On the Elliptic Equations $\Delta u = K(x)u^\sigma$ and $\Delta u = K(x)e^{2u}$
Author(s): Kuo-Shung Cheng and Jenn-Tsann Lin
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2000734

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
ON THE ELLIPTIC EQUATIONS $\Delta u = K(x)u^\sigma$ AND $\Delta u = K(x)e^{2u}$

KUO-SHUNG CHENG AND JENN-TSANN LIN

ABSTRACT. We give some nonexistence results for the equations $\Delta u = K(x)u^\sigma$ and $\Delta u = K(x)e^{2u}$ for $K(x) > 0$.

1. Introduction. In this paper we study the elliptic equations

\begin{align}
\Delta u &= K(x)u^\sigma \quad \text{in } \mathbb{R}^n \\
\Delta u &= K(x)e^{2u} \quad \text{in } \mathbb{R}^n,
\end{align}

where $\sigma > 1$ is a constant, $\Delta = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$ and $K(\cdot)$ is a bounded Hölder continuous function in \mathbb{R}^n. We are concerned with the existence problems of locally bounded and positive solutions for (1.1) and locally bounded solutions for (1.2).

These problems come from geometry. We give a brief description and refer the details to Kazdan and Warner [5] and Ni [13, 14]. Let (M, g) be a Riemannian manifold of dimension n, $n \geq 2$, and $K(\cdot)$ be a given function on M. We ask the following question: can one find a new metric g_1 on M such that K is the scalar curvature of g_1 and g_1 is conformal to g (i.e., $g_1 = \psi g$ for some function $\psi > 0$ on M)? In the case $n \geq 3$, we write $\psi = u^{4/(n-2)}$. Then this problem is equivalent to the problem of finding positive solutions of the equation

$$
\frac{4(n-1)}{n-2} \Delta u - ku + K u^{(n+2)/(n-2)} = 0,
$$

where Δ, k are the Laplacian and scalar curvature in the g metric, respectively. In the case $M = \mathbb{R}^n$ and $g = (\delta_{ij})$, then $k = 0$ and equation (1.3) reduces to (1.1) with $\sigma = (n+2)/(n-2)$, after an appropriate scaling and sign changing of $K(\cdot)$. In the case $n = 2$, we write $\psi = e^{2u}$. Then this problem is equivalent to the problem of finding locally bounded solutions of the equation

$$
\Delta u - k + Ke^{2u} = 0,
$$

where Δ, k are the Laplacian and Gaussian curvature on M in the g metric. In the case $M = \mathbb{R}^2$ and $g = (\delta_{ij})$, we have $k = 0$ and equation (1.4) reduces to (1.2), after a sign changing of K.

Received by the editors July 23, 1986 and, in revised form, December 23, 1986.
1980 Mathematics Subject Classification (1985 Revision). Primary 35J60; Secondary 45G10.
Key words and phrases. Semilinear elliptic equations.

Work of the first author was supported by the National Science Council of the Republic of China under contract NSC75-0208-M009-05.

©1987 American Mathematical Society

0002-9947/87 $1.00 + $.25 per page
In [13 and 14], Ni makes major contributions to the existence of solutions for (1.1) and (1.2). After these two papers, there are many improved results published, such as McOwen [10, 11], Naito [12], Kawano, Kusano and Naito [3], Kawano and Kusano [4], Kusano and Oharu [7], Ding and Ni [1], Kusano, Swanson and Usami [8] and Lin [9].

In this paper, we consider the case \(K(x) > 0 \) in (1.1) and (1.2). We obtain some nonexistence results which make the understanding of the case \(K(x) > 0 \) almost complete. We divide this paper into two parts. In Part I, we consider (1.1). Thus we consider the case (1.1) with \(n \geq 3 \) in §2, (1.1) with \(n = 2 \) in §3 and (1.1) with \(n = 1 \) in §4. We consider (1.2) in Part II. Thus we consider the case (1.2) with \(n \geq 3 \) in §5, (1.2) with \(n = 2 \) in §6 and (1.2) with \(n = 1 \) in §7.

We remark that the technique of the proof of the main nonexistence theorem is essentially equivalent to the proof of Keller [6]. We thank the referee for bringing the reference [6] to our attention.

PART I. \(\Delta u = K(x)u^\sigma \)

2. The case \(n \geq 3 \). In this case, Ni [13] proves the main existence result: Let \(K \) be bounded. If \(|K(x)| \leq C/|x|^{2+\varepsilon} \) at \(\infty \) for some constants \(C > 0 \) and \(\varepsilon > 0 \), then equation (1.1) has infinitely many bounded solutions in \(\mathbb{R}^n \) with positive lower bounds. Later on, Naito [12] improves the result: If \(|K(x)| \leq \varphi(|x|) \) for all \(x \in \mathbb{R}^n \) and \(\int_0^\infty t\varphi(t) \, dt < \infty \), then equation (1.1) has infinite many bounded positive solutions which tend to a positive constant at \(\infty \). On the other hand, when \(K(x) \geq 0 \), Ni [13] proves a nonexistence result: If \(K(x) \geq C/|x|^{2-\varepsilon} \) at \(\infty \) for some constants \(C > 0 \) and \(\varepsilon > 0 \), then (1.1) does not possess any positive solution in \(\mathbb{R}^n \). Lin [9] proves that it is still true even \(\varepsilon = 0 \). In view of Naito’s existence result, we expect that the following conjecture be true.

Conjecture. Let \(K(x) \geq \overline{K}(|x|) \geq 0 \) for all \(x \in \mathbb{R}^n \) and \(\int_0^\infty s\overline{K}(s) \, ds = \infty \). Then (1.1) does not possess any positive solution in \(\mathbb{R}^n \).

We give three theorems which almost answer this conjecture completely. Following Ni [13], we define the averages of \(u(x) > 0 \) and \(K(x) \geq 0 \) by \(\overline{u}(r) \) and \(\overline{K}(r) \),

\[
\overline{u}(r) = \frac{1}{\omega_n r^{n-1}} \int_{|x|=r} u(x) \, dS,
\]

\[
\overline{K}(r) = \left(\frac{1}{\omega_n r^{n-1}} \int_{|x|=r} \frac{dS}{K(x)^{\mu/\sigma}} \right)^{-\sigma/\mu},
\]

where \(dS \) denotes the volume element in the surface integral, \(\omega_n \) denotes the surface area of the unit sphere in \(\mathbb{R}^n \) and \(1/\mu + 1/\sigma = 1 \).

For the sake of completeness, we give another proof of Lin’s result of nonexistence [9] in the following.

Theorem 2.1. Let \(K(x) \) be a locally Hölder continuous function. If \(K(x) \geq 0 \) and \(\overline{K}(r) \geq C/r^2 \) for \(r \) large for some constant \(C > 0 \), then equation (1.1) does not possess any positive solution in \(\mathbb{R}^n \).
PROOF. Let u be a positive solution of (1.1) in \mathbb{R}^n. Then from Ni [12, Lemma 3.21], we have

$$
\begin{cases}
\tilde{u}''(r) + \frac{n-1}{r} \tilde{u}'(r) \geq \bar{K}(r) \tilde{u}^\sigma(r) & \text{in } (0, \infty), \\
\tilde{u}(0) = \alpha > 0, \quad \tilde{u}'(0) = 0.
\end{cases}
$$

Hence we have

$$
\tilde{u}(r) \geq \alpha + \frac{1}{n-2} \int_0^r s \bar{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \tilde{u}^\sigma(s) \, ds.
$$

Now assume that $\bar{K}(r) \geq C/r^2$ for $r \geq R_0$. Let $r > R_0$. Then from (2.4), we have

$$
\begin{align*}
\tilde{u}(r) & \geq \alpha + \frac{1}{n-2} \int_0^{R_0} s \bar{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \tilde{u}^\sigma(s) \, ds \\
& \quad + \frac{1}{n-2} \int_{R_0}^r s \bar{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \tilde{u}^\sigma(s) \, ds \\
& \geq \alpha + \frac{1}{n-2} \int_{R_0}^r s \bar{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \tilde{u}^\sigma(s) \, ds \\
& \geq \alpha + \frac{\alpha^\sigma}{n-2} \cdot C \left[1 - \left(\frac{1}{2} \right)^{n-2} \right] \cdot \int_{R_0}^{r/2} \frac{1}{s} \, ds \\
& \geq C_1 \log r
\end{align*}
$$

for some $C_1 > 0$ and $r \geq R_1 > 2R_0$. For $R > R_1$ and $R \leq s \leq r \leq 2R$, we have

$$
\frac{1}{2} \leq \frac{s}{r} \leq 1.
$$

Hence

$$
\frac{1}{r} \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] = \frac{1}{r} \left[r^{n-2} - s^{n-2} \right] \geq \left(n - 2 \right) \left(\frac{1}{2} \right)^{n-2} (r-s).
$$

From (2.4), (2.5) and (2.7), we obtain

$$
\tilde{u}(r) \geq C_1 \log R + \frac{C_2}{R^2} \int_R^r (r-s) \tilde{u}^\sigma(s) \, ds
$$

for $R > R_1$ and $R \leq r \leq 2R$, where $C_2 > 0$ is a constant. Let

$$
g(r) = C_1 \log R + \frac{C_2}{R^2} \int_R^r (r-s) \tilde{u}^\sigma(s) \, ds.
$$

Then

$$
g(R) = C_1 \log R, \quad g'(R) = 0,
$$

and

$$
g''(r) = \frac{C_2}{R^2} \tilde{u}^\sigma(r) \geq \frac{C_2}{R^2} (g(r))^\sigma.
$$
From (2.10) and (2.11), we have

\[2g''(r)g'(r) \geq \frac{2C_2}{R^2} (g(r))^\sigma g'(r), \]

or

\[\frac{d}{dr} \left([g'(r)]^2 \right) \geq \frac{2C_2}{R^2} \frac{d}{dr} \left[\frac{1}{\sigma + 1} g^{\sigma + 1}(r) \right]. \]

Hence

\[(2.12) \quad [g'(r)]^2 \geq \left(\frac{2C_2}{(\sigma + 1)R^2} \right) [g^{\sigma + 1}(r) - g^{\sigma + 1}(R)]. \]

Let \(\beta = C_1 \log R = g(R) \) and \(\delta = C_2/R^2 \). Then we have

\[[g'(r)]^2 \geq \frac{2\delta}{\sigma + 1} [g^{\sigma + 1}(r) - \beta^{\sigma + 1}]. \]

Thus

\[(2.13) \quad \int_B^{g(r)} \frac{dg}{\sqrt{g^{\sigma + 1} - \beta^{\sigma + 1}}} \geq \left(\frac{2\delta}{\sigma + 1} \right)^{1/2} \int_R^r ds. \]

Let \(g(r) = \beta z \), we have

\[(2.14) \quad \int_1^z \frac{dz'}{\sqrt{(z')^{\sigma + 1} - 1}} \geq \left(\frac{2\delta}{\sigma + 1} \right)^{1/2} \beta^{(\sigma - 1)/2} (r - R). \]

Now if we choose \(R \) so large that

\[(2.15) \quad \left(\frac{2\delta}{\sigma + 1} \right)^{1/2} \beta^{(\sigma - 1)/2} \cdot R = \left(\frac{2C_2}{(\sigma + 1)R^2} \right)^{1/2} (C_1 \log R)^{(\sigma - 1)/2} \cdot R \]

\[= \left(\frac{2C_2}{\sigma + 1} \right)^{1/2} (C_1 \log R)^{(\sigma - 1)/2} \]

\[> \int_1^\infty \frac{dz}{\sqrt{z^{\sigma + 1} - 1}}. \]

Then there is a \(R_e \leq 2R \), such that

\[(2.16) \quad \lim_{r \to R_e} g(r) = \infty. \]

But \(u(R_e) \geq g(R_e) = \infty \). This is a contradiction. This completes the proof of this theorem.

Now we can state our main nonexistence results.

Theorem 2.2. Let \(K(x) \geq 0 \) be a locally Hölder continuous function. If \(\bar{K}(r) \) satisfies

1. there exist \(\alpha > 0, R_0 > 0 \) and \(C > 0 \), such that

\[\bar{K}(r) \geq C/r^\alpha \quad \text{for } r \geq R_0, \]
(2) there exist \(\varepsilon > 0 \) and \(P > 2 \), such that

\[
\int_{R}^{(P-1)R} r\bar{K}(r) \, dr \geq \varepsilon \quad \text{for} \quad R \geq R_0,
\]

then equation (1.1) does not possess any positive solution in \(\mathbb{R}^n \).

Proof. Assume that (1.1) has a positive solution \(u(x) \) in \(\mathbb{R}^n \). Then as in the proof of Theorem 2.1, we have

\[
\bar{u}(r) \geq \alpha + \frac{1}{n-2} \int_{0}^{s\bar{K}(s)} \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \bar{\sigma}(s) \, ds.
\]

From assumption (2), we have

\[
\int_{0}^{\infty} s\bar{K}(s) \, ds = \infty.
\]

Hence

\[
\bar{u}(r) \geq \alpha + C \int_{0}^{r/2} \alpha s\bar{K}(s) \, ds
\]

and

\[
\lim_{r \to \infty} \bar{u}(r) = \infty.
\]

Thus we can choose \(R_0 \) so large that

\[
\bar{u}(R_0) > 1.
\]

Now let \(R > R_0 \). From assumption (2), we have

\[
\bar{u}(PR) \geq \bar{u}(R) + \frac{1}{n-2} \int_{R}^{PR} s\bar{K}(s) \left[1 - \left(\frac{s}{PR} \right)^{n-2} \right] \bar{\sigma}(R) \, ds
\]

\[
\geq \bar{u}(R) + \frac{1}{n-2} \cdot \bar{\sigma}(R) \cdot \left[1 - \left(\frac{P-1}{P} \right)^{n-2} \right] \cdot \int_{R}^{(P-1)R} s\bar{K}(s) \, ds
\]

\[
\geq \bar{u}(R) + C_1 u_0(R),
\]

where \(1 > C_1 > 0 \) and \(C_1 \) is a constant.

From (2.20), (2.21) and the fact that \(\sigma > 1 \), we have

\[
\bar{u}(P^mR) \geq (1 + C_1)^m \quad \text{for all} \quad R \geq R_0 \quad \text{and} \quad m \geq 1.
\]

Choose \(\alpha_1 > 0 \) so small that

\[
\log(1 + C_1) \geq \alpha_1 \left[\log P + \log(PR_0) \right].
\]

Then

\[
m \log(1 + C_1) \geq \alpha_1 \left[m \log P + \log(PR_0) \right].
\]

Hence \((1 + C_1)^m \geq (P^mR)^{\alpha_1}\) for all \(m \geq 1 \) and \(PR_0 \geq R \geq R_0 \). This means that \(\bar{u}(P^mR) \geq (P^mR)^{\alpha_1}\) for all \(m \geq 1 \) and \(PR_0 \geq R \geq R_0 \). Hence

\[
\bar{u}(r) \geq r^{\alpha_1} \quad \text{for} \quad R \geq R_0.
\]

Now we return to (2.21). We have for \(R \geq R_0 \)

\[
\bar{u}(P^mR) \geq C_1 \bar{u}^{\sigma}(P^{m-1}R) \geq C_1^{(1+\sigma+\cdots+\sigma^{m-1})} \cdot \bar{u}^{\sigma}(R)
\]

\[
= C_1^{(\sigma^m-1)/(\sigma-1)} \cdot \bar{u}^{\sigma}(R), \quad m \geq 1.
\]
Hence
\begin{equation}
\log(u(P^mR)) > \sigma^m \left[\log u(R) + \frac{1 - 1/\sigma^m}{\sigma - 1} \log C_1 \right] \geq \sigma^m \left[a_1 \log R - \frac{1}{\sigma - 1} |\log C_1| \right].
\end{equation}

Choose \(C_2 > 0 \) and \(R_1 \) sufficiently large, such that
\begin{equation}
a_1 \log R_1 > \frac{1}{\sigma - 1} |\log C_1| + C_2.
\end{equation}

Then
\begin{equation}
\log(\bar{u}(P^mR)) > C_2 \sigma^m
\end{equation}
for \(R > R_1 \) and \(m > 1. \)

Now we can choose \(\alpha_2 \) sufficiently small, such that
\[
\log \sigma > \alpha_2 (\log P + \log PR_1).
\]

Then
\[
m \log \sigma > \alpha_2 (m \log P + \log PR_1), \quad m > 1.
\]

Hence \(\sigma^m \geq (P^mR)^{\alpha_2} \) for \(m > 1 \) and \(PR_1 > R > R_1. \) Hence from (2.29), we have
\[
\bar{u}(P^mR) > \exp[C_2(P^mR)^{\alpha_2}]
\]
for \(m > 1 \) and \(PR_1 > R > R_1. \) That is,
\begin{equation}
\bar{u}(r) > \exp[C_2 r^{\alpha_2}]
\end{equation}
for \(r > R_1. \) Hence from (2.17), for \(r > R_1, \) we have
\[
\bar{u}(r) > \bar{u}(R_1) + \frac{1}{n - 2} \int_{R_1}^r s \bar{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \bar{u}^\sigma(s) \, ds
\]
\[
= \bar{u}(R_1) + \frac{1}{n - 2} \int_{R_1}^r s \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \left[\bar{K}(s) \cdot \bar{u}^{(\sigma-1)/2}(s) \right] \bar{u}^{(\sigma+1)/2}(s) \, ds.
\]

Now from (2.30) and the assumption (1), we can choose \(R_2 > R_1 \) so large that
\[
\bar{K}(s) \bar{u}^{(\sigma-1)/2}(s) > C_3 s^{-2}
\]
for \(s > R_2 \) for some constant \(C_3 > 0. \) Hence we have
\begin{equation}
\bar{u}(r) > \bar{u}(R_1) + \frac{1}{n - 2} \int_{R_1}^r s \left[\bar{K}(s) \cdot \bar{u}^{(\sigma-1)/2}(s) \right] \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \bar{u}^{(\sigma+1)/2}(s) \, ds.
\end{equation}

But from the proof of Theorem 2.1, this is impossible. Hence we complete the proof of this theorem.

Theorem 2.3. Let \(K(x) \geq 0 \) be a locally Hölder continuous function. If \(\bar{K}(r) \) satisfies

1. \(\int_0^s s \bar{K}(s) \, ds \) is strictly increasing in \([0, \infty)\) and \(\int_0^\infty s \bar{K}(s) \, ds = \infty, \)
2. \((s/r)^m < \int_0^t \bar{K}(t) \, dt / \int_0^t t \bar{K}(t) \, dt \) for some finite \(m > 0 \) and for all \(r > s > R_0 > 0, \)

then equation (1.1) does not possess any positive solution in \(\mathbb{R}^n. \)
In particular, if $\overline{K}(r)$ satisfies (1) and $0 \leq \overline{K}(r) \leq C/r^2$ for $r \geq R_1$ for some constants $C > 0$ and $R_1 > 0$, then $\overline{K}(r)$ also satisfies (2) and hence (1.1) does not possess any positive solution in \mathbb{R}^n.

PROOF. Assume that (1.1) has a positive solution $u(x)$ in \mathbb{R}^n. Then as in the proof of Theorem 2.2, we have (2.17). Let

$$f(r) = \int_0^r s\overline{K}(s) \, ds = \eta.$$

Then $f: [0, \infty) \to [0, \infty)$ is one-one and onto. Hence f^{-1} exists and let it be denoted by g. Let

$$t = f(s), \quad \eta = f(r), \quad \overline{u}(g(\eta)) = v(\eta).$$

Then from (2.17), we have

$$(2.32) \quad v(\eta) \geq \alpha + \frac{1}{n-2} \int_0^\eta \left[1 - \left(\frac{g(t)}{g(\eta)} \right)^{(n-2)/m} \right] v^\alpha(t) \, dt.$$

From the assumption (2), we have

$$(2.33) \quad \frac{g(t)}{g(\eta)} \leq \left(\frac{t}{\eta} \right)^{1/m} \text{ for all } \eta \geq t \geq f(R_0).$$

Hence from (2.32) and (2.33), we have

$$(2.34) \quad v(\eta) \geq \overline{u}(R_0) + \frac{1}{n-2} \int_{f(R_0)}^\eta \left[1 - \left(\frac{t}{\eta} \right)^{(n-2)/m} \right] v^\alpha(t) \, dt.$$

But from Theorem 2.1, this is impossible. Hence (1.1) does not possess any positive solution.

If in addition to condition (1), $\overline{K}(r)$ also satisfies $0 \leq \overline{K}(r) \leq C/r^2$ for $r \geq R_1$.

Then we have

$$\frac{d}{dr} \left(\int_0^r t\overline{K}(t) \, dt \right) = \frac{r^2\overline{K}(r) - \int_0^r t\overline{K}(t) \, dt}{r^2} \leq \frac{C - \int_0^r t\overline{K}(t) \, dt}{r^2}.$$

for $r \geq R_1$. Thus we can choose $R_2 \geq R_1$ so large that

$$C - \int_0^r t\overline{K}(t) \, dt < 0 \quad \text{for } r \geq R_2.$$

Hence $\int_0^r t\overline{K}(t) \, dt/r$ is monotonically decreasing for $r \geq R_2$. Thus $\overline{K}(r)$ satisfies condition (2) for $r \geq s \geq R_2$.

This completes the proof of this theorem.

THEOREM 2.4. Let $K(x) \geq 0$ be a locally H"{o}lder continuous function in \mathbb{R}^n and $\tilde{K}(t)$ be a locally H"{o}lder continuous function in $[0, \infty)$.

Let the average $\overline{K}(r)$ of $K(x)$ in the sense of (2.2) satisfy:

- $\overline{K}(r) \geq \tilde{K}(r - \beta_i)$ if $\alpha_i + \beta_i \leq r < \alpha_{i+1} + \beta_i$,
- $\overline{K}(r) \geq 0$ if $\alpha_{i+1} + \beta_i < r < \alpha_{i+1} + \beta_{i+1}$.
for $i = 0, 1, 2, \ldots$, where $\{\alpha_i\}_{i=0}^\infty$ is a strictly increasing sequence satisfying $\alpha_0 = 0$ and $\lim_{n \to \infty} \alpha_n = \infty$ and $\{\beta_i\}_{i=0}^\infty$ is a nondecreasing sequence satisfying $\beta_0 = 0$ and $\beta_i / \alpha_i \leq M$ for some constant $M > 0$ and $i = 1, 2, \ldots$. If

$$
\begin{cases}
 u''(r) + \frac{n-1}{r}u'(r) = \bar{K}(r)u^\sigma(r) \quad \text{in } (0, \infty), \\
 u(0) = \alpha > 0, \quad u'(0) = 0
\end{cases}
$$

does not possess any solution in $[0, \infty)$ for all $\alpha > 0$, then (1.1) does not possess any positive solution in \mathbb{R}^n.

Proof. Assume that (1.1) has a positive solution $u(x)$ in \mathbb{R}^n. Then as in the proof of Theorem 2.2, we have

$$(2.36) \quad \bar{u}(r) \geq \alpha + \frac{1}{n-2} \int_0^r s \bar{K}(s) \left[1 - \left(\frac{s}{r}\right)^{n-2}\right] \bar{u}^\sigma(s) \, ds.$$

Now we define the function v by

$$(2.37) \quad v(r) = \bar{u}(r + \beta_i) \quad \text{if } \alpha_i \leq r < \alpha_{i+1}$$

for $i = 0, 1, 2, \ldots$. We shall prove that

$$(2.38) \quad v(r) \geq \alpha + \frac{A}{n-2} \int_0^r s \bar{K}(s) \left[1 - \left(\frac{s}{r}\right)^{n-2}\right] \bar{u}^\sigma(s) \, ds,$$

where A is a positive constant depending only on the constant M. To prove (2.38), let $\alpha_i \leq r \leq \alpha_{i+1}$. Then from (2.36), we have

$$\bar{u}(r + \beta_i) \geq \alpha + \frac{1}{n-2} \int_0^{r+\beta_i} s \bar{K}(s) \left[1 - \left(\frac{s}{r+\beta_i}\right)^{n-2}\right] \bar{u}^\sigma(s) \, ds$$

$$\geq \alpha + \frac{1}{n-2} \int_0^{\alpha_i+\beta_i} s \bar{K}(s) \left[1 - \left(\frac{s}{r+\beta_i}\right)^{n-2}\right] \bar{u}^\sigma(s) \, ds$$

$$+ \frac{1}{n-2} \int_{\alpha_i+\beta_i}^{r+\beta_i} s \bar{K}(s) \left[1 - \left(\frac{s}{r+\beta_i}\right)^{n-2}\right] \bar{u}^\sigma(s) \, ds$$

$$+ \cdots$$

$$+ \frac{1}{n-2} \int_{r+\beta_i}^{r+\beta_i} s \bar{K}(s) \left[1 - \left(\frac{s}{r+\beta_i}\right)^{n-2}\right] \bar{u}^\sigma(s) \, ds$$

$$= \alpha + \frac{1}{n-2} \int_0^{\alpha_i} s \bar{K}(s) \left[1 - \left(\frac{s}{r+\beta_i}\right)^{n-2}\right] \bar{u}^\sigma(s) \, ds$$

$$+ \frac{1}{n-2} \int_{\alpha_i}^{\alpha_i+\beta_i} (s + \beta_i) \bar{K}(s + \beta_i) \left[1 - \left(\frac{s+\beta_i}{r+\beta_i}\right)^{n-2}\right] \bar{u}^\sigma(s + \beta_i) \, ds$$

$$+ \cdots$$

$$+ \frac{1}{n-2} \int_{r+\beta_i}^{r+\beta_i} (s + \beta_i) \bar{K}(s + \beta_i) \left[1 - \left(\frac{s+\beta_i}{r+\beta_i}\right)^{n-2}\right] \bar{u}^\sigma(s + \beta_i) \, ds.$$
But for \(1 \leq j \leq i\),
\[
1 - \left(\frac{s + \beta_j}{r + \beta_i}\right)^{n-2} \geq 1 - \left(\frac{s + \beta_j}{r + \beta_i}\right)^{n-2} = \frac{(1 + \beta_j/r)^{n-2} - (s/r + \beta_j/r)^{n-2}}{(1 + \beta_j/r)^{n-2}}
\]
\[
\geq \frac{1 - (s/r)^{n-2}}{(1 + \beta_j/\alpha_i)^{n-2}} \geq A\left[1 - (s/r)^{n-2}\right].
\]
Hence we have
\[
\bar{u}(r + \beta_j) \geq \alpha + \frac{A}{n-2} \int_0^r s\tilde{K}(s) \left[1 - \left(\frac{s}{r}\right)^{n-2}\right] \bar{u}\sigma(s) \, ds
\]
\[
+ \frac{A}{n-2} \int_{\alpha_i}^r s\tilde{K}(s) \left[1 - \left(\frac{s}{r}\right)^{n-2}\right] \bar{u}\sigma(s + \beta_j) \, ds
\]
\[
+ \cdots + \frac{A}{n-2} \int_0^r s\tilde{K}(s) \left[1 - \left(\frac{s}{r}\right)^{n-2}\right] \bar{u}\sigma(s + \beta_i) \, ds.
\]
Hence (2.38) is true for all \(r \in [0, \infty)\). Let \(\bar{\alpha} = A^{1/(\alpha - 1)}v\) and \(\alpha = A^{1/(\alpha - 1)}\). Then (2.38) becomes
\[
\bar{\alpha}(r) \geq \alpha + \frac{1}{n-2} \int_0^r s\tilde{K}(s) \left[1 - \left(\frac{s}{r}\right)^{n-2}\right] \bar{\alpha}\sigma(s) \, ds.
\]
Now let \(X\) denote the locally convex space of all continuous functions on \([0, \infty)\) with the usual topology and consider the set
\[
Y = \{ y \in X : \bar{\alpha} \leq y(r) \leq \bar{\alpha}(r) \text{ for } r \geq 0 \},
\]
where \(\bar{\alpha}\) is defined above. Clearly, \(Y\) is a closed convex subset of \(X\). Define the mapping \(T\) by
\[
Ty(r) = \alpha + \frac{1}{n-2} \int_0^r s\tilde{K}(s) \left[1 - \left(\frac{s}{r}\right)^{n-2}\right] y\sigma(s) \, ds.
\]
If \(y \in Y\), then \(\bar{\alpha} \leq y(r) \leq \bar{\alpha}(r)\). Hence we have
\[
Ty(r) = \alpha + \frac{1}{n-2} \int_0^r s\tilde{K}(s) \left[1 - \left(\frac{s}{r}\right)^{n-2}\right] y\sigma(s) \, ds \geq \alpha
\]
and
\[
Ty(r) \leq \alpha + \frac{1}{n-2} \int_0^r s\tilde{K}(s) \left[1 - \left(\frac{s}{r}\right)^{n-2}\right] \bar{\alpha}\sigma(s) \, ds \leq \bar{\alpha}(r).
\]
Thus \(T\) maps \(Y\) into itself. Let \(\{ y_m \}_{m=1}^\infty \subset Y \) be a sequence which converges to \(y\) in \(X\). Then \(\{ y_m \}\) converges uniformly to \(y\) on any compact interval of \([0, \infty)\). Since
\[
|Ty_m(r) - Ty(r)| \leq \frac{1}{n-2} \int_0^r s\tilde{K}(s) \left[1 - \left(\frac{s}{r}\right)^{n-2}\right] |y_m\sigma(s) - y\sigma(s)| \, ds,
\]
we have \(\{Ty_m\}\) converges uniformly to \(Ty\) on any compact interval of \([0, \infty)\). Hence \(T\) is a continuous mapping from \(Y\) into \(Y\). On the other hand, we have
\[
(Ty)'(r) = \int_0^r \left(\frac{s}{r}\right)^{n-1} \tilde{K}(s) y\sigma(s) \, ds.
\]
Hence for any fixed $R > 0$, TY is a uniformly bounded and equicontinuous family of functions defined on $[0, R]$. Hence TY is relatively compact. Thus we can use the Schauder-Tychonoff fixed point theorem (see Edwards [2, p. 161]) to conclude that T has a fixed point $y \in Y$. This fixed point y satisfies the integral equation

$$y(r) = \tilde{a} + \frac{1}{n-2} \int_0^r s \tilde{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] y^\sigma(s) \, ds.$$

Hence (2.35) has a solution for this \tilde{a}. This is a contradiction. The theorem is proved. Q.E.D.

3. The case $n = 2$. In this case, we consider only the situation $K(x) \geq 0$ in (1.1). Kawano, Kusano and Naito [3] obtain the following existence result: Let $K(x) \geq 0$ be a locally Hölder continuous function which is positive in some neighborhood of the origin. If

$$K(x) \leq \tilde{K}(|x|) \quad \text{for all } x \in \mathbb{R}^2$$

and

$$\int_1^\infty s (\log s)^\sigma \tilde{K}(s) \, ds < \infty.$$

Then equation (1.1) has infinitely many positive solutions in \mathbb{R}^2 with logarithmic growth at infinity.

To our knowledge, there seems no known nonexistence result. Our nonexistence results are

Theorem 3.1. Let $K(x) \geq 0$ be a locally Hölder continuous function in \mathbb{R}^2. Let the average $\overline{K}(r)$ of $K(x)$ in the sense of (2.2) satisfy

$$\overline{K}(r) \geq C/r^2 (\log r)^{\sigma+1} \quad \text{for } r \geq R_0.$$

Then equation (1.1) does not possess any positive solution in \mathbb{R}^2.

Proof. Assume that (1.1) has a positive solution $u(x)$ in \mathbb{R}^2. Then we have

$$\begin{aligned}
\tilde{u}''(r) + \frac{u'(r)}{r} \geq \overline{K}(r) \tilde{u}^\sigma(r), \\
u(0) = \alpha > 0, \quad u'(0) = 0,
\end{aligned}$$

where \tilde{u} and \overline{K} are defined in (2.1) and (2.2). From (3.2), $\overline{u}(r)$ satisfies the integral equation

$$\overline{u}(r) \geq \alpha + \int_0^r s \log \left(\frac{r}{s} \right) \overline{K}(s) \tilde{u}^\sigma(s) \, ds.$$

Without loss of generality, we assume that $K(0) > 0$ and hence $\overline{K}(0) > 0$. Thus we have from (3.3)

$$\begin{aligned}
\overline{u}(r) &\geq \alpha + \int_0^1 s \log \left(\frac{r}{s} \right) \overline{K}(s) \tilde{u}^\sigma(s) \, ds + \int_1^r s \log \left(\frac{r}{s} \right) \overline{K}(s) \tilde{u}^\sigma(s) \, ds \\
&\geq \alpha + \int_0^1 s \log r \overline{K}(s) \tilde{u}^\sigma(s) \, ds \\
&\geq \alpha + \alpha^\sigma \cdot \log r \cdot \int_0^1 s \overline{K}(s) \, ds \\
&\geq \alpha + C_1 \log r
\end{aligned}$$

for $r \geq 1$ and a constant $C_1 > 0$.

Now consider $r \geq e$. We have
\begin{equation}
\bar{u}(r) \geq \alpha + \int_{e}^{r} s \log \left(\frac{r}{s} \right) \tilde{K}(s) \bar{u}^\sigma(s) \, ds \\
+ \int_{e}^{r} s \log \left(\frac{r}{s} \right) \tilde{K}(s) \bar{u}^\sigma(s) \, ds \\
\geq C_1 \log r + \int_{e}^{r} s \log \left(\frac{r}{s} \right) \tilde{K}(s) \bar{u}^\sigma(s) \, ds.
\end{equation}

Let $v(r) = u(r)/\log r$ for $r \geq e$. Then from (3.5), we have
\begin{equation}
v(r) \geq C_1 + \int_{e}^{r} s \left(1 - \frac{\log s}{\log r} \right) \tilde{K}(s)(\log s)^{\sigma} \bar{v}^\sigma(s) \, ds.
\end{equation}

Let $t = \log s$, $\eta = \log r$ and $v(e^n) = v(r) = \bar{v}(\eta)$. Then (3.6) becomes
\begin{equation}
\bar{v}(\eta) \geq C_1 + \int_{1}^{n} t \left(1 - \frac{t}{\eta} \right) e^{2t \tilde{K}(e^t)} t^{(\sigma-1)\bar{v}^\sigma(t)} \, dt.
\end{equation}

Let $\tilde{K}(t) = e^{2t} \tilde{K}(e^t) t^{(\sigma-1)}$. Then from (3.1), we have $\tilde{K}(t) \geq C/t^2$ for $t \geq \exp(R_0)$ and
\begin{equation}
\bar{v}(\eta) \geq C_1 + \int_{1}^{n} t \left(1 - \frac{t}{\eta} \right) \tilde{K}(t) \bar{v}^\sigma(t) \, dt.
\end{equation}

Using a similar argument as in the proof of Theorem 2.1, we obtain a contradiction. This completes the proof of this theorem. Q.E.D.

Theorem 3.2. Let $K(x) \geq 0$ be a locally Hölder continuous function in \mathbb{R}^2. Let the average $\tilde{K}(r)$ of $K(x)$ in the sense of (2.2) satisfy
\begin{equation}
\int_{e^R}^{e^{(P-1)R}} s \tilde{K}(s)(\log s)^{\sigma} \, ds \geq \varepsilon \quad \text{for all} \quad R \geq R_0.
\end{equation}

Then equation (1.1) does not possess any positive solution in \mathbb{R}^2.

Proof. Assume that (1.1) has a positive solution $u(x)$ in \mathbb{R}^2. As in the proof of Theorem 3.1, we have (3.3)–(3.7). Hence
\begin{equation}
\bar{v}(\eta) \geq C_1 + \int_{1}^{n} t \left(1 - \frac{t}{\eta} \right) \tilde{K}(t) \bar{v}^\sigma(t) \, dt.
\end{equation}

But from (3.9) and (3.10), $\tilde{K}(t)$ satisfies
\begin{equation}
\int_{R}^{(P-1)R} t \tilde{K}(t) \, dt \geq \varepsilon \quad \text{for all} \quad R \geq R_0,
\end{equation}
\begin{equation}
\tilde{K}(s) \geq C/t^{(1+\alpha)} \quad \text{for all} \quad t \geq \log R_1.
\end{equation}

Using a similar argument as in the proof of Theorem 2.2, we obtain a contradiction. This completes the proof. Q.E.D.
THEOREM 3.3. Let $K(x) \geq 0$ be a locally Hölder continuous function in \mathbb{R}^2. Let the average $\overline{K}(r)$ of $K(x)$ in the sense of (2.2) satisfy

\begin{align}
\int_0^r s\overline{K}(s)(\log s)^\alpha \, ds \text{ is strictly increasing on } [0, \infty) \text{ and} \\
\int_0^\infty s\overline{K}(s)(\log s)^\alpha \, ds = \infty ,
\end{align}

\begin{align}
\left(\frac{\log s}{\log r} \right)^m \leq \int_0^s t\overline{K}(t)(\log t)^\alpha \, dt \int_0^r t\overline{K}(t)(\log t)^\alpha \, dt
\end{align}

for some $m > 0$ and for all $r \geq s \geq R_0 > 0$. Then equation (1.1) does not possess any positive solution in \mathbb{R}^2. In particular, if $\overline{K}(r)$ satisfies (3.14) and $0 \leq \overline{K}(r) \leq C/r^2(\log r)^{\alpha+1}$ for $r \geq R_1$ for some constants $C > 0$ and $R_1 > 0$, then $\overline{K}(r)$ also satisfies (3.15) and hence (1.1) does not possess any positive solution in \mathbb{R}^2.

PROOF. Assume that (1.1) has a positive solution $u(x)$ in \mathbb{R}^2. As in the proof of Theorem 3.1, we have (3.3)–(3.7). Hence we obtain (3.8) or (3.11). But now $\overline{K}(t)$ satisfies

\begin{align}
\int_1^\infty t\overline{K}(t) \, dt \text{ is strictly increasing in } [1, \infty) \text{ and} \\
\int_1^\infty t\overline{K}(t) \, dt = \infty ,
\end{align}

\begin{align}
\left(\frac{s}{\eta} \right)^m \leq \int_1^s t\overline{K}(t) \, dt \int_1^\eta t\overline{K}(t) \, dt
\end{align}

for some $m > 0$ and for all $\eta \geq s \geq \log R_0$.

Using a similar argument as in the proof of Theorem 2.3, we obtain a contradiction. This completes the proof. Q.E.D.

THEOREM 3.4. Let $K(x) \geq 0$ be a locally Hölder continuous function in \mathbb{R}^2 and $\overline{K}(t)$ be a locally Hölder continuous function in $[0, \infty)$. Let the average $\overline{K}(r)$ of $K(x)$ in the sense of (2.2) satisfy

\begin{align}
\overline{K}(r) &\geq 0 \text{ if } \alpha_{i+1} + \beta_i < r < \alpha_{i+1} + \beta_{i+1} , \\
\overline{K}(r) &\geq \overline{K}(r-\beta_i) \text{ if } \alpha_i + \beta_i \leq r \leq \alpha_{i+1} + \beta_i
\end{align}

for $i = 0, 1, 2, \ldots$, where $\{ \alpha_i \}_{i=0}^\infty$ is a strictly increasing sequence satisfying $\alpha_0 = 0$ and $\lim_{n \to \infty} \alpha_n = \infty$ and $\{ \beta_i \}_{i=0}^\infty$ is a nondecreasing sequence satisfying $\beta_0 = 0$ and $\beta_i/\alpha_i \leq M$ for some $M > 0$ for all $i \geq 1$. If

\begin{align}
\begin{cases}
u''(r) + u'(r)/r = \overline{K}(r)u^\alpha(r) \text{ in } (0, \infty) , \\ u(0) = \alpha > 0 , \quad u'(0) = 0
\end{cases}
\end{align}

does not possess any solution in $[0, \infty)$ for all $\alpha > 0$, then (1.1) does not possess any positive solution in \mathbb{R}^2.

PROOF. The proof is very similar to that of Theorem 2.4. Hence we only sketch the proof. Assume that (1.1) has a positive solution in \mathbb{R}^2. Then we have

\begin{align}
\overline{u}(r) \geq \alpha + \int_0^r s \log \left(\frac{r}{s} \right) \overline{K}(s) \overline{u}^\alpha(s) \, ds.
\end{align}
Let
\[v(r) = \bar{u}(r + \beta_i) \quad \text{if} \quad \alpha_i \leq r < \alpha_{i+1} \]
for \(i = 0, 1, 2, \ldots \). Then
\[v(r) \geq \alpha + A \cdot \int_0^r s \log \left(\frac{r}{s} \right) \tilde{K}(s) v^o(s) \, ds. \]

(3.19)

Let \(X \) denote the locally convex space of all continuous function on \([0, \infty)\) with the usual topology and consider the set
\[Y = \{ y \in X: \tilde{\alpha} \leq y(r) \leq \bar{\beta}(r) \text{ for } r \geq 0 \}. \]

Define the mapping \(T \) by
\[(Ty)(r) = \tilde{\alpha} + \int_0^r s \log \left(\frac{r}{s} \right) \tilde{K}(s) y^o(s) \, ds. \]

(3.20)

We can prove that \(TY \subset Y \) and \(T \) is continuous. Furthermore \(TY \) is relatively compact. Hence \(T \) has a fixed point in \(Y \). Thus (3.17) has a solution for this given \(\tilde{\alpha} > 0 \). This is a contradiction. The proof is complete. Q.E.D.

4. The case \(n = 1 \). In this case, we also consider only the situation \(K(x) > 0 \) in (1.1). We give a main existence result which have an extension to the higher-dimensional case. We also give some nonexistence results which may have applications.

Theorem 4.1. Let \(K(x) > 0 \) be a Hölder continuous (actually only continuous is sufficient) function in \(\mathbb{R} \). If \(K(0) > 0 \)
\[\int_{-\infty}^{\infty} |x|^\sigma K(x) \, dx < \infty, \]
then (1.1) has infinitely many positive solutions in \(\mathbb{R} \) with linear growth at \(|x| = \infty \).

Proof. We shall seek solutions \(u \) such that \(u(0) = \alpha > 0 \) and \(u'(0) = 0 \). Consider now \(x \geq 0 \). Then equation (1.1) with \(u(0) = \alpha > 0 \) and \(u'(0) = 0 \) is equivalent to the integral equation
\[u(x) = \alpha + \int_0^x (x - t) K(t) u^o(t) \, dt, \quad x \geq 0. \]

(4.2)

Now choose \(\alpha \) so small that
\[2^\sigma \alpha^{(\sigma - 1)} \int_0^1 K(t) \, dt \leq \frac{1}{2}, \]
\[2^\sigma \alpha^{(\sigma - 1)} \int_1^{\infty} K(t) t^\sigma \, dt \leq \frac{1}{2}. \]

(4.3)

(4.4)

Let
\[A(x) = \begin{cases} 2\alpha, & \text{if } 0 \leq x \leq 1, \\ 2\alpha x, & \text{if } 1 \leq x. \end{cases} \]

As in the proofs of Theorems 2.4 and 3.4, we let \(X \) denote the locally convex space of all continuous functions on \([0, \infty)\) with the usual topology and consider the set
\[Y = \{ y \in X: \alpha \leq y(x) \leq A(x) \text{ for } x \geq 0 \}. \]
Clearly, Y is a closed convex subset of X. Let the mapping T be defined by

$$ (Ty)(x) = \alpha + \int_0^x (x-t)K(t)y^\sigma(t) \, dt, \quad x \geq 0. $$

If $y \in Y$, then $\alpha \leq y(x) \leq A(x)$. Hence we have

$$ (Ty)(x) = \alpha + \int_0^x (x-t)K(t)y^\sigma(t) \, dt $$
$$ \geq \alpha + \int_0^x (x-t)K(t)\alpha^\sigma dt \geq \alpha. $$

On the other hand, for $0 < x < 1$, we have

$$ (Ty)(x) = \alpha + \int_0^x (x-t)K(t)y^\sigma(t) \, dt $$
$$ \leq \alpha + \int_0^1 K(t)(2\alpha)^\sigma dt $$
$$ = \alpha \left[1 + 2\alpha(\sigma-1) \int_0^1 K(t) \, dt \right] $$
$$ \leq \alpha \left[1 + \frac{1}{2} + \frac{1}{2} \right] \leq 2\alpha = A(x). $$

For $1 \leq x$, we have

$$ (Ty)(x) = \alpha + \int_0^1 (x-t)K(t)y^\sigma(t) \, dt + \int_1^x (x-t)K(t)y^\sigma(t) \, dt $$
$$ \leq \alpha + x \int_0^1 K(t)(2\alpha)^\sigma dt + x \int_1^\infty K(t)(2\alpha)^\sigma dt $$
$$ \leq \alpha x + \alpha x \left[2\alpha(\sigma-1) \int_0^1 K(t) \, dt \right] + \alpha x \left[2\alpha(\sigma-1) \int_1^\infty K(t)t^\sigma dt \right] $$
$$ \leq \alpha x \left[1 + \frac{1}{2} + \frac{1}{2} \right] \leq 2\alpha x = A(x). $$

Thus T maps Y into itself. Now let $\{y_m\}_{m=1}^\infty \subset Y$ be a sequence which converges to y in X. Then $\{y_m\}$ converges uniformly to y on any compact interval of $[0, \infty)$. But

$$ |Ty_m(x) - Ty(x)| \leq \int_0^x (x-t)K(t) |y_m^\sigma(t) - y^\sigma(t)| \, dt, $$

we conclude that $\{Ty_m\}$ converges uniformly to Ty on any compact interval of $[0, \infty)$. Hence T is a continuous mapping from Y into Y. As in the proof of Theorem 2.4, the precompactness of T can be verified by

$$ |(Ty)'(x)| \leq \int_0^x K(t)y^\sigma(t) \, dt $$
$$ \leq \int_0^\infty K(t)(2\alpha)^\sigma t^\sigma dt < \infty. $$

Thus T has a fixed point $y \in Y$. This fixed point y is a solution of equation (1.1) for $x \geq 0$ with $y(0) = \alpha$ and $y'(0) = 0$.

Similarly, we can find a solution of equation (1.1) for $x \leq 0$ with $y(0) = \alpha$ and $y'(0) = 0$ if α is sufficiently small. Now let $y(x)$ be the solution of (1.1) in R with
y(0) = α, \ y'(0) = 0. Then
\begin{equation}
2ax \geq y(x) = α + \int_0^x (x - t) K(y) y'^{\sigma}(t) \, dt
\end{equation}
\begin{align*}
\geq α + \int_0^1 (x - 1) K(t) α^{\sigma} \, dt \\
\geq α + k_1(x - 1) \geq k_2x
\end{align*}
for x large. Hence y grows linearly at |x| = ∞. Now we can choose a smaller y(0), such as y(0) = α/2 to obtain another solution. This completes the proof of this theorem. Q.E.D.

We can apply this theorem to the higher-dimensional case as used in Ni [13, 14] and Kawano, Kusano and Naito [3].

THEOREM 4.2. Let \(K(x) \geq 0 \) be a locally Hölder continuous function in \(\mathbb{R}^n = \mathbb{R} \times \mathbb{R}^{n-1} \). Let \(\phi_*(x_1) \) and \(\phi^*(x_1) \) be two locally Hölder continuous function in \(\mathbb{R} \). If
\begin{equation}
0 \leq \phi_*(x_1) \leq K(x) \leq \phi^*(x_1)
\end{equation}
for all \(x = (x_1, x') \in \mathbb{R} \times \mathbb{R}^{n-1} \),
\begin{equation}
\phi_*(0) > 0 \text{ and } \int_{-\infty}^{\infty} |x_1|^{\sigma} \phi^*(x_1) \, dx_1 < \infty,
\end{equation}
then equation (1.1) has infinitely many positive solutions in \(\mathbb{R}^n \) which are unbounded.

PROOF. Consider the equations
\begin{equation}
d^2 v/dx_1^2 = \phi^*(x_1) v^\sigma,
\end{equation}
\begin{equation}
d^2 w/dx_1^2 = \phi_*(x_1) w^\sigma.
\end{equation}
From the proof of Theorem 4.1 we see that (4.14) and (4.15) have unbounded solutions (linear growth at \(\infty \)) \(\bar{v} \) and \(\tilde{w} \). We can choose \(\bar{v} \) and \(\tilde{w} \) such that \(\bar{v}(x_1) \leq \tilde{w}(x_1) \) for all \(x_1 \in \mathbb{R} \). Now let
\begin{equation}
v(x_1, x') = \bar{v}(x_1) \text{ and } w(x_1, x') = \tilde{w}(x_1).
\end{equation}
Then from (4.12), we have
\begin{align*}
\Delta v - K(x) v^\sigma &= \frac{d^2 \bar{v}(x_1)}{dx_1^2} - K(x) \bar{v}^\sigma(x_1) \\
&= [\phi^*(x_1) - K(x)] \bar{v}^\sigma(x_1) \geq 0,
\end{align*}
\begin{align*}
\Delta w - K(x) w^\sigma &= \frac{d^2 \tilde{w}(x_1)}{dx_1^2} - K(x) \tilde{w}^\sigma(x_1) \\
&= [\phi_*(x_1) - K(x)] \tilde{w}^\sigma(x_1) \leq 0
\end{align*}
in \(\mathbb{R}^n \). Hence \(v(x_1, x') \) and \(w(x_1, x') \) are, respectively, a subsolution and a supersolution of (1.1) in \(\mathbb{R}^n \). Since \(v(x_1, x') \leq w(x_1, x') \) in \(\mathbb{R}^n \), from Theorem 2.10 of Ni [13], it follows that (1.1) has a positive solution \(u(x) \) in \(\mathbb{R}^n \) such that \(\bar{v}(x_1) \leq u(x_1, x') \leq \tilde{w}(x_1) \). It is easy to see that \(k_1|x| \leq u(x_1, x') \leq k_2|x| \) for \(|x| \) large for some positive constants \(k_1 \) and \(k_2 \). This completes the proof of the theorem. Q.E.D.
Now let \(u \) be a positive function in \(\mathbb{R} \) and \(K(x) \geq 0 \) in \(\mathbb{R} \). Define for \(r \geq 0 \)
\[
(4.17) \quad \bar{u}(r) = (u(r) + u(-r))/2,
\]
\[
(4.18) \quad \bar{K}(r) = \left[\frac{1}{2} \left(K(r)^{-\sigma/\alpha} + K(-r)^{-\sigma/\alpha} \right) \right]^{-\sigma/\alpha'},
\]
where \(1/\alpha + 1/\alpha' = 1 \). It is easy to see that
\[
(4.19) \quad \bar{u}(0) = u(0) \quad \text{and} \quad \bar{u}'(0) = 0
\]
if \(u \) is also continuously differentiable.

Theorem 4.3. Let \(K(x) \geq 0 \) be a continuous function in \(\mathbb{R} \). If the average \(\bar{K}(r) \) of \(K(x) \) in the sense (4.18) satisfies
\[
(4.20) \quad \bar{K}(r) \geq C/r^{(\sigma+1)}
\]
for \(r \geq R_0 \) for some constant \(C > 0 \), then equation (1.1) does not possess any positive solution in \(\mathbb{R} \).

Proof. Assume that \(u(x) \) is a positive solution of (1.1) in \(\mathbb{R} \). Then we have
\[
(4.21) \quad \bar{u}''(r) = \frac{u''(r) + u''(-r)}{2} = \frac{1}{2} \left[K(r)u^\sigma(r) + K(-r)u^\sigma(-r) \right].
\]
But
\[
(4.22) \quad \bar{u}(r) = \frac{1}{2} [u(r) + u(-r)]
\]
\[
\leq \left[\frac{1}{2} \left(K(r)u^\sigma(r) + K(-r)u^\sigma(-r) \right) \right]^{1/\alpha}
\]
\[
\cdot \left[\frac{1}{2} \left(K^{-\sigma/\alpha}(r) + K^{-\sigma/\alpha}(-r) \right) \right]^{1/\alpha'}.
\]
Hence
\[
(4.23) \quad \frac{1}{2} \left(K(r)u^\sigma(r) + K(-r)u^\sigma(-r) \right) \geq \bar{K}(r)\bar{u}^\sigma(r).
\]
Thus we have
\[
(4.24) \quad \begin{cases}
\bar{u}''(r) \geq \bar{K}(r)\bar{u}^\sigma(r) & \text{for } r > 0, \\
\bar{u}(0) = \alpha > 0, & \bar{u}'(0) = 0.
\end{cases}
\]
Hence \(\bar{u} \) satisfies
\[
(4.25) \quad \bar{u}(r) \geq \alpha + \int_0^r (r-t)\bar{K}(t)\bar{u}^\sigma(t) \, dt.
\]
Without loss of generality, we may assume that \(K(0) > 0 \) and hence \(\bar{K}(0) > 0 \). Thus for \(r \geq 2 \), we have
\[
(4.26) \quad \bar{u}(r) \geq \alpha + \int_0^1 (r-t)\bar{K}(t)\bar{u}^\sigma(t) \, dt + \int_1^r (r-t)\bar{K}(t)\bar{u}^\sigma(t) \, dt
\]
\[
\geq \alpha + \left(\alpha^\sigma \cdot \int_0^1 \left(1 - \frac{t}{r} \right)\bar{K}(t) \, dt \right) \cdot r + \int_1^r (r-t)\bar{K}(t)\bar{u}^\sigma(t) \, dt
\]
\[
\geq C_1 \cdot r + \int_1^r (r-t)\bar{K}(t)\bar{u}^\sigma(t) \, dt,
\]
where
\[C_1 = \alpha^a \cdot \int_{0}^{1} \left(1 - \frac{1}{2} \right) \bar{K}(t) \, dt = \alpha^a \cdot \frac{1}{2} \cdot \int_{0}^{1} \bar{K}(t) \, dt > 0. \]

Now let \(\bar{u}(r) = v(r) \cdot r \) for \(r \geq 2 \). We obtain
\[(4.27) \quad v(r) \geq C_1 + \int_{1}^{r} \frac{1}{t} \left(1 - \frac{t}{r} \right) \bar{K}(t) t^{(a-1)} v^a(t) \, dt. \]
Letting \(\tilde{K}(t) = \bar{K}(t) t^{(\sigma-1)} \). Then from (4.20), we have
\[(4.28) \quad \tilde{K}(t) \geq C/t^2 \quad \text{for } t \geq R_0 \]
and
\[(4.29) \quad v(r) \geq C_1 + \int_{1}^{r} t \tilde{K}(t) \left(1 - \frac{t}{r} \right) v^a(t) \, dt. \]
From the proof of Theorem 2.1, we see that it is impossible to have a function \(v \) defined in \([2, \infty)\) satisfying (4.29). This completes the proof. Q.E.D.

Theorem 4.4. Let \(K(x) \geq 0 \) be a continuous function in \(\mathbb{R} \). If the average \(\bar{K}(r) \) of \(K(r) \) in the sense (4.18) satisfies
\[(4.30) \quad \text{there exist } \alpha > 0, R_0 > 0 \text{ and } C > 0 \text{ such that} \]
\[\bar{K}(r) \geq C/r^{(\sigma+a)} \quad \text{for } r \geq R_0, \]
\[(4.31) \quad \text{there exist } \varepsilon > 0 \text{ and } P > 2 \text{ such that} \]
\[\int_{R}^{(P-1)R} r^{p} \bar{K}(r) \, dr \geq \varepsilon \quad \text{for } \mathbb{R} \geq R_0. \]
Then equation (1.1) does not possess any positive solution in \(\mathbb{R} \).

Proof. Assume on the contrary that (1.1) has a positive solution \(u(x) \) in \(\mathbb{R} \). Then as in the proof of Theorem 4.3, we have (4.24)-(4.27). But now \(\tilde{K}(r) = r^{(\sigma-1)} \bar{K}(r) \) satisfies
\[(4.32) \quad \tilde{K}(r) \geq C/r^{(1+a)} \quad \text{for } r \geq R_0, \]
\[(4.33) \quad \int_{R}^{(P-1)R} r \tilde{K}(r) \, dr \geq \varepsilon \quad \text{for } R \geq R_0. \]
But from the proof of Theorem 2.2, there is no positive function \(v \) satisfying (4.27). This contradiction proves the theorem. Q.E.D.

Theorem 4.5. Let \(K(x) \geq 0 \) be a continuous function in \(\mathbb{R} \). Let the average \(\bar{K}(r) \) of \(K(r) \) in the sense (4.18) satisfy
\[(4.34) \quad \int_{0}^{r} s^{a} \bar{K}(s) \, ds \text{ is strictly increasing in } [0, \infty) \text{ and} \]
\[\int_{0}^{\infty} s^{a} \bar{K}(s) \, ds = \infty, \]
\[(4.35) \quad \left(\frac{s}{r} \right)^{m} \leq \int_{0}^{s} t^{a} \bar{K}(t) \, dt / \int_{0}^{r} t^{a} \bar{K}(t) \, dt \text{ for some } m > 0 \text{ and} \]
for all \(r \geq s \geq R_0 > 0 \).
Then equation (1.1) does not possess any positive solution in \mathbb{R}. In particular, if $\bar{K}(r)$ satisfies (4.34) and $0 \leq \bar{K}(r) \leq C/r^{(\sigma+1)}$ for $r \geq R_1$ for some constants $C > 0$ and $R_1 > 0$, then $\bar{K}(r)$ also satisfies (4.35) and hence (1.1) does not possess any positive solution in \mathbb{R}.

PROOF. Assume on the contrary that (1.1) has a positive solution $u(x)$ in \mathbb{R}. Then as in the proof of Theorem 4.3, we have (4.24)–(4.27). Now the function $\bar{K}(r) = r^{(\sigma-1)}\bar{K}(r)$ satisfies the assumptions of Theorem 2.3. Hence there is no positive function v satisfying (4.27). This contradiction proves the theorem. Q.E.D.

THEOREM 4.6. Let $K(x) \geq 0$ be a continuous function in \mathbb{R} and $\bar{K}(r)$ be a continuous function in $[0, \infty)$. Let the average $\bar{K}(r)$ of $K(x)$ in the sense (4.18) satisfy

$$\bar{K}(r) \geq 0 \quad \text{if} \quad \alpha_i + \beta_i < r < \alpha_{i+1} + \beta_{i+1},$$

$$\bar{K}(r) \geq \bar{K}(r - \beta_i) \quad \text{if} \quad \alpha_i + \beta_i \leq r \leq \alpha_{i+1} + \beta_{i+1}$$

for $i = 0, 1, 2, \ldots,$ where $\{\alpha_i\}_{i=0}^\infty$ is a strictly increasing sequence satisfying $\alpha_0 = 0$ and $\lim_{n \to \infty} \alpha_n = \infty$, and $\{\beta_i\}_{i=0}^\infty$ is a nondecreasing sequence satisfying $\beta_0 = 0$ and $\beta_i/\alpha_i \leq M$ for some $M > 0$ and for $i \geq 1$. If

\begin{align*}
\left\{ \begin{array}{l}
\varepsilon''(r) = \bar{K}(r)\varepsilon'(r) \quad \text{in} \quad (0, \infty), \\
\varepsilon(0) = \alpha > 0, \quad \varepsilon'(0) = 0
\end{array} \right.
\end{align*}

does not possess any positive solution in $[0, \infty)$ for all $\alpha > 0$, then (1.1) does not possess any positive solution in \mathbb{R}.

PROOF. Assume that (1.1) has a positive solution $u(x)$ in \mathbb{R}. Then we have as in the proof of Theorem 4.3,

$$\bar{u}(r) \geq \alpha + \int_0^r (r - t)\bar{K}(t)\bar{u}^\sigma(t) \, dt.$$

Let

$$v(r) = \bar{u}(r + \beta_i) \quad \text{if} \quad \alpha_i \leq r < \alpha_{i+1}$$

for $i = 0, 1, 2, \ldots$. As in the proof of Theorem 2.4, we have

$$v(r) \geq \alpha + \int_0^r (r - t)\bar{K}(t)v^\sigma(t) \, dt.$$

Now we can let X denote the locally convex space of all continuous functions on $[0, \infty)$ with the usual topology and consider the set

$$Y = \{ y \in X : \alpha \leq y(r) \leq v(r) \text{ for } r \geq 0 \},$$

where v is defined in (4.38). Clearly, Y is a closed convex subset of X. We define the mapping T by

$$T(y)(r) = \alpha + \int_0^r (r - t)\bar{K}(t)y^\sigma(t) \, dt.$$

Then it is easy to verify that (i) $TY \subset Y$, (ii) T is continuous and (iii) TY is precompact. Hence T has a fixed point in Y. Thus (4.36) has a solution for this α. This contradiction completes the proof. Q.E.D.
5. The case \(n \geq 3 \). In this case, the existence results are very similar to that of §2. Ni [14] proves that, if \(|K(x)| \leq C/|x_1|^l \) for \(|x_1| \) large and uniformly in \(x_2 \) for some \(l > 2 \), then equation (1.2) possesses infinitely many bounded solutions in \(\mathbb{R}^n = \mathbb{R}^m \times \mathbb{R}^{n-m} \), where \(x = (x_1, x_2) \) and \(m \geq 3 \). Later on, Kusano and Oharu [7] extend the result to the case where \(|K(x)| \leq K(|x_1|) \) for all \(x = (x_1, x_2) \in \mathbb{R}^m \times \mathbb{R}^{n-m} \) and \(\int_0^\infty tK(t) \, dt < \infty \). On the other hand, when \(K(x) \geq 0 \) in (1.2), Oleinik [15] shows that if \(K(x) \geq C/|x|^P \) at infinity for some \(P < 2 \), then (1.2) has no solution in \(\mathbb{R}^n \). The case when \(K(x) \) behaves like \(C/|x|^2 \) at infinity is left unsettled for \(n \geq 3 \). In this section, we give several theorems to settle the nonexistence question of (1.2), in particular we settle the case when \(K(x) \) behaves like \(C/|x|^2 \) at infinity.

We need some notations first. Let \(u \) be a smooth function in \(\mathbb{R}^n \) and \(K(x) \geq 0 \) be a continuous function in \(\mathbb{R}^n \). Following Ni [13] and Sattinger [16], we define the averages of \(u \) and \(K \) by \(\bar{u}(r) \) and \(\bar{K}(r) \),

\[
\bar{u}(r) = \frac{1}{\omega_n r^{n-1}} \int_{|x|=r} u(x) \, dS,
\]

\[
\bar{K}(r) = \left(\frac{1}{\omega_n r^{n-1}} \int_{|x|=r} \frac{dS}{K(x)} \right)^{-1}.
\]

We have

Lemma 5.1. Let \(u(x) \) be a solution of (1.2) in \(\mathbb{R}^n \) and \(K(x) \geq 0 \). Then \(\bar{u}(r) \) satisfies

\[
\begin{aligned}
&\bar{u}''(r) + \frac{n-1}{r} \bar{u}'(r) \geq \bar{K}(r) e^{2\bar{u}(r)}, \quad r \in (0, \infty), \\
&\bar{u}(0) = u(0), \quad \bar{u}'(0) = 0.
\end{aligned}
\]

Proof. From the definition of \(\bar{u} \), we have

\[
\bar{u}'(r) = \frac{1}{\omega_n} \int_{|\xi|=1} \nabla u(r\xi) \cdot \xi \, dS = \frac{1}{\omega_n r^{n-1}} \int_{|x|=r} \sum_i u_{x_i} \xi_i \, dS.
\]

Thus,

\[
\omega_n \left(r^{n-1} \bar{u}'(r) - R^{n-1} \bar{u}'(R) \right) = \int_D \Delta u \, dx = \int_R \left(\int_{|x|=r} \Delta u \, dS \right) \, dt
\]

where \(D = \{ x \in \mathbb{R}^n: R < |x| < r \} \). Hence we have

\[
\omega_n \left(r^{n-1} \bar{u}'(r) \right)' = \int_{|x|=r} \Delta u \, dS = \int_{|x|=r} K(x) \, e^{2u(x)} \, dS.
\]

Now Jensen’s and Cauchy-Schwarz’s inequalities give

\[
e^{2\bar{u}(r)} = \left(e^{\bar{u}(r)} \right)^2 \leq \left(\frac{1}{\omega_n r^{n-1}} \int_{|x|=r} e^{u(x)} \, dS \right)^2 \leq \left(\frac{1}{\omega_n r^{n-1}} \int_{|x|=r} K(x) \, e^{2u(x)} \, dS \right) \left(\frac{1}{\omega_n r^{n-1}} \int_{|x|=r} \frac{dS}{K(x)} \right).
\]
Hence
\[\frac{1}{\omega_n r^{n-1}} \int_{|x|=r} K(x) e^{2u(x)} dS \geq \overline{K}(r) e^{2\overline{u}(r)}. \]
Combining (5.5) and (5.7), we obtain the first equation of (5.3). \(\overline{u}(0) = u(0) \) and \(\overline{u}'(0) = 0 \) can also be easily obtained. This completes the proof. Q.E.D.

Now we can state our main nonexistence theorems.

THEOREM 5.1. Let \(K(x) \geq 0 \) be a locally Hölder continuous function in \(\mathbb{R}^n \). If \(\overline{K}(r) \), as defined in (5.2), satisfies
\[K(r) \geq C/r^2 \]
for \(r \geq R_0 \) for some constant \(C > 0 \), then equation (1.2) does not possess any locally bounded solution in \(\mathbb{R}^n \).

PROOF. Assume that \(u \) is a locally bounded solution of (1.2) in \(\mathbb{R}^n \). Then the average \(\overline{u} \) satisfies (5.3) from Lemma 5.1. Let \(\overline{u}(0) = u(0) = \alpha \). Then \(\overline{u} \) also satisfies
\[\overline{u}'(r) \geq \int_0^r \left(\frac{s}{r} \right)^{n-1} \overline{K}(s) e^{2\overline{u}(s)} ds, \]
\[\overline{u}(r) \geq \alpha + \int_0^r s\overline{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] e^{2\overline{u}(s)} ds. \]
Hence
\[\overline{u}(r) \geq \alpha + \frac{1}{n-2} \int_0^{r/2} \overline{K}(s) s \left[1 - \left(\frac{1}{2} \right)^{n-2} \right] e^{2\overline{u}(s)} ds, \]
\[= \alpha + \frac{1}{n-2} \cdot e^{2\alpha} \cdot \left[1 - \left(\frac{1}{2} \right)^{n-2} \right] \int_0^{\sqrt{r}/2} \overline{K}(s) ds. \]
Thus there exists a constant \(R_0 \), such that \(\overline{u}(R_0) \geq 1 \). For \(r \geq R_0 \), we have
\[\overline{u}(r) \geq 1 + \frac{1}{n-2} \int_{R_0}^{r} \overline{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] e^{2\overline{u}(s)} ds \]
\[\geq 1 + \frac{1}{n-2} \int_{R_0}^{r} \overline{K}(s) \left[1 - \left(\frac{s}{r} \right)^{n-2} \right] \overline{u}^2(s) ds. \]
In view of (5.8) and the proof of Theorem 2.1, we conclude that no function \(\overline{u} \) can satisfy (5.12) in \([R_0, \infty)\). This completes the proof. Q.E.D.

THEOREM 5.2. Let \(K(x) \geq 0 \) be a locally Hölder continuous function in \(\mathbb{R}^n \). If \(\overline{K}(r) \), as defined in (5.2), satisfies
\[\text{there exist } \alpha > 0, R_0 > 0 \text{ and } C > 0, \text{ such that } \]
\[\overline{K}(r) \geq C/r^\alpha \text{ for } r \geq R_0, \]
(5.14)
\[\text{there exist } \epsilon > 0 \text{ and } P > 2, \text{ such that } \]
\[\int_{R}^{(P-1)R} r\overline{K}(r) dr \geq \epsilon \text{ for } R \geq R_0, \]
then equation (1.2) does not possess any locally bounded solution in \(\mathbb{R}^n \).
PROOF. Assume that u is a locally bounded solution of (1.2) in \mathbb{R}^n. Then as in the proof of Theorem 5.1, we have (5.9)–(5.12). But from (5.13), (5.14) and Theorem 2.2, there is no function $\bar{u}(r)$ defined on $[R_0, \infty)$ satisfying (5.12). This contradiction proves the theorem. Q.E.D.

THEOREM 5.3. Let $K(x) \geq 0$ be a locally Hölder continuous function. If $\bar{K}(r)$, as defined in (5.2), satisfies

$$\int_0^r s \bar{K}(s) \, ds \text{ is strictly increasing in } [0, \infty) \text{ and}$$

$$\int_0^\infty s \bar{K}(s) \, ds = \infty,$$

(5.15)

$$\left(\frac{s}{r}\right)^m \leq \int_0^s t \bar{K}(t) \, dt / \int_0^r t \bar{K}(t) \, dt \text{ for some } m > 0 \text{ and}$$

$$\text{for all } r \geq s \geq R_0 > 0.$$

Then equation (1.2) does not possess any locally bounded solution in \mathbb{R}^n. In particular, if $\bar{K}(r)$ satisfies (5.15) and $0 \leq \bar{K}(r) \leq C/r^2$ for $r \geq R_1$ for some constants $C > 0$ and $R_1 > 0$, then $\bar{K}(r)$ also satisfies (5.16) and hence (1.2) does not possess any locally bounded solution in \mathbb{R}^n.

PROOF. Using the proofs of Theorems 5.1 and 2.3, we can easily obtain a proof. We omit the details. Q.E.D.

THEOREM 5.4. Let $K(x) \geq 0$ be a locally Hölder continuous function in \mathbb{R}^n and $\bar{K}(t)$ be a locally Hölder continuous function on $[0, \infty)$. Let the average $\bar{K}(r)$ of $K(x)$ in the sense of (5.2) satisfy

$$\bar{K}(r) \geq 0 \text{ if } \alpha_i+1 + \beta_i < r < \alpha_i+1 + \beta_i+1,$$

$$\bar{K}(r) \geq \bar{K}(r-\beta_i) \text{ if } \alpha_i + \beta_i \leq r \leq \alpha_i+1 + \beta_i,$$

for $i = 0, 1, 2, \ldots$, where $\{\alpha_i\}_{i=0}^\infty$ and $\{\beta_i\}_{i=0}^\infty$ are two sequences satisfying the same conditions as in Theorem 2.4. If

$$u''(r) + \frac{n-1}{r} u'(r) = \bar{K}(r)e^{2u(r)} \text{ in } (0, \infty),$$

$$u(0) = \alpha, \quad u'(0) = 0$$

(5.17)

does not possess any locally bounded solution in $[0, \infty)$ for any real number α, then (1.2) does not possess any locally bounded solution in \mathbb{R}^n.

PROOF. The proof is similar to that of Theorem 2.4. Hence we omit the details.

Q.E.D.

6. The case $n = 2$. In the case $n = 2$ and $K(x) \geq 0$, Ni [14] shows that: If $K(x) \not\equiv 0$ and $K(x) \leq C/|x|^l$ at infinity for some $l > 2$, then for every $\alpha \in (0, \beta)$ where $\beta = \min\{8, (l-2)/3\}$, there exists a solution u of (1.2) such that

$$\log|x|^a - C' \leq u(x) \leq \log|x|^a + C''$$

for $|x|$ large, where C' and C'' are two constants.
Later, McOwen [10, 11] improves this result by giving a sharp bound on β and sharp behavior of u at infinity. For the nonexistence results, Sattinger [16] proves

Let K be a smooth function on \mathbb{R}^2. If $K \geq 0$ on \mathbb{R}^2 and $K(x) \geq C/|x|^2$ at infinity, then (1.2) has no solution on \mathbb{R}^2. Ni [14] improves Sattinger’s result to include the K such as $K = (1 + \sin r)/r^2$.

In this section, we give an existence result which overlaps parts of the results of Ni [14] and McOwen [10, 11] but with different method. We also give some nonexistence results improving Ni’s result.

Theorem 6.1. Let $K(x) \geq 0$ be a locally Hölder continuous function on \mathbb{R}^2. Let $K_1(r)$ and $K_2(r)$ be two locally Hölder continuous functions on $[0, \infty)$. If

\begin{align*}
(6.1) &
K_1(0) > 0, \\
(6.2) &
0 \leq K_1(|x|) \leq K(x) \leq K_2(|x|) \quad \text{for all } x \in \mathbb{R}^2, \\
(6.3) &
\text{there exists } \alpha > 0 \text{ such that } \int_0^\infty s^{(1+2\alpha)}K_2(s) \, ds < \infty,
\end{align*}

then (1.2) has infinitely many solutions on \mathbb{R}^2 with logarithmic growth at infinity.

Proof. Consider the equations

\begin{align*}
(6.4) &
\Delta v = K_1(|x|) e^{2v}, \quad x \in \mathbb{R}^2, \\
(6.5) &
\Delta w = K_2(|x|) e^{2w}, \quad x \in \mathbb{R}^2.
\end{align*}

From (6.2), it is easy to see that a solution v of (6.4) is a supersolution of (1.2) and a solution w of (6.5) is a subsolution of (1.2) in \mathbb{R}^2. It is natural to seek solutions of v and w depending only on $|x|$. Considser now (6.5). We try to find a solution $w(|x|)$ of (6.5) with $w(0) = \beta$ and $w'(0) = 0$. Then (6.5) is equivalent to the following integral equation

\begin{align*}
(6.6) &
w(r) = \beta + \int_0^r s \log\left(\frac{r}{s}\right) K_2(s) e^{2w(s)} \, ds.
\end{align*}

Now we choose $0 < \alpha' < \alpha$ and β such that

\begin{align*}
(6.7) &
\int_0^e s \log\left(\frac{e}{s}\right) K_2(s) e^{2(\beta+1)} \, ds < \frac{1}{2}, \\
(6.8) &
\int_0^e s K_2(s) e^{2(\beta+1)} \, ds < \frac{\alpha'}{2}, \\
(6.9) &
\int_e^\infty s^{(1+2\alpha')} K_2(s) e^{2(\beta+1)} \, ds < \frac{\alpha'}{2}, \\
(6.10) &
\int_e^\infty s^{(1+2\alpha')} \log\left(\frac{e}{s}\right) K_2(s) e^{2(\beta+1)} \, ds < \frac{1}{2}.
\end{align*}

Define the function $A_\beta(r)$ by

\begin{align*}
(6.11) &
A_\beta(r) = (\beta + 1) \quad \text{if } 0 \leq r \leq e, \\
A_\beta(r) = (\beta + 1) + \alpha' \log(r/e) \quad \text{if } e \leq r.
\end{align*}
Now let X denote the locally convex space of all continuous functions on $[0, \infty)$ with the usual topology and consider the set

$$Y = \{ w \in X : \beta \leq w(r) \leq A_\beta(r), \ r \in [0, \infty) \}.$$

It is easy to see that Y is a closed convex subset of X. Let T be the mapping

$$T(w)(r) = \beta + \int_0^r s \log \left(\frac{r}{s} \right) K_2(s) e^{2w(s)} ds.$$

We shall prove that T is a continuous mapping from Y into itself such that TY is relatively compact.

First, we verify that $TY \subseteq Y$. Assume $w \in Y$. Hence we have

$$\beta \leq w(r) \leq A_\beta(r) \quad \text{for} \ r \in [0, \infty).$$

It is easy to see that $T(w)$ is also continuous and $\beta \leq T(w)(r)$ for $r \in [0, \infty)$. Now for $0 \leq r \leq e$, we have

$$T(w)(r) = \beta + \int_0^r s \log \left(\frac{r}{s} \right) K_2(s) e^{2w(s)} ds \leq \beta + \int_0^e s \log \left(\frac{e}{s} \right) K_2(s) e^{2(\beta + 1)} ds < (\beta + 1) = A_\beta(r).$$

For $e \leq r$, we have

$$T(w)(r) = \beta + \int_e^r s \log \left(\frac{r}{s} \right) K_2(s) e^{2w(s)} ds + \int_0^e s \log \left(\frac{r}{s} \right) K_2(s) e^{2w(s)} ds \leq \beta + \int_0^e s \log \left(\frac{e}{s} \right) K_2(s) e^{2(\beta + 1)} ds + \int_0^e s \log \left(\frac{e}{s} \right) K_2(s) e^{2(\beta + 1)} ds + \log \left(\frac{r}{e} \right) \int_0^e s K_2(s) e^{2(\beta + 1)} ds + \int_0^e s \log \left(\frac{e}{s} \right) K_2(s) e^{2(\beta + 1)} ds + \log \left(\frac{r}{e} \right) \int_e^\infty s^{1 + 2\alpha'} K_2(s) e^{2(\beta + 1)} ds + \int_e^\infty s^{1 + 2\alpha'} \log \left(\frac{e}{s} \right) K_2(s) e^{2(\beta + 1)} ds < \beta + \frac{\alpha'}{2} \log \left(\frac{r}{e} \right) + \frac{1}{2} + \frac{\alpha'}{2} \log \left(\frac{r}{e} \right) + \frac{1}{2} = (\beta + 1) + \alpha' \log \left(\frac{r}{e} \right) = A_\beta(r).$$

This verifies that $TY \subseteq Y$.
Now let \(\{ w_m \}_{m=1}^{\infty} \subset Y \) be a sequence converges to \(w \in Y \) in the space \(X \). Then \(\{ w_m \} \) converges to \(w \) uniformly on any compact interval on \([0, \infty)\). Now
\[
|T w_m(r) - T w(r)| \leq \int_0^r s \log \left(\frac{r}{s} \right) K_2(s) |e^{2 w_m(s)} - e^{2 w(s)}| \, ds
\]
But
\[
s \log \left(\frac{r}{s} \right) K_2(s) |e^{2 w_m(s)} - e^{2 w(s)}| \leq s \log \left(\frac{r}{s} \right) K_2(s) \left(e^{2 A_B(s)} - e^{2 \beta} \right)
\]
and \(s \log(r/s) K_2(s) e^{2 A_B(s)} \) is integrable. Hence from (6.17) and the uniform convergence of \(w_m \) to \(w \) on any compact interval, we conclude that \(T w_m \) converges to \(T w \) in \(X \). This verifies that \(T \) is continuous in \(Y \). We can easily compute that
\[
(T w)'(r) = \int_0^r \left(\frac{s}{r} \right) K_2(s) e^{2 w(s)} \, ds
\]
Hence, on any compact interval of \([0, \infty)\), \(T Y \) is uniformly bounded and equicontinuous. This proves that \(T Y \) is relatively compact in \(Y \). We can easily apply the Schauder-Tychonoff fixed point theorem to conclude that \(T \) has a fixed point \(w \) in \(Y \). This fixed point \(w \) is a solution of (6.6) and hence a solution of (6.5). Note that, when we have a solution \(w \) of (6.6) with a given \(\beta \), then we also have a solution \(w \) of (6.6) with \(\beta \) replaced by smaller \(\beta \)'s.

Similarly, we can construct solution \(v(|x|) \) of (6.4) such that \(v(0) = \beta' \) and \(v'(0) = 0 \). For a given \(\beta' \), since \(K_1(0) > 0 \), we can choose \(\beta < \beta' \), such that (6.6) has a solution \(w \) and \(w(r) < v(r) \) for all \(r \in [0, \infty) \). Using Theorem 2.10 of Ni [13], we conclude that (1.2) has a solution \(u(x) \) between \(w(|x|) \) and \(v(|x|) \). Now we can choose another \(\beta' \) smaller than this \(\beta \) to repeat the arguments. This completes the proof of this theorem. Q.E.D.

Theorem 6.2. Let \(K(x) \geq 0 \) be a locally Hölder continuous function in \(\mathbb{R}^2 \). If \(\bar{K}(r) \), as defined in (5.2), satisfies
\[
\bar{K}(r) \geq C/r^2 (\log r)^a
\]
for \(r \geq R_0 \), for some constants \(C > 0 \) and \(a > 0 \), then equation (1.2) does not possess any locally bounded solution in \(\mathbb{R}^2 \).

Proof. Assume that \(u \) is a locally bounded solution of (1.2) in \(\mathbb{R}^2 \). Then the average \(\bar{u} \) satisfies (5.3) for \(n = 2 \). Letting \(\bar{u}(0) = \beta = u(0) \), we have
\[
\bar{u}'(r) \geq \int_0^r \left(\frac{s}{r} \right) \bar{K}(s) e^{2 u(s)} \, ds,
\]
\[
\bar{u}(r) \geq \beta + \int_0^r s \log \left(\frac{r}{s} \right) \bar{K}(s) e^{2 u(s)} \, ds.
\]
Without loss of generality, we may assume that \(K(0) > 0 \) and hence \(\bar{K}(0) > 0 \). For \(r \geq e \), we have

\[
\bar{u}(r) \geq \beta + \int_0^1 s \log\left(\frac{r}{s} \right) \bar{K}(s) e^{2u(s)} ds + \int_r^1 s \log\left(\frac{r}{s} \right) \bar{K}(s) e^{2u(s)} ds \\
\geq \beta + \int_0^1 s \log r \bar{K}(s) e^{2\beta} ds + \int_1^r s \log\left(\frac{r}{s} \right) \bar{K}(s) e^{2u(s)} ds \\
\geq \beta + C_1 \log r + \int_r^1 s \log\left(\frac{r}{s} \right) \bar{K}(s) e^{2\bar{u}(s)} ds.
\]

Thus there exists a constant \(R_0 \) such that, for \(r \geq R_0 \),

\[
\bar{u}(r) \geq C_2 \log r + \int_r^1 s \log\left(\frac{r}{s} \right) \bar{K}(s) e^{2u(s)} ds \\
\geq C_2 \log r + \int_{R_0}^r s \log\left(\frac{r}{s} \right) \bar{K}(s) e^{2\bar{u}(s)} ds
\]

for some \(C_2 > 0 \). Let

\[
\bar{u}(r) = \frac{1}{2} C_2 \log r + v(r) \quad \text{for} \quad r \geq R_0.
\]

From (6.24), we have

\[
v(r) \geq \frac{1}{2} C_2 \log r + \int_{R_0}^r s \log\left(\frac{r}{s} \right) \bar{K}(s) s^{C_2} e^{2v(s)} ds \\
\geq \frac{1}{2} C_2 \log r + \int_{R_0}^r s \log\left(\frac{r}{s} \right) \bar{K}(s) s^{C_2} v^2(s) ds.
\]

But from assumption (6.20), we have

\[
\bar{K}(s) s^{C_2} \geq C/s^{2-C_2} (\log s)^a \geq C/s^2
\]

for \(s \geq R_1 > R_0 \). Hence from Theorem 3.1, there is no \(v \) in \([R_0, \infty)\) satisfying (6.26). This completes the proof of this theorem.

Theorem 6.3. Let \(K(x) \geq 0 \) be a locally Hölder continuous function in \(\mathbb{R}^2 \). If \(\bar{K}(r) \), as defined in (5.2), satisfies

\[
\int_0^r s^{1+a} \bar{K}(s) ds \text{ is monotonically strictly increasing in } [0, \infty) \text{ for all } a > 0.
\]

(6.24)

For given any \(a > 0 \), there exists an \(R_a > 0 \) such that

\[
\left(\frac{\log s}{\log r} \right)^m \leq \int_0^r t^{1+a} \bar{K}(t) dt / \int_0^r t^{1+a} \bar{K}(t) dt
\]

for some \(m > 0 \) and for all \(r \geq s \geq R_a \), then (1.2) does not possess any locally bounded solution in \(\mathbb{R}^2 \).
PROOF. Assume that \(u \) is a locally bounded solution of (1.2) in \(\mathbb{R}^2 \). Then as in the proof of Theorem 6.2, we have (6.21)–(6.26). Now we can let \(w(r) \log r = v(r) \) for \(r \geq R_0 \). Then from (6.26), we have

\[
(6.27) \quad w(r) \geq \frac{1}{2} C_2 + \int_{R_0}^{r} s \left(1 - \frac{\log s}{\log r} \right) K(s) s^{C_1 v^2(s)} ds.
\]

Now using a similar argument as in the proof of Theorem 3.3, we conclude that there is no function \(w \) satisfying (6.27). This contradiction proves the theorem. Q.E.D.

Theorem 6.4. Let \(K(x) \geq 0 \) be a locally Hölder continuous function in \(\mathbb{R}^2 \) and \(\tilde{K}(t) \) be a locally Hölder continuous function on \([0, \infty)\). Let the average \(\overline{K}(r) \) of \(K(x) \) in the sense of (5.2) satisfy the same assumptions as in Theorem 5.4. If

\[
(6.28) \quad \begin{cases}
 u''(r) + \frac{u'(r)}{r} = \tilde{K}(r)e^{2u(r)} \quad \text{in } (0, \infty), \\
 u(0) = \alpha, \quad u'(0) = 0
\end{cases}
\]

does not possess any locally bounded solution in \([0, \infty)\) for any real number \(\alpha \), then (1.2) does not possess any locally bounded solution in \(\mathbb{R}^2 \).

PROOF. The proof is similar to that of Theorem 2.4. Hence we omit the details. Q.E.D.

7. The case \(n = 1 \). In this case, we consider only the situation \(K(x) \geq 0 \) in (1.2). We give a main existence result which has an extension to the higher-dimensional case. We also give some nonexistence results.

Theorem 7.1. Let \(K(x) \geq 0 \) be a Hölder continuous function in \(\mathbb{R} \). If \(K(0) > 0 \) and there exists an \(\alpha > 0 \), such that

\[
(7.1) \quad \int_{-\infty}^{\infty} e^{2\alpha x} K(x) \, dx < \infty,
\]

then (1.2) has infinitely many locally bounded solutions in \(\mathbb{R} \) with linear growth at \(x = 0 \).

Proof. We shall seek solution \(u \) such that \(u(0) = \beta \) and \(u'(0) = 0 \). Consider now \(x \geq 0 \). In this situation, (1.2) is equivalent to the integral equation

\[
(7.2) \quad u(x) = \beta + \int_{0}^{x} (x - t) K(t) e^{2u(t)} \, dt, \quad x \geq 0.
\]

Now choose \(\beta \in \mathbb{R} \) so that

\[
(7.3) \quad \int_{0}^{1} K(t) e^{2(\beta + 1)} \, dt \leq \min \left\{ \frac{-1}{2}, 1 \right\},
\]

\[
(7.4) \quad \int_{1}^{\infty} K(t) e^{2(\beta + 1)} \, dt \leq \frac{e^{2\alpha \beta}}{2}.
\]

Let

\[
A(x) = \begin{cases}
 (\beta + 1) & \text{if } 0 \leq x \leq 1, \\
 (\beta + 1) + \alpha x & \text{if } 1 < x.
\end{cases}
\]
As in the proofs of Theorems 2.4 and 3.4, we let \(X \) denote the locally convex space of all continuous functions on \([0, \infty)\) with the usual topology and consider the set
\[
Y = \{ y \in X : \beta \leq y(x) \leq A(x) \text{ for } x \geq 0 \}.
\]
Clearly, \(Y \) is a closed convex subset of \(X \). Now define the mapping \(T \) by
\[
(Ty)(x) = \beta + \int_0^x (x-t)K(t)e^{2y(t)}dt.
\]
If \(y \in Y \), then \(\beta \leq y(x) \leq A(x) \). Hence we have
\[
(Ty)(x) = \beta + \int_0^x (x-t)K(t)e^{2y(t)}dt \geq \beta.
\]
On the other hand, for \(0 \leq x \leq 1 \), we have
\[
(Ty)(x) = \beta + \int_0^x (x-t)K(t)e^{2y(t)}dt \leq \beta + 1 = A(x).
\]
For \(1 < x \), we have
\[
(Ty)(x) = \beta + \int_0^1 (x-t)K(t)e^{2y(t)}dt + \int_1^x (x-t)K(t)e^{2y(t)}dt \\
\leq \beta + x \cdot \int_0^1 K(t)e^{2(\beta+1)}dt + x \cdot \int_1^\infty K(t)e^{2(\beta+1)}dt \\
\leq \beta + \frac{\alpha}{2} \cdot x + \frac{\alpha}{2} x \leq (\beta + 1) + \alpha x = A(x).
\]
Hence \(T \) maps \(Y \) into itself. As in the proofs of Theorems 2.4, 3.4 and 4.1, we can easily verify that \(T \) is continuous and \(TY \) is precompact. Hence \(T \) has a fixed point \(y \in Y \). This fixed point \(y \) is a solution of (1.2) for \(x \geq 0 \) with \(y(0) = \beta \) and \(y'(0) = 0 \).

Similarly, we can find a solution of (1.2) for \(x \leq 0 \) with \(y(0) = \beta \) and \(y'(0) = 0 \) provided that \(\beta \in \mathbb{R} \) is properly selected. It is also easy to see that if \(y \) is a solution of (1.2) with \(y(0) = \beta \) and \(y'(0) = 0 \), then there is also solution \(y \) with \(y(0) = \beta' \) and \(y'(0) = 0 \) provided that \(\beta' < \beta \). The linear growth of solutions at \(|x| = \infty \) can be easily established as in the proof of Theorem 4.1. This completes the proof of this theorem. Q.E.D.

We can apply this theorem to the higher-dimensional case as used in Ni [13, 14] and Kawano, Kusano and Naito [3].

Theorem 7.2. Let \(K(x) \geq 0 \) be a locally Hölder continuous function in \(\mathbb{R}^n = \mathbb{R} \times \mathbb{R}^{n-1} \). Let \(\phi_\ast(x_1) \) and \(\phi^\ast(x_1) \) be two locally Hölder continuous function in \(\mathbb{R} \). If
\[
0 \leq \phi_\ast(x_1) \leq K(x) \leq \phi^\ast(x_1) \text{ for all } x = (x_1, x') \in \mathbb{R} \times \mathbb{R}^{n-1},
\]
\[
\phi_\ast(0) > 0 \text{ and } \int_{-\infty}^{\infty} e^{2\alpha|x_1|} \phi^\ast(x_1)dx_1 < \infty \text{ for some } \alpha > 0,
\]
then equation (1.2) has infinitely many locally bounded solutions in \(\mathbb{R}^n \).
PROOF. The proof is actually similar to that of Theorem 4.2. We omit the details. Q.E.D.

Now let u be smooth function on \mathbb{R} and $K(x) \geq 0$ be a continuous function on \mathbb{R}. We define the averages \bar{u} and \bar{K} by

\begin{align}
\bar{u}(r) &= \frac{1}{2}[u(r) + u(-r)], \quad r \geq 0, \\
\bar{K}(r) &= \left[\frac{1}{2}(K(r)^{-1} + K(-r)^{-1})\right]^{-1}, \quad r \geq 0.
\end{align}

Our nonexistence results are

Theorem 7.3. Let $K(x) \geq 0$ be a locally Hölder continuous function on \mathbb{R}. If the average $\bar{K}(r)$ of $K(x)$ in the sense of (7.12) satisfies

\begin{equation}
\bar{K}(r) \geq \frac{C}{r^a}
\end{equation}

for $r \geq R_0$ and for some constants $C > 0$, $a > 0$, then equation (1.2) does not possess any locally bounded solution on \mathbb{R}.

Proof. Assume that $u(x)$ be a solution of (1.2) in \mathbb{R}. Then we have

\begin{equation}
\bar{u}''(r) = \frac{1}{2}[u''(r) + u''(-r)]
\end{equation}

But we have

\begin{equation}
e^{2\bar{u}(r)} = (e^{\bar{u}(r)})^2 \leq \left[\frac{1}{2}(e^{u(r)} + e^{u(-r)})\right]^2
\leq \left[\frac{1}{2}(K(r)e^{2u(r)} + K(-r)e^{2u(-r)})\right]
\cdot \left[\frac{1}{2}(K(r)^{-1} + K(-r)^{-1})\right].
\end{equation}

Hence we have

\begin{equation}
\bar{u}''(r) \geq \bar{K}(r)e^{2\bar{u}(r)}, \quad r \geq 0.
\end{equation}

It is also easy to see that $\bar{u}(0) = u(0)$ and $\bar{u}'(0) = 0$. From (7.16), we have

\begin{align}
\bar{u}'(r) &\geq \int_0^r \bar{K}(t)e^{2\bar{u}(t)} dt, \\
\bar{u}(r) &\geq \beta + \int_0^r (r-t)\bar{K}(t)e^{2\bar{u}(t)} dt.
\end{align}

Without loss of generality, we may assume that $K(0) > 0$ and hence $\bar{K}(0) > 0$. For $r \geq 1$, we have

\begin{align}
\bar{u}(r) &\geq \beta + \int_0^1 (r-t)\bar{K}(t)e^{2\bar{u}(t)} dt + \int_1^r (r-t)\bar{K}(t)e^{2\bar{u}(t)} dt \\
&\geq \beta + r\int_0^1 (1-t)\bar{K}(t)e^{2\beta} dt + \int_1^r (r-t)\bar{K}(t)e^{2\bar{u}(t)} dt \\
&\geq 2C_1 \cdot r + \int_{R_1}^r (r-t)\bar{K}(t)e^{2\bar{u}(t)} dt.
\end{align}
for $r \geq R_1 > 1$ and for some $C_1 > 0$. Now let $v(r) = \tilde{u}(r) + C_1 \cdot r$. We have from (7.19)

$$v(r) \geq C_1 \cdot r + \int_{R_1}^{r} (r - t) \tilde{K}(t) e^{2C_1 t} \cdot e^{2u(t)} dt.$$

Let $v(r) = w(r) \cdot r$, we have

$$w(r) \geq C_1 + \int_{R_1}^{r} \left(1 - \frac{t}{r}\right) \tilde{K}(t) e^{2C_1 t} \cdot e^{2w(t)} dt.$$

Now let $\tilde{K}(t) = t^{-1} \tilde{K}(t) e^{2C_1 t}$. We have from (7.13)

$$\tilde{K}(t) \geq C/t^2$$

for $t \geq R_2 > R_1$ for some $C > 0$. But (7.21) becomes

$$w(r) \geq C_1 + \int_{R_1}^{r} t \left(1 - \frac{t}{r}\right) \tilde{K}(t) w(t)^2 dt.$$

From Theorem 2.1, there is no function w satisfying (7.23). This contradiction proves the theorem. Q.E.D.

Theorem 7.4. Let $K(x) \geq 0$ be a locally Hölder continuous function on \mathbb{R}. If the average $\overline{K}(r)$ of $K(x)$ in the sense of (7.12) satisfies

$$\int_0^r e^{\alpha \overline{K}(s)} ds \text{ is strictly increasing and } \int_0^\infty e^{\alpha \overline{K}(s)} ds = \infty$$

for all $\alpha > 0$. For any given $\alpha > 0$, there exists $R_\alpha > 0$, such that

$$\left(\frac{s}{r}\right)^m \leq \int_0^s e^{\alpha \overline{K}(t)} dt / \int_0^r e^{\alpha \overline{K}(t)} dt$$

for some $m > 0$ and for $r \geq s \geq R_\alpha$, then equation (1.2) does not possess any locally bounded solution in \mathbb{R}.

Proof. Using the proofs of Theorems 7.3 and 2.3, we can easily prove this theorem. We omit the details. Q.E.D.

Theorem 7.5. Let $K(x) \geq 0$ be a locally Hölder continuous function in \mathbb{R} and $\tilde{K}(t)$ be a locally Hölder continuous function in $[0, \infty)$. Let the average $\overline{K}(r)$ of $K(x)$ in the sense of (7.12) satisfy the same assumptions as in Theorem 5.4. If

$$\begin{cases} u''(r) = \tilde{K}(r) e^{2u(r)} & \text{in } (0, \infty), \\ u(0) = \beta, \quad u'(0) = 0 \end{cases}$$

does not possess any locally bounded solution in $[0, \infty)$ for any real number β, then equation (1.2) does not possess any locally bounded solution in \mathbb{R}.

Proof. The proof is quite similar to that of Theorem 2.4. Hence we omit it. Q.E.D.

References

This content downloaded from 140.113.38.11 on Mon, 28 Apr 2014 16:28:17 PM
All use subject to JSTOR Terms and Conditions
11. ________, Conformal metric in \(\mathbb{R}^2 \) with prescribed Gaussian curvature and positive total curvature, Indiana Univ. Math. J. 34 (1985), 97–104.
14. ________, On the elliptic equation \(\Delta u + k(x)e^{2u} = 0 \) and conformal metrics with prescribed Gaussian curvatures, Invent. Math. 66 (1982), 343–352.
15. O. A. Oleinik, On the equation \(\Delta u + k(x)e^{u} = 0 \), Russian Math. Surveys 33 (1978), 243–244.

DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL CHIAO-TUNG UNIVERSITY, HSINCHU, TAIWAN 300, REPUBLIC OF CHINA (Current address of Jenn-Tsann Lin)

Current address (Kuo-Shung Cheng): Institute of Applied Mathematics, Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China