ABSTRACT

We show that any complex singular square matrix T is a product of two nilpotent matrices A and B with $\text{rank } A = \text{rank } B = \text{rank } T$ except when T is a 2×2 nilpotent matrix of rank one.

An $n \times n$ complex matrix T is nilpotent if $T^n = 0$. It is easily seen that a product of finitely many nilpotent matrices must be singular. The purpose of this note is to prove the converse.

Theorem. Any complex singular square matrix T which is not 2×2 nilpotent is a product of two nilpotent matrices with ranks both equal to $\text{rank } T$.

Fong and Sourour [3] considered the product of two quasinilpotent operators on a complex separable Hilbert space. They proved that on an infinite-dimensional space every compact operator is a product of two compact quasinilpotent operators. The preceding theorem gives the finite-dimensional analogue.

We remark that singular square matrices can also be expressed as products of idempotent matrices (cf. [2], [4], and [1]).

To prove our theorem, we start with the following lemma, which was observed in [3].

* Research supported in part by a project grant from the National Science Council of the Republic of China.
Lemma 1. The 2×2 matrix

\[
\begin{bmatrix}
0 & 0 \\
1 & 0
\end{bmatrix}
\]

is not the product of any two nilpotent matrices.

Proof. Since 2×2 nilpotent matrices must be of the following forms

\[
a \begin{bmatrix}
1 & x \\
-1/x & -1
\end{bmatrix}, \quad b \begin{bmatrix}
0 & 0 \\
1 & 0
\end{bmatrix}, \quad \text{and} \quad c \begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix},
\]

it is easily seen that the product of any two of them cannot be equal to

\[
\begin{bmatrix}
0 & 0 \\
1 & 0
\end{bmatrix}.
\]

Lemma 2. For any $n \neq 2$, the $n \times n$ matrix

\[
J = \begin{bmatrix}
0 & 0 & \cdots & 0 & 0 & 0 \\
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1 & 0
\end{bmatrix}
\]

is the product of two nilpotent matrices with ranks equal to rank J.

Proof.

\[
J = \begin{bmatrix}
0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & 0
\end{bmatrix}
\]

for odd n and

\[
J = \begin{bmatrix}
0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 1 \ 1 \\
1 & -1 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 1 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & 0
\end{bmatrix}
\]

for even n.

for even \(n \) are the required product. [To get some insight into the factorizations above, it is instructive to observe that for odd \(n \) the \(n \)-cycle \((1 2 3 \cdots n)\) is the product of the two \(n \)-cycles \((1 3 5 \cdots n 2 4 6 \cdots n-1)\) and \((1 n n-1 \cdots 3 2)\) and that the factorization of \(J \) in this case can be obtained by replacing appropriate ones by zeros in the corresponding permutation matrices.] The nilpotency of the factors can be verified by showing that their characteristic polynomials are all \(x^n \).

Lemma 3. Any \(n \times n \) \((n \neq 2)\) nilpotent matrix \(T \) is the product of two nilpotent matrices with ranks equal to rank \(T \).

Proof. Since nilpotency is preserved under the similarity of matrices, we need only consider a nilpotent Jordan matrix. In view of Lemma 2 we may further reduce the problem to the factorizations of \(J_k \oplus J_2 \) \((k \geq 2)\) and \(J_2 \oplus J_2 \oplus J_2 \), where \(J_i \) denotes the nilpotent Jordan block of size \(i \):

\[
J_i = \begin{bmatrix}
0 & & & \\
1 & & & \\
& \ddots & & \\
& & 1 & 0
\end{bmatrix}.
\]

For the former, we have

\[
\begin{bmatrix} J_k & 0 \\ 0 & J_2 \end{bmatrix} = \begin{cases}
\begin{bmatrix} 0 & J_k \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & J_2 \\ 0 & 0 \end{bmatrix} & \text{if } k \text{ is even}, \\
\begin{bmatrix} 0 & J_2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & J_2 \\ 0 & 0 \end{bmatrix} & \text{if } k \text{ is odd},
\end{cases}
\]
and for the latter

\[
\begin{bmatrix}
J_2 & 0 & 0 \\
0 & J_2 & 0 \\
0 & 0 & J_2
\end{bmatrix}
= \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
J_2 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
J_2 & 0 & 0
\end{bmatrix}.
\]

Finally, we are ready for the proof of our main theorem.

Proof of Theorem. We need only consider Jordan matrices. Let \(J \) be an \(n \times n \) singular Jordan matrix. We will prove by induction on \(n \) that if \(J \) is not \(2 \times 2 \) nilpotent, then \(j \) is the product of two nilpotent matrices \(J = AB \) such that

(a) the \(i \)th row of \(A \) (\(j \)th column of \(B \)) is zero if and only if the \(i \)th row of \(J \) (\(j \)th column of \(J \)) is zero, \(i, j = 1, 2, \ldots, n \), and

(b) the nonzero rows of \(A \) (nonzero columns of \(B \)) are independent.

In particular, \(\text{rank} \, A \) and \(\text{rank} \, B \) will both equal \(\text{rank} \, J \). Note that the factorizations for nilpotent \(J \) given in Lemmas 2 and 3 do satisfy these properties.

If \(n = 2 \), then

\[
J = \begin{bmatrix}
0 & 0 \\
0 & a
\end{bmatrix} = \begin{bmatrix}
0 & 0 \\
a & 0
\end{bmatrix} \begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix} \quad (a \neq 0),
\]

as asserted. For \(n = 3 \), a nonnilpotent \(J \) can be factored as one of the following:

\[
\begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & a
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 1/a \\
1 & -a & -1
\end{bmatrix} \begin{bmatrix}
a & 0 & a \\
0 & 2 & 0 \\
-a & 0 & -a
\end{bmatrix} \quad (a \neq 0),
\]

\[
\begin{bmatrix}
0 & a & 0 \\
0 & c & b \\
0 & 0 & a
\end{bmatrix} = \begin{bmatrix}
a & 0 & 0 \\
c & b & 0 \\
0 & 0 & a
\end{bmatrix} \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix} \quad (a, b \neq 0),
\]

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & a
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
a & 0 & 0
\end{bmatrix} \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} \quad (a \neq 0).
\]
Now assume that our assertion holds for \(n - 1 \) \((n \geq 4)\). Let \(J = J_1 \oplus \cdots \oplus J_m \), where, for \(k = 1,2,\ldots, m \),

\[
J_k = \begin{bmatrix}
 c_k & 0 \\
 1 & 0 \\
 \vdots & \vdots \\
 0 & 1
\end{bmatrix}
\]

is a Jordan block associated with the eigenvalue \(c_k \). We may assume that \(c_m \neq 0 \). Let \(J' \) be the singular \((n - 1) \times (n - 1)\) matrix obtained from \(J \) by deleting its \(n \)th row and \(n \)th column. By the induction hypothesis, \(J' = A'B' \), where \(A' \) and \(B' \) are nilpotent matrices with properties (a) and (b). Let \(a_i^T \) \((b_j)\) denote the \(i \)th row of \(A' \) \((j \)th column of \(B' \)), \(i, j = 1,2,\ldots, n - 1 \). To complete the proof, we need only determine \(a_n^T \) and \(b_n \) such that they are independent of \(a_1^T,\ldots,a_{n-1}^T \) and \(b_1,\ldots,b_{n-1} \), respectively, and satisfy

\[
J = \begin{bmatrix}
J' & 0 \\
0 & d
\end{bmatrix} = \begin{bmatrix}
A' & 0 \\
B' & b_n
\end{bmatrix} = \begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix} \equiv AB,
\]

where \(d \) is either 0 or 1. In other words, \(a_n^T \) and \(b_n \) are to satisfy

\[
a_n^T b_j = 0 \quad (1 \leq j \leq n - 2), \quad a_n^T b_{n-1} = d, \quad a_n^T b_n = c_m, \quad (1)
\]

and

\[
a_i^T b_n = 0 \quad (1 \leq i \leq n - 1) \quad (2)
\]

besides the independence property. Note that the \(A \) and \(B \) thus defined are indeed nilpotent with properties (a) and (b).

We first prove the existence of \(b_n \) which satisfies (2) and is independent of \(b_1,\ldots,b_{n-1} \). Indeed, by the induction hypothesis we have \(\text{rank } A' = \text{rank } J' \leq n - 2 \). Hence there exists a nonzero \(b_n \) satisfying (2). If \(b_n \) is dependent on \(b_1,\ldots,b_{n-1} \), say,

\[
b_n = \sum_{j=1}^{n-1} x_j b_j
\]
—where we may assume that \(x_j = 0 \) whenever \(b_j = 0 \), or, equivalently,

\[
b_n = B'x,
\]

where

\[
x = \begin{bmatrix} x_1 & \cdots & x_{n-1} \end{bmatrix}^T
\]

—then

\[
J'x = A'B'x = A'b_n = 0.
\]

From the structure of the Jordan matrix \(J' \), it is easily seen that \(x_j = 0 \) for all \(j \) and therefore \(b_n = 0 \), contradicting our choice of \(b_n \).

On the other hand, since \(\text{rank } B' = \text{rank } J' \leq n - 2 \), the number of nonzero independent \(b_j \)'s is at most \(n - 1 \). Note that \(c_m \neq 0 \) implies that if \(d = 1 \), then the size of \(J_m \) is at least \(2 \), whence \(b_{n-1} \neq 0 \) by property (a). Hence there exists an \(a_n^T \) satisfying (1). If \(a_n^T \) is dependent on \(a_1^T, \ldots, a_{n-1}^T \), say

\[
a_n^T = \sum_{i=1}^{n-1} y_i a_i^T,
\]

then

\[
c_m = a_n^T b_n = \sum_{i=1}^{n-1} y_i a_i^T b_n = 0,
\]

a contradiction. This completes the proof. \(\blacksquare \)

REFERENCES

Received 14 October 1986; revised 19 January 1987