NOTE

A NOTE ON THE ASCENDING SUBGRAPH DECOMPOSITION PROBLEM

Hung-Lin FU

Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan, People's Rep. of China

Received 16 September 1987
Revised 14 October 1988

Let G be a graph with \((n+1)/2\) edges. We say G has an ascending subgraph decomposition (ASD) if the edge set of G can be partitioned into n sets generating graphs G_1, G_2, ..., G_n such that \(|E(G_i)| = i\) (for i = 1, 2, ..., n) and G_i is isomorphic to a subgraph of G_{i+1} for i = 1, 2, ..., n - 1.

In this note, we prove that if G is a graph of maximum degree \(d \leq \lfloor (n+1)/2 \rfloor\) on \((n+1)/2\) edges, then G has an ASD. Moreover, we show that if \(d \leq \lfloor (n-1)/2 \rfloor\), then G has an ASD with each member a matching. Subsequently, we also verify that every regular graph of degree a prime power has an ASD.

1. Introduction

In [1] the authors give the following decomposition conjecture.

Conjecture. Let G be a graph with \((n+1)/2\) edges. Then the edge set of G can be partitioned into n sets generating graphs G_1, G_2, ..., G_n such that \(|E(G_i)| = i\) (for i = 1, 2, ..., n) and G_i is isomorphic to a subgraph of G_{i+1} for i = 1, 2, ..., n - 1.

A graph G that can be decomposed as described in the conjecture will be said to have an ascending subgraph decomposition (abbreviated ASD). The graphs G_1, G_2, ..., G_n are said to be members of such a decomposition.

In [1, 2], the conjecture has been verified for star forests. Also, in [2] it is proved that if G is a graph of maximum degree \(d \leq \lfloor (n+1)/2 \rfloor\) on \((n+1)/2\) edges and \(n \geq 4d^2 + 6d + 3\), then G has an ASD with each member a matching.

In this note, we prove that if G is a graph of maximum degree \(d \leq \lfloor (n+1)/2 \rfloor\) on \((n+1)/2\) edges, then G has an ASD. Moreover, we show that if \(d \leq \lfloor (n-1)/2 \rfloor\), then G has an ASD with each member a matching. As a special case we also verify that every regular graph of degree a prime power has an ASD.

2. Main results

Let \(N\) be the set \(\{1, 2, \ldots, n\}\), and \(A_1, A_2, \ldots, A_k\) be mutually disjoint subsets of \(N\) such that \(\bigcup_{i=1}^k A_i = N\). Let \(s(A_i)\) be the sum of all elements in

\[0012-365X/90/$03.50 \copyright 1990 - Elsevier Science Publishers B.V. (North-Holland)\]
We will say that N can be decomposed into subsets of type (s_1, s_2, \ldots, s_k) if there exists a collection of mutually disjoint subsets of N, A_1, A_2, \ldots, A_k, such that their union is N and $s(A_i) = s_i$, $i = 1, 2, \ldots, k$. Obviously, $\sum_{i=1}^{k} s_i = \binom{n+1}{2}$. For example $\{1, 2, \ldots, 6\}$ can be decomposed into subsets of type $(3, 5, 6, 7)$. ($A_1 = \{3\}$, $A_2 = \{1, 4\}$, $A_3 = \{6\}$, $A_4 = \{2, 5\}$.)

An edge-coloring of a graph is an assignment of colors to its edges so that no two incident edges have the same color. If a graph G has an edge-coloring with k colors, then G is called k-colorable. (Let δ_i denote the number of edges in G which are colored c_i, $i = 1, 2, \ldots, k$.)

After a bit of reflection, we have the following proposition. (Unless stated otherwise, we assume that G has $\binom{n+1}{2}$ edges and that the number of edges that are colored c_i is δ_i.)

Proposition 1. Let G be a k-colorable graph. If N can be decomposed into subsets of type $(\delta_1, \delta_2, \ldots, \delta_k)$, then G has an ASD with each member a matching.

Proof. Since N can be decomposed into subsets of type $(\delta_1, \delta_2, \ldots, \delta_k)$, it follows that $s(A_i) = \delta_i$, $i = 1, 2, \ldots, k$. We can choose G_i as the collection of i edges that are colored c_j if $i \in A_j$. \hfill \square

We call an edge-coloring equalized if $|\delta_i - \delta_j| \leq 1$ ($1 \leq i < j \leq k$). McDiarmid [3] and de Werra [5] independently proved that if a graph has an edge-coloring with k colors then it has an equalized edge-coloring with k colors. We can easily prove the following result by using the above fact.

Proposition 2. Let G be a graph with maximum degree $d \leq \lfloor (n - 1)/2 \rfloor$, then G has an ASD with each member a matching.

Proof. By Vizing's Theorem [4] G has edge chromatic number $\chi'(G)$ at most $\lfloor (n - 1)/2 \rfloor + 1$. Hence we can color G with $n/2$ or $(n + 1)/2$ colors depending on whether n is even or odd. By the theorem of McDiarmid and de Werra, we obtain an equalized edge-coloring with $n/2$ or $(n + 1)/2$ colors as the case may be. If n is even, then each color occurs $n + 1$ times. Since, N can be decomposed into subsets of type $(n + 1, n + 1, \ldots, n + 1)$ ($n/2$-tuple), we conclude that G has an ASD with each member a matching by Proposition 1. Similarly, if n is odd, then each color occurs n times. Since N can be decomposed into subsets of type (n, n, \ldots, n) ($(n + 1)/2$-tuple), we have the proof. \hfill \square

As a matter of fact, if G is of class one, i.e. $\chi'(G) = d$, then we can let $d \leq \lfloor (n + 1)/2 \rfloor$ in Proposition 2. Actually, if we simply want to prove that G has an ASD, we can improve the upper bound of d a bit.

Proposition 3. Let G be a graph with maximum degree $d \leq \lfloor (n + 1)/2 \rfloor$, then G has an ASD.
Proof. From Proposition 2, the only cases left are \(d = n/2 \) \((n \text{ is even})\) and \(d = (n + 1)/2 \) \((n \text{ is odd})\). If \(n \) is even, then \(G \) is \((n/2 + 1)\)-colorable. Since we have an equalized edge-coloring, hence we can color the edges by the way: \(n/2 \) colors occur \(n - 1 \) times and one color occurs \(n \) times. Since \(N \) can be decomposed into subsets of type \(\langle n - 1, n - 1, \ldots, n - 1, n \rangle \) \((n/2 + 1)\)-tuple), we are done. For the case when \(n \) is odd, \(G \) is \(((n + 1)/2 + 1)\)-colorable. Similarly, we can color the edges in the following way: \((n - 3)/2\) colors occur \((n - 2)\) times and 3 colors occur \((n - 1)\) times. Without loss of generality, we let those three colors which occur \((n - 1)\) times be \(c_1, c_2, \) and \(c_3 \). It is not difficult to see \(\{1, 2, \ldots, n - 3\} \) can be decomposed into subsets of type \(\langle n - 2, n - 2, \ldots, n - 2 \rangle \) \((n - 3)/2\)-tuple), therefore we can choose \(G_1, G_2, \ldots, G_{n-3} \) subsequently. We conclude the proof by letting \(G_{n-2} \) be the collection of edges colored \(c_1 \) except for one edge \(e \), \(G_{n-1} \) be the collection of edges colored \(c_2 \), and \(G_n \) be the collection of those edges colored \(c_2 \) and \(e \). □

From Proposition 3, it is easy to see every regular graph of degree a prime power has an ASD.

Proposition 4. Every regular graph of degree a prime power has an ASD.

Proof. Let the degree and order of \(G \) be \(d \) and \(v \) respectively. Then \(d \cdot v = n \cdot (n + 1) \). Hence we have \(d \mid n(n + 1) \). Since \(d \) is a prime power and the common divisor of \(n \) and \(n + 1 \) is 1, \(d \mid n \) or \(d \mid n + 1 \). If \(d < n \), then \(d = (n + 1)/2 \). By Proposition 3, \(G \) has an ASD. If \(d = n \), then \(G = K_{n+1} \). The theorem follows from the fact that \(K_{n+1} \) has an ASD. □

As we have seen above, if the maximum degree of the graph is not too large, it has an ASD. In what follow we suggest a slightly different approach to the problem.

A vertex covering in a graph is any set of vertices such that each edge of the graph has at least one of its end vertices in the set. We will say \(\langle \beta_1, \beta_2, \ldots, \beta_k \rangle \) is a covering pattern for a graph \(G \), if we can find a vertex covering \(\{v_1, v_2, \ldots, v_k\} \) such that there are \(\beta_i \) edges incident with the vertex \(v_i \), \(i = 1, 2, \ldots, k \) and each edge can be counted only once. For example, Fig. 1 has a covering pattern \(\langle 5, 4, 3, 3 \rangle \).

Since the following proposition is easy to see, it will be stated without proof.

Proposition 5. Let \(G \) be a graph with a covering pattern \(\langle \beta_1, \beta_2, \ldots, \beta_k \rangle \). If \(N \) can be decomposed into subsets of type \(\langle \beta_1, \beta_2, \ldots, \beta_k \rangle \), then \(G \) has an ASD with each member a star.
The following proposition is also easy to prove, we simply state it.

Proposition 6. If a graph can be partitioned into edge disjoint paths of length \(r_1, r_2, \ldots, r_k \) respectively, and the set \(N \) can be decomposed into subsets of type \(\langle r_1, r_2, \ldots, r_k \rangle \), then \(G \) has an ASD with each member a path.

3. Acknowledgement

The author would like to express his appreciation to the referee for his helpful comments and his patience in correcting errors.

References