A Quasi-Two-Dimensional Analytical Model for the Turn-On Characteristics of Polysilicon Thin-Film Transistors

POLE-SHANG LIN, STUDENT MEMBER, IEEE, JWIN-YEN GUO, STUDENT MEMBER, IEEE, AND CHING-YUAN WU, MEMBER, IEEE

Abstract—A physical model considering the effects of grain boundaries on the turn-on behavior of polysilicon thin-film transistor's (poly-Si TFT's) is presented. Along the channel, the formation of the potential barrier near the grain boundary is proposed to account for the low transconductance and high turn-on voltage of TFT's. The barrier height is expressed in terms of channel doping, gate oxide thickness, grain size, and external gate as well as drain biases. Drain bias will result in an asymmetric potential barrier and introduce more carrier injection from the lowered barrier side. It is shown that this consideration is very important to characterize the saturation region under large drain-bias condition. Based upon the developed potential barrier model, the I-V characteristics are described by the interfacial-layer thermionic-diffusion model. Moreover, thin-film transistors on polycrystalline silicon with a coplanar structure were fabricated for testing. Comparisons between the developed model and the experimental data have been made and excellent agreement has been obtained.

NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Psi)</td>
<td>Two-dimensional potential distribution.</td>
</tr>
<tr>
<td>(e_{Si} (e_{ox}))</td>
<td>Dielectric permittivity of Si (SiO(_2)).</td>
</tr>
<tr>
<td>(\Psi_{io})</td>
<td>The potential distribution at the point (0, 0) in the ith grain as shown in Fig. 1.</td>
</tr>
<tr>
<td>(V_i)</td>
<td>Quasi-Fermi level difference between the source and the ith grain in the channel.</td>
</tr>
<tr>
<td>(N_A)</td>
<td>Average doping concentration in the p-type substrate.</td>
</tr>
<tr>
<td>(C_{ox})</td>
<td>Gate oxide capacitance per unit area.</td>
</tr>
<tr>
<td>(V_{FB})</td>
<td>Flat-band voltage.</td>
</tr>
<tr>
<td>(y_d)</td>
<td>Depletion depth.</td>
</tr>
<tr>
<td>(x_d)</td>
<td>Lateral width of the space-charge region on the left (−)/right (+) side of the ith grain boundary as shown in Fig. 1.</td>
</tr>
<tr>
<td>(E_L)</td>
<td>Lateral electric field emanating from the drain.</td>
</tr>
<tr>
<td>(N_{th})</td>
<td>Trapping density at the grain boundary.</td>
</tr>
<tr>
<td>(Q_{GB})</td>
<td>Areal density of the charges trapped at the grain boundary.</td>
</tr>
<tr>
<td>(E_T)</td>
<td>Trap energy level.</td>
</tr>
<tr>
<td>(E_i)</td>
<td>Intrinsic energy level.</td>
</tr>
<tr>
<td>(E_{F_i})</td>
<td>Quasi-Fermi level in the ith grain.</td>
</tr>
<tr>
<td>(\Psi_{BH})</td>
<td>Barrier height on the left (−)/right (+) side of the ith grain boundary as shown in Fig. 1.</td>
</tr>
<tr>
<td>(\phi_{inv})</td>
<td>Surface band-bending at the onset of strong inversion.</td>
</tr>
<tr>
<td>(\gamma_{inv})</td>
<td>Depletion depth at the onset of strong inversion (\gamma_{inv}) [(\gamma_{inv} = \frac{2\epsilon_{si} \sqrt{\phi_{inv} / qN_i}}{1/2})].</td>
</tr>
<tr>
<td>(V_{To})</td>
<td>Intrinsic threshold voltage of TFT's without the effect of charge coupling between the grain boundary and the gate voltage.</td>
</tr>
<tr>
<td>(V_T)</td>
<td>Threshold voltage of TFT's with finite grain size.</td>
</tr>
<tr>
<td>(n(0, 0))</td>
<td>Electron density at the point (0, 0) in Fig. 1.</td>
</tr>
<tr>
<td>(V_d)</td>
<td>Voltage drop across the lateral depletion region of the ith grain.</td>
</tr>
<tr>
<td>(\delta V_i)</td>
<td>Voltage drop across the ith grain.</td>
</tr>
<tr>
<td>(m_*)</td>
<td>Effective conduction mass of electrons.</td>
</tr>
<tr>
<td>(\theta_s)</td>
<td>Transmission coefficient of electrons across the grain boundary.</td>
</tr>
<tr>
<td>(\nu_{Rn})</td>
<td>Thermal velocity of electrons across the grain boundary (\nu_{Rn} = \frac{K_B T}{2\pi m^*}).</td>
</tr>
<tr>
<td>(\theta_n \nu_{Rn})</td>
<td>Effective velocity of electrons across the grain boundary.</td>
</tr>
<tr>
<td>(\nu_{D})</td>
<td>Effective diffusion velocity of electrons in the space-charge region of the ith grain.</td>
</tr>
<tr>
<td>(\beta)</td>
<td>Inverse of the thermal voltage (\beta = \frac{q}{K_B T}).</td>
</tr>
<tr>
<td>(L_i)</td>
<td>Average grain size.</td>
</tr>
<tr>
<td>(N_g)</td>
<td>Total number of grains distributed in the channel.</td>
</tr>
<tr>
<td>(W_i)</td>
<td>Total lateral width of the space-charge region in the ith grain.</td>
</tr>
<tr>
<td>(\mu_n)</td>
<td>Electron mobility in the surface channel.</td>
</tr>
<tr>
<td>(\mu_o)</td>
<td>Maximum electron mobility in the surface channel.</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Empirical constant for surface-roughness scattering.</td>
</tr>
<tr>
<td>(\nu_{vl})</td>
<td>Scattering-limited velocity.</td>
</tr>
</tbody>
</table>

I. INTRODUCTION

RECENTLY, polycrystalline silicon thin-film transistors (poly-Si TFT's) have been extensively studied because of their important applications in flat-panel dis-

Manuscript received July 25, 1988; revised August 11, 1989. This work was supported by the National Science Council, Taiwan, Republic of China. The review of this paper was arranged by Associate Editor K. C. Saraswat. The authors are with the Institute of Electronics, College of Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan, Republic of China.

IEEE Log Number 8932795.
play and three-dimensional integration [1], [2]. Due to the formation of the grain boundaries along the channel, the characteristics of poly-Si TFT's show much smaller transconductance and larger threshold voltage than those of single-Si MOSFET's [3]-[7]. Fossum and Ortiz-Conde [5] had proposed a model in which the barrier height in the channel under the condition of large gate bias was related to the difference in carrier concentration between the inversion region and the depletion region near the grain boundary. Their model, however, largely overestimates the barrier height as the gate bias is around the threshold voltage. Due to this deficiency, Serikawa et al. [6] had modified Fossum's model by using an empirical formula to fix the potential barrier height to 0.55 V at the threshold voltage in order to characterize the current–voltage relation biased below the saturation region. However, the threshold voltage dependence on trapping density and grain size was not well discussed and was simply treated as a fitting parameter. Moreover, the drain voltage predicted by their model will level off before the saturation point due to the fact that the grain barrier dependence on the drain voltage is overlooked. Anwar and Khondker [7] had taken the effects of the grain size on the potential barrier height into consideration and discussed the characteristics of the threshold voltage and the conductance of TFT's with finite grain size. Their model, which is based upon a simplified numerical analysis, only takes into account the charge coupling between the gate and the grain boundaries. However, the effects of drain bias on the barrier height are still overlooked. It will be shown later that the drain bias will result in the asymmetric grain barrier and introduce more carrier injection from the lowered barrier side. This important effect is called the drain-induced grain barrier lowering (DIGBL) effect, which is shown to be a key factor in characterizing the exponential dependence of the drain current on the drain voltage for poly-Si TFT's operated at large drain voltage.

In this paper, we present a quasi-two-dimensional analytical model for the threshold voltage and the potential barrier height in the channel of poly-Si TFT's by considering crystalline structures from small to large grain sizes. The asymmetric barrier height modulated by the drain bias also has been considered. Based upon the developed potential barrier model, the current–voltage characteristics of poly-Si TFT's biased at the turn-on region have been described by the interfacial-layer thermionic-diffusion model. Finally, theoretical simulations have been compared with experimental data.

II. BARRIER HEIGHT AND THRESHOLD VOLTAGE

The formation of a potential barrier in the polycrystalline Si substrate channel is due to the fact that carriers are trapped at the localized grain-boundary states, and in turn, these trapped charges deplete free carriers near the grain boundaries. This charge-trapping process is almost the same as that of the bulk, except that the trapped charges are influenced by the gate bias. For a p-type poly-Si substrate, holes are trapped at the grain boundaries. When a positive voltage with respect to the substrate is applied to the gate, the energy band is bent down toward the Si–SiO₂ interface. The traps distributed in the regions where the trap level moves closer to the Fermi level are gradually filled by induced electrons. Thus, some of the total electric-flux lines emanating from the gate are terminated in the grain boundaries and some by the bulk ionized charges. The potential barrier height, therefore, must be characterized by a two-dimensional solution of Poisson's equation.

A cross-sectional view of a poly-Si TFT with uniform grain doping is shown in Fig. 1; only the ith grain boundary and its nearby grains are shown for simplicity. In the shaded region, free carriers are depleted by the trapped charges in the grain boundaries; the two-dimensional Poisson's equation can be written as

\[\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} = \frac{qN_A}{\varepsilon_{si}} \]

in which the boundaries of the shaded region are defined as follows: boundary 1 is located at the depletion edge where the boundary potential exhibits a maximum with zero lateral electric field for either partially or completely depleted grain. Although boundary 1 may not be straight line at higher drain bias, it is still a good approximation to simplify the analysis; boundary 2 is located at the Si–SiO₂ interface; boundary 3 is located at the grain boundary where carriers are trapped at the localized states; boundary 4 is located at the depletion region edge (y_d), below which the depletion charges belong to the grain boundary in the bulk. Since the electric field direction is almost lateral at the depletion edge y_d, it is reasonable to assume the normal electrical field at y = y_d is zero. Moreover, it is assumed that y_d is independent of x for simplicity.

Applying Gauss's theorem to a volume enclosed by the planes located at these boundaries [8], we get

\[\frac{-C_{ox}}{\varepsilon_{si}} \int_0^x \left[V_{GS} - V_{FB} - \Psi(x', 0) \right] dx' - \int_0^{y_d} \frac{\partial}{\partial x} \Phi(x, y') dy' = \frac{-qN_A y_d x}{\varepsilon_{si}}. \]

It should be noted that if the variation of y_d with respect to x is not significant within a single grain, the resulting error for the grain barrier in the surface layer can be smeared out due to the integration process in (2). Under the same assumptions, the potential function can be expressed as \(\Psi(x, y) = \Psi(0, y) + \phi(x) \left(1 - \left(y / y_d \right)^2 \right) \). Substituting the above relation into (2) and differentiating both sides with respect to x, we have

\[\frac{\partial^2 \phi(x)}{\partial x^2} - K^2 \phi(x) = -K^2 V_{ON} \]

where

\[\phi(x) = \Psi(x, 0) - \Psi_{eo} \]
Fig. 1. The cross-sectional view of the ith grain in a TFT. The 2-D Poisson’s equation is solved in the shaded region on the left/right side of the ith grain boundary.

\[K = \left[\frac{C_{ox}}{\varepsilon_{si}} \right]^{1/2} \]

\[V_{QN}^{i} = V_{GS} - V_{FB} - \Psi^{i}_{i0} = \frac{qN_{A}x_{d}}{C_{ox}}. \]

Solving (3) and using the following boundary conditions:

\[\phi(0) = 0 \quad \text{and} \quad \frac{\partial \phi}{\partial x} \bigg|_{x=0} = 0 \]

one can easily obtain the solution as

\[\phi(x) = V_{QN}^{i} - V_{QN}^{i} \cosh(Kx). \]

Similarly, the potential distribution in the right side of the ith grain boundary can be easily calculated. Then, the electric field along the channel at the grain boundary is given by

\[KV_{QN}^{i} \sinh(Kx^{i}_{B}) = \frac{Q_{iB}^{i}}{2\varepsilon_{si}} \mp E_{L} \]

where the symbol \((\mp)\) means that the discussed region is in the left/right side of the ith grain boundary.

In general, the trapped charge density in the grain boundary depends on the distribution of the localized trapped states in the energy gap. Based upon previous work [9], the trap distribution can be well approximated by an effective trap state \(E_{T}\), and the trapped charge density can be written as

\[Q_{iB}^{i} = \frac{qN_{A}x_{d}}{1 + \frac{1}{2} \exp \left[\frac{(E_{T} - E_{F})_{i-x_{d}}}{k_{B}T} \right]} \]

where the position of the Fermi level relative to the trap level at the grain boundary can be related to the barrier height and the Fermi level in the undepleted channel by

\[(E_{T} - E_{F})_{i-x_{d}} = (E_{T} - E_{i}) + q\Psi_{i} - (E_{F} - E_{i}) \bigg|_{x=0}. \]

Note that the above relation neglects the variations of the quasi-Fermi level in the depletion region near the grain boundary. This approximation is valid for the TFT’s operated in the turn-on region, where the population of traps is not sensitive to the variations of \((E_{T} - E_{F})\) because all of the traps are filled by inversion carriers \((Q_{iB}^{i} = qN_{A})\). It will be shown in Section III that, even in the saturation region, all of the traps along the current path are still filled by inversion carriers because the saturation behavior of TFT’s is due to carrier velocity saturation and not due to pinchoff effect. When the TFT is operated in the subthreshold region, the grain boundary traps are not completely filled by inversion carriers and the effects of the drain bias on the trapped charges should not be overlooked. Under this condition, it is difficult to determine the trap population. However, the physical mechanism in the subthreshold region is not a focus point of our paper.

For a given grain size, there exist two possible conditions, depending on the lateral depletion width \((x_{d})\): (A) \(x_{d} < L_{g}/2\) and (B) \(x_{d} = L_{g}/2\). For case (A), only part of the grain is depleted of carriers and the inversion region exists on the left side of boundary 1, as shown in Fig. 1. Therefore, the gradual channel approximation is assumed to be valid in the inversion region, in which the normal component of the electric field is much larger than the lateral component, and the charge coupling between the gate and the grain boundary is small.

Combining (8) and (9), the ith grain barrier is obtained as

\[\Psi_{iB}^{i} = \left[\phi(x^{i}_{B}) \right]_{\mp} \]

\[= \left[(V_{QN}^{i})^{2} + \frac{Q_{iB}^{i}}{2\varepsilon_{si}} \mp \frac{E_{L}^{i}}{K} \right]^{1/2} - V_{QN}^{i}. \]

Under a large gate voltage, all of the traps in the surface layer are filled by electrons, and the surface potential \(\Psi_{s0}^{i} \leq V_{CN}^{i}\) can be approximated by \(\phi_{inv} + V_{t}\). The ith grain barrier in (12) can be simplified as

\[\Psi_{iB}^{i} = \frac{\phi_{inv} + V_{t}}{\phi_{inv} + V_{t}} \]

where the effects of external biases on the ith grain barrier are revealed. From (12), the barrier height decreases with increasing gate bias, and the lateral electric field \(E_{L}^{i}\) emanating from the drain induces the potential barrier lowering on the left side and increasing on the right side.

Under a large gate voltage, all of the traps in the surface layer are filled by electrons, and the surface potential \(\Psi_{s0}^{i} \leq V_{CN}^{i}\) can be approximated by \(\phi_{inv} + V_{t}\). The ith grain barrier in (12) can be simplified as

\[\Psi_{iB}^{i} = \frac{\phi_{inv} + V_{t}}{\phi_{inv} + V_{t}} \]

where

\[\phi_{inv} = \frac{2K_{i}T}{q} \ln \left(\frac{N_{A}}{n_{i}} \right) \]

and

\[V_{t} = V_{FB} + \phi_{inv} + \frac{qN_{A}x_{d}}{C_{ox}} \]

where
for large-grain TFT's. From the above equation, it is clearly seen that the grain barrier is proportional to the oxide thickness and the depletion depth. Moreover, it is noted that (13) is different from the model proposed by Fossum and Ortiz-Conde [5] through the factor $y_{div}/3$ and the influence of the drain voltage. In [5], an arbitrary constant was introduced for the inversion-layer thickness in order to formulate the average density of inversion carriers.

If the gate bias is around the threshold voltage, the barrier height in (12) is fixed to ϕ_{B0} and is expressed as follows:

$$\phi_{B0} = \left(\frac{Q_{GB} - \frac{E_i}{K}}{2K\varepsilon_i} \right).$$

For case (B), the ith grain in the lateral direction is completely depleted (i.e., $x_d = L_e/2$), the electric field in the channel region is strongly perturbed by the charges at the grain boundary, and boundary line 4 can still be found somewhere in the bulk. In this case, the floating potential $\Psi(o, y_{div})$ is not zero, but is a function of the bulk doping concentration, the grain size, and the trap states in the bulk grain boundary. As the band bending is toward the Si-SiO$_2$ interface, some induced carriers are captured by the traps in the grain boundaries. An additional gate voltage above V_{to} of a conventional MOSFET is required to support these extra charges in the traps. In this case, the surface band-bending $\Psi(o, y_{div})$ is determined not only by the gate bias and the ionized charges in the bulk but also by the charge states of the traps at the grain boundaries. Its value is determined by

$$KV_0^i \sinh (KL_e/2) = \frac{Q_{GB} + E_i}{2K\varepsilon_i}.$$

In the depletion region of the ith grain boundary, the current density for any applied voltage is given by

$$J = qn(0, 0)\mu^i \frac{\delta V - V_f}{L_e - W_T}. $$

In the depletion region of the ith grain boundary, the current density for any applied voltage is given by [10]

$$J = \frac{\nu_{2n} \theta^- v_{rn}}{\nu_{rn} + \theta^- v_{rn}} qn(0, 0) \exp \left(\frac{-\beta \Psi^-}{2} \right) \cdot \left[1 - \exp \left(\frac{-\beta V_{df}}{q} \right) \right].$$

Note that the second term on the right-hand side of (19) is the extra gate voltage for filling the charges in the traps at the grain boundaries and has an exponential dependence on the grain size. Since $\Psi(o, y_{div})$ has a much weaker dependence on the grain size than that of the extra gate voltage, $\Psi(o, y_{div})$ can be simply lumped into the parameter V_{fb} for fine-grain TFT's.

III. I-V Model

In the channel, electrons across the barrier at the grain boundary must transport through the depletion region near the grain boundary and the inversion region far away from the grain boundaries. Since the emission over the barrier and the drift diffusion in the depleted and inversion regions are effectively in series, one that offers high resistance determines the current. Several authors [10], [11] have combined these processes into a single theory. In this paper, the I-V characteristics of TFT's are based upon the interfacial-layer thermionic-diffusion model proposed by Wu and Ken [10] in which carrier transport mechanisms are described by thermionic-diffusion motion across the depletion region and quantum tunneling through the grain boundary.

In the inversion region of the ith grain, the current density is given by

$$J = qn(0, 0)\mu^i \frac{\delta V - V_f}{L_e - W_T}.$$

The threshold voltage (V_T) of a TFT with finite grain size is defined as the gate voltage at which the minimum surface potential is at the onset of strong inversion or the inversion carrier density at the surface is equal to the background doping concentration N_d. Since the position of the minimum surface potential is near the source, then Φ_{inv} and V_T in (16)-(18) are equal to ϕ_{inv} and zero, respectively. Rewriting (16), the threshold voltage V_T at the low drain bias can be obtained as

$$V_T = V_{to} + \frac{Q_{GB} + E_i}{2K\varepsilon_i K \sinh (KL_e/2)}.$$

where V_{to} for a fine-grain TFT is given by

$$V_{to} = V_{fb} + \Psi(o, y_{div}) + \phi_{inv} + \frac{qN_d y_{div}}{Cox}$$

and

$$\phi_{inv} = \frac{Q_{GB}}{q} \ln \left(\frac{N_d}{n_i} \right) + E_{fr}.$$

Under the strong inversion condition, the inversion carriers are almost confined in the surface layer. Integrating
(21) and (23) across the inversion layer, we obtain the total current, and the integrations of \(qn \) (0, 0) can be replaced by the charge density induced in the surface layer \(Q_n(V_i) \). From the above approximation, the current equation can be combined into a single expression as

\[
I_{DS} = \left(\mu_n / F_i \right) W Q_n(V_i) \left(\delta V_i / L_x \right) \tag{24}
\]

where

\[
Q_n(V_i) = C_{ox} (V_{GS} - V_T - V_i) \tag{25}
\]

\[
F_i = \frac{\nu_{mn} + \phi_{inw} \nu_{rn}}{\nu_{mn} \theta_{rn}} \left(\mu_n \right) \exp \left(\beta \Psi_{inw} \right) + \left(1 - W_i / L_x \right) \tag{26}
\]

\[
\nu_{mn} = \left(K_B T / q \right) \mu_n \left\{ \int_{V_i}^{V_{dsat}} \exp \left(\beta V'_{QN} \left(\cosh (Kx) - \cosh (Kx_{inw}) \right) \right) dx \right\}^{-1} \tag{27}
\]

in which \(V'_{QN} \) is given in (6); \(\Psi_{inw} \) is equal to \(\phi_{inw} + V_i \) at the strong-inversion mode; \(\mu_n \) is the electron mobility in the surface layer. Due to the asperity of the poly-Si-SiO\(_2\) interface, the surface-roughness scattering in poly-Si TFT’s is more serious than that of single-Si MOSFET’s. Therefore, it will introduce erroneous results for a wide range of gate biases if the mobility is taken to be a constant. The electron mobility including the effects of surface scattering and velocity saturation can be expressed as [12]

\[
\mu_n = \frac{\mu_n}{1 + \theta (V_{GS} - V_T - V_i) + \mu_n \xi E_i^L + \xi} \tag{28}
\]

where \(\xi = 2 \theta (qN_s \gamma_{diss} / C_{ox}) \).

If the drain bias is small, the terms in \(F_i \) denoted with the superscript \(i \) are independent of the position, and the current \(I_{DS} \) can be easily integrated as

\[
I_{DS} = \left(\mu_n / F \right) W L \left(V_{GS} - V_T - V_{diss} / 2 \right) V_{dsat}. \tag{29}
\]

For a large bias, the voltage drop across each grain is not equal, and transport mechanisms in each grain must be characterized by a large-signal model. The exact current–voltage characteristics can only be obtained by solving the \(N_g - 1 \) node equations for \(N_g \) grains. Due to higher complexity, it is desirable to simplify the formulation with some approximations: the average of the channel electric field \(E_{i_{ave}} = - \eta V_{GS} / L \) is used instead of the position-dependent parameter \(E_i^L \) in the evaluation of the barrier height \(\Psi_{inw} \). For \(I-V \) formulation (24), where the parameter \(\eta \) is a factor used to consider the effect of nonlinear electric field along the surface channel [12]. Since the factor \(\beta \Psi_{inw} \) in (23) is obtained by linearizing \(1 - \exp \left(-\beta \Psi_{inw} \right) \), which is multiplied with \(-\beta V_{inw} \) in the general \(I-V \) formulation (22), the above approximation may reduce the errors introduced by extending the small-signal model in (23) to the large-signal model. Then, the parameters in \(F_i \) shown in (24) are only dependent on the potential along the surface channel. Multiplying both sides of (24) by \(L_x \) and integrating with respect to the potential along the surface, the drain current can be expressed as

\[
I_{DS} = \frac{W}{L} \int_{V_{dsat}}^{V_{dsat}} \frac{\mu_n}{F_i(V_i)} Q_n(V_i) dV_i. \tag{30}
\]

Noted that the threshold voltage \(V_T \) in \(Q_n(V_i) \), as derived in the previous section, is valid for low drain-bias condition, and the variations of bulk depletion charges and trapped charges due to the drain voltage have been overlooked. The approximation used in \(V_T \) will affect the turn-on \(I-V \) characteristics near the threshold voltage. However, the major drain-bias dependence of the derived \(I-V \) characteristics is due to the exponential dependence of the grain barrier on the drain bias. Therefore, the effects of drain voltage on the threshold voltage can be overlooked without losing accuracy in the derivations of turn-on drain current at large gate bias.

As the drain bias increases, the electric field in the region near the drain is higher than the critical electric field \((E_C) \); then the drift velocity of electrons approaches to a saturation value \((v_{ds}) \). The drain voltage needed to satisfy this condition is called the drain saturation voltage \((V_{dsat}) \). The corresponding saturation drain current \((I_{dsat}) \) can be obtained by using (30) with \(V_{ds} = V_{dsat} \) and by (24) for the grain near the drain with \(E_i^L = V_{dsat} / L_x = E_C \) and \(V_i = V_{dsat} \). Equating these two saturation drain currents, the value of \(V_{dsat} \) can be determined. In the saturation region, the density of free carriers in (30) can be expressed as

\[
Q_n(V_i) = C_{ox} \left[V_{GS} - V_T - V_{dsat} \right] \quad \text{for} \quad V_i \geq V_{dsat} \tag{31}
\]

and the effective electron velocity is a constant, which is the saturation velocity \((v_{ds}) \) in series with the effective velocity across the depletion region and the grain boundary. It should be noted that the drain current does not level off beyond the saturation point, but shows the exponential dependence on the drain voltage due to the DIGBL effects. Moreover, the carriers in the saturation region are not pinched off, and all the traps in the carrier flow path are still filled by electrons. Thus, the modulation of the trapped charges by the drain voltage can be neglected without introducing large errors.

IV. RESULTS AND DISCUSSIONS

A. Theoretical Analysis

In order to demonstrate the physical pictures from our previous derivations, the set of physical parameters listed in Table I is used unless mentioned otherwise. From (19),
the effects of grain size on the threshold voltage are calculated and shown in Fig. 2. It shows that the smaller the grain size is, the larger the threshold voltage will be. Moreover, for a TFT with larger grain size, the threshold voltage (V_T) will approach to that of a single-Si MOSFET. From (12) and (18), the variations of the grain barrier with respect to the gate bias for different grain sizes are calculated and shown in Fig. 3. It shows that the potential barrier height increases with increasing the gate bias at first, reaches a peak value at the onset of strong inversion ($V_{GD} = V_T$), and then decreases. Since some induced carriers are captured by the traps, the barrier height increases initially with increasing gate bias. As the gate bias is further increased, all of the traps are filled, and the total trapped charges remain the same. But, the lateral depletion width (x_d) decreases, so the barrier height rolls off. Moreover, it shows that the smaller the grain size is, the lower the barrier height will be. This feature is due to the fact that ϕ_{int} decreases with decreasing grain size.

The theoretical curves showing the effects of trapping density and grain size on the conductance (I_{DS}/V_{DS}) and the effective mobility (μ_e/F) are shown in Figs. 4 and 5, respectively, in which the same parameter values except the trapping density are used in order to easily compare the characteristics of TFT's affected by the variations of trapping density. The effective mobility versus the gate voltage can be generally divided into two regions, as shown in Fig. 4. The effective mobility first monotonically increases with the gate voltage, and then decreases gradually. At low gate voltage, the current flow is limited by the depletion region. The monotonic increase of the effective mobility is due to the fact that the potential barrier decreases with increasing the gate voltage, as discussed in the previous section. When the potential barrier decreases to a value smaller than the thermal voltage ($k_B T/q$), the current flow is limited by the inversion region in which the surface roughness scattering causes the effective mobility decrease. For the case of higher trapping density, the potential barrier is still much larger than the thermal voltage under the gate bias range, as shown in Fig. 3, and thus the current is only limited by the grain boundary and its depletion region. Although the difference in the effective mobility for the grain sizes smaller
than 1000 Å is small, the difference in the conductance is large, as shown in Fig. 5. This phenomenon is mainly due to the fact that the threshold voltage \(V_T \) is strongly dependent on the grain size, as shown in Fig. 2.

B. Experimental Results and Theoretical Comparisons

In order to test the validity of the developed \(I-V \) model, n-channel enhancement poly-Si TFT's were fabricated. A small-grain poly-Si film of 550 nm was deposited onto a 600-nm SiO_2 layer thermally grown on p-type bulk Si by the LPCVD method at 625°C. The LPCVD poly-Si was then implanted using boron ions at 60 keV with a dose of \(5 \times 10^{12} \) cm\(^{-2} \). After being patterned into individual devices, a 98-nm gate oxide film was grown by dry oxidation, and then another LPCVD poly-Si film of 550 nm was deposited. The source, the drain, and the poly-Si gate were simultaneously implanted using arsenic ions at 180 keV with a dose of \(4 \times 10^{15} \) cm\(^{-2} \). The average channel concentration is estimated to be about \(1.0 \times 10^{17} \) cm\(^{-3} \).

The effective channel length is determined by the drain current ratio of two different channel-length devices and is shown in the Appendix. The parameter extraction procedure is described as follows. INVoking (13), the parameters \(N_0 \) and \(V_{TO} \) can be estimated by linear extrapolation on the plot of \(1/\Psi_B \) versus \(V_{GS} \) at the low drain bias condition. The grain size \(L_g \) and the effective trapped level \(E_T \) can be estimated by comparing the experimental barrier-height data versus the applied low gate voltage. From the values of \(V_{TO} \) and \(L_g \), the effective surface fixed charge density \(Q_{SF} \) can be determined, and the order of \(\mu_0 \) can be estimated. Then, the values of \(\mu_0, \theta_s \), and \(\theta_s \) are determined by comparing the experimental drain current versus the applied low gate voltage. From the values of \(\mu_0, \theta_s \), and \(\theta_s \), \(\nu_{TR} \) is estimated. Then, the values of \(\mu_0, \theta_s \), and \(\theta_s \) are determined by comparing the experimental drain current versus the applied gate voltage at low drain voltage. The remaining parameters, \(\eta \) and \(E_C \), are extracted at large drain voltage by comparing the drain current versus the drain voltage. Finally, all parameters are slightly adjusted by the nonlinear optimizer [13] to get the best \(I-V \) fittings. Table I lists the parameters used in our simulations.

Fig. 6 shows the Arrhenius plots of the measured drain current versus the inverse of temperature for different gate biases and a drain voltage of 0.5 V. The strong dependence of the drain current on temperature is mainly due to the formation of the potential barrier along the flow path of carriers, and the activation energy or the potential barrier height can be deduced from Fig. 6. Fig. 7 illustrates the measured potential barrier height with respect to the applied gate voltage and its comparisons with the calculated results. Moreover, Fig. 7 also shows the linearity on the plot of \(1/\Psi_B \) versus \(V_{GS} \) under the large gate bias condition. From Fig. 7, it is clearly seen that the agreement between the measured barrier height and the theoretical results is good for \(V_{GS} > V_T \). However, the discrepancy for the bias below the threshold voltage \(V_T = 1.68 \) is mainly due to the fact that the measured \(I_{DS} \) is contributed by the subthreshold current or the anomalous leakage current [14]. The \(I-V \) characteristics of TFT's with long \(L = 7.5 \mu m \) and short \(L = 2.5 \mu m \) channel length are investigated. Fig. 8 shows the effective mobility \(\mu_0/F \) with respect to the gate voltage at low drain voltage. The increase of the effective mobility with respect to the gate voltage means that the current is limited by the grain boundary and its nearby depletion region, as
discussed previously. Fig. 9 shows the experimental and calculated I-V characteristics for different gate biases. Good agreement between the calculated results and the experimental data for long- and short-channel-length TFT's has been obtained. The value of the maximum electron mobility (\(\mu_0 \)) in the surface channel is only 90 cm\(^2\)/V-s. This may be due to higher channel doping \(N_A \) (= 1.0 \times 10^{17} \text{ cm}^{-2} \) as well as fixed charge density \(Q_d \) (= 8.2 \times 10^{11} \text{ cm}^{-2} \). The parameter \(\theta \) used in our simulation is about an order larger than that of single-Si MOSFET's [12], which is attributed to the effect of surface roughness. The transmission coefficient across the grain boundary \((\tau_e) \) is much less than unity, which means that the scattering of electrons in the grain boundary cannot be neglected. The average grain size used in our simulation is 2090 Å and is within the order of the data reported in [15], in which the grain size near the top of the LPCVD 0.47-µm poly-Si film deposited at 620°C is approximately 0.15-0.2 µm.

It is noted that the normalized current (\(I_{DS} * L/W \)) of a short-channel TFT is larger than that of a long-channel device. Moreover, the drain current under large drain bias has the exponential dependence on the drain voltage and does not level off above the saturation point, as marked by the dots in Fig. 9. These characteristics are quite different from those of single-Si MOSFET's. Although the effective carrier velocity and carrier charge density are constant in the saturation region, the grain barrier in the surface layer is modulated by the drain voltage. Therefore, extra carriers are injected from the lowered barrier side and introduce extra current flow.

V. CONCLUSIONS

In this paper, a quasi-two-dimensional analytical method has been developed to calculate the grain barrier height of a polysilicon TFT, and it includes the effects of charge coupling between the gate and the grain boundary as well as drain-induced grain barrier lowering. Based upon the developed grain barrier model, the threshold voltage has been derived in terms of grain size, trapped charge density, and substrate doping density. Moreover, the I-V model is developed by using the interfacial-layer thermionic-diffusion model. The attractive features of the developed models are: 1) the threshold voltage of a TFT has an exponential dependence on the grain size (the smaller the grain size is, the larger the threshold voltage will be); 2) drain bias will produce asymmetric grain barriers and introduces more carrier injection from the lowered barrier side, which results in the exponential dependence of the drain current on the large drain voltage. From comparisons between experimental devices and calculated results, the developed I-V model is quite successful in explaining the experimental observations.

APPENDIX

THE DETERMINATION OF THE CHANNEL LENGTH

Let \(L_{mi} \) and \(\Delta L_i \) denote the mask and the bias length of the \(i \)th device. Based upon the current equation (29), the current ratio of two devices with different channel lengths can be expressed as

\[
\frac{I_{DS1}}{I_{DS2}} = \frac{L_{m2} - \Delta L_2}{L_{m1} - \Delta L_1} = g \frac{L_{m2} - \Delta L_2}{L_{m1} - \Delta L_1}
\]
because the other parameters are independent of the channel length. If the mask length \(L_{m2} \) is much larger than the difference of two bias lengths (i.e., \(L_{m2} >> \Delta L_1 - \Delta L_2 \)), the effective length of two devices is obtained by

\[
L_{\text{eff}1} = L_{m1} - \Delta L_1
\]

where

\[
\Delta L_1 = \frac{g_{12} L_{m1} - L_{m2}}{g_{12}} - \frac{1}{g_{12}} \quad \text{(A3)}
\]

Then, another channel length of device 3 is given as

\[
L_{\text{eff}3} = L_{\text{eff}1} * g_{13}
\]

\[\text{(A4)} \]

ACKNOWLEDGMENT

Special thanks are given to Dr. M. C. Chen and Dr. H. C. Cheng for their helpful discussions.

REFERENCES

