, \(G \) is a minimum critically 5-edge-connected graph.

Example 2. \(G \) is shown in Fig. 7.

\(G \) is almost regular of degree \(5 \), \(\kappa(G) = 4 \), and for any critical vertex \(u \), \(\lambda(G - u) \equiv 4 \). By Corollary 13, \(G \) is a minimum critically 5-edge-connected graph.

Example 3. \(G \) is shown in Fig. 8.
G is almost regular of degree 5, $\kappa(G) = 3$, u is in a vertex cutset S, $|S| = 4$, $\lambda(G - u) = 3 < 5 - 1$. By Theorem 11 G is not a minimum critically 5-edge-connected graph. In fact, G is not critical with respect to $\lambda(G)$.

Example 4. G is shown in Fig. 9.

G is almost regular of degree 5, $\kappa(G) = 4$, u is a critical vertex, but $\lambda(G - u) = 3 < 5 - 1$. By Corollary 13, G is not a minimum critically 5-edge-connected graph. In fact, G is not critical with respect to $\lambda(G)$.

Corollary 14. For positive integers $m, n, m \geq 2n + 1$, at least one of n or m is even, and $|V(G)| = m$, $G = (V, E)$ is a minimum critically n-edge-connected graph if and only if G is regular of degree n, and for any vertex u in a vertex cutset T with $|T| \leq n - 1$, $\lambda(G - u) \geq n - 1$.

Proof. By Theorem 11, G is a minimum critically n-edge-connected graph if and only if G is almost regular of degree n, and for any vertex u in a vertex cutset T with $|T| \leq n - 1$, $\lambda(G - u) \geq n - 1$.

Now, suppose that G is not regular of degree n, but G is almost regular of degree n.

Then $\sum_{v \in V(G)} \deg_G v = n(m - 1) + (n + 1) = nm + 1$ is odd, since nm is even. But $\sum_{v \in V(G)} \deg_G v = 2 \cdot |E|$, so we obtain a contradiction. Conversely, if G is regular of degree n, then G is almost regular of degree n. QED

4. **NP-completeness.** A problem is in the class NP if some nondeterministic machine could, in every instance, find the answer in a number of steps which is bounded by some fixed polynomial in the length of the input data. A problem is NP-complete if it is in NP, and the existence of a deterministic polynomial algorithm, for it would imply the
existence of a deterministic polynomial algorithm for all NP problems. The proof technique for NP-completeness in this section uses the restriction technique. An NP-completeness proof by restriction for a given problem $Q \in \text{NP}$ consists simply of showing that Q contains a known NP-complete problem R as a special case.

The main problem in this section is as follows:

Problem n-EDGE.

Instance: $G = (V, E)$, a positive integer n, $1 < n \leq |V| - 1$.

Question: Is there a minimum critically n-edge-connected subgraph $G' = (V, E')$ of G?

We shall show that Problem n-EDGE is NP-complete. To do this, we will use the NP-complete problem, the Hamiltonian Circuit Problem (HC).

Problem HC.

Instance: Graph $G = (V, E)$.

Question: Does G contain a Hamiltonian circuit?

Lemma 15. $G' = (V, E')$ is a connected spanning subgraph of $G = (V, E)$ and G' is almost regular of degree 2 if and only if G' is a Hamiltonian circuit of G.

Lemma 15 is proved by using the facts that the number of vertices of odd degree for any graph is even, a connected graph with no vertices of odd degree is Eulerian, and an Eulerian circuit in a 2-regular graph must be a Hamiltonian circuit.

There are many polynomial time algorithms for computing the number of components of a graph $G = (V, E)$ including the one given in [8].

Now we consider Problem ARn.

Problem ARn.

Instance: $G = (V, E)$, a positive integer n, $1 < n \leq |V| - 1$.

Question: Is there a spanning connected subgraph $G' = (V, E')$, such that G' is almost regular of degree n?

Theorem 16. Problem ARn is NP-complete.

Proof. First, we prove that Problem ARn is in NP: Given a yes solution (called certificate) to Problem ARn, we give a polynomial checking algorithm:

Certificate: a subgraph G' of G.

Certificate-Checking Algorithm (Procedure I):

Begin

1. If $V(G') \neq V(G)$

 Then return "No"

 Else

2. If $c(G')$ (the number of components of G') ≥ 2

 Then return "No"

 Else

End
3. Sort degrees of vertices in G', such that $d_1 \leq d_2 \leq d_3 \leq \cdots \leq d_m$.
4. If $(d_1 = d_2 = d_3 = \cdots = d_{m-1} = n)$ and $(d_m = n \text{ or } d_m = n + 1)$
 Then return "Yes"
 Else return "No";

Step 2 is a polynomial procedure. Step 3 is a sorting procedure, so it also runs in polynomial time. Therefore, the certificate-checking algorithm runs in polynomial time, Problem ARn is in NP.

Let $n = 2$. Problem ARn is reduced to Problem HC by Lemma 15. So a specified type of instance of Problem ARn is NP-complete. By the "restriction technique," Problem ARn is NP-complete. QED

Problem n-EDGE-T.
Instance: $G = (V, E)$, a positive integer n, $1 < |V|/2 \leq n \leq |V| - 1$.
Question: Is there a minimum critically n-edge-connected subgraph $G' = (V, E')$ of G?

THEOREM 17. Problem n-EDGE-T is NP-complete.
Proof. By Theorem 8, Problem n-EDGE-T is the same as Problem ARn. So Problem n-EDGE-T is NP-complete. QED

Problem MENS (Minimum n-edge-connected subgraph).
Instance: $G = (V, E)$ and positive integers $n \leq |V|$ and $b \leq |E|$.
Question: Is there a subset $E' \subseteq E$ with $|E'| \leq b$ such that $G' = (V, E')$ is n-edge-connected?

COROLLARY 18. Problem MENS is NP-complete [4].
Therefore, if $G' = (V, E')$ is a certificate, then there is a polynomial time certificate-checking algorithm for Problem MENS, we call it "Procedure II."

THEOREM 19. Problem n-EDGE is NP-complete.
Proof. First, we show that Problem n-EDGE is in NP.

CERTIFICATE-CHECKING ALGORITHM:
Begin
1. If G' is not a spanning connected subgraph of G or G' is not almost regular of degree n—(Call Procedure I)
 Then return "No"
 Else
2. If G' is not n-edge-connected—(Call Procedure II)
 Then return "No"
 Else
3. For $i := 1$ to $|V|$.
 Construct $H' = G' - v_i$, $H = G - v_i$;
 If H' is not $(n - 1)$-edge-connected—(Call Procedure II (Instance: $H, n - 1$))
 Then return "No" and go to 5.
 Else go to loop 3;
4. Return "Yes";
5. End.
In step 1, Procedure I runs in polynomial time P_1.
In step 2, Procedure II runs in polynomial time P_2.
In step 3, the number of computation steps is $O(P^2_2 |V|)$.
Therefore, the certificate-checking algorithm runs in polynomial time, Problem n-EDGE is NP.
If we use instance $n, |V|/2 \leq n \leq |V| - 1$, Theorem 17 and the “restriction technique,”
Problem n-EDGE is NP-complete. QED
We have shown that the problem of finding a minimum critically n-edge-connected
spanning subgraph of G is NP-complete. If we place any restrictions on graph G other
than the ones imposed in Theorems 8, 10, 11 and Corollary 13 does the problem become
easier?
We thank the referee of an earlier version of this paper for his helpful suggestions.

REFERENCES

pp. 778–781.
pp. 319–327.
1146.
pp. 225–234.