Authors’ Reply

The missing of H in (5) is a derivation error, however, it does not affect the simulation results since $H = 1$ in our setting. The derivation in (11) is correct. This is because there can be two representations describing the relation of v_k and a_k:

$$v_{k+1} = v_k + a_k T$$ \hspace{1cm} (1)

$$v_{k+1} = v_k + a_{k+1} T.$$ \hspace{1cm} (2)

We can use either one as long as this relation is consistent elsewhere. As a matter of fact, (1) and (2) are identical if we let a_k in (1) be a delayed version of (2).

W. R. WU
D. C. CHANG
Dept. of Communication Engineering
National Chiao Tung University
Hsinchu, Taiwan
Republic of China

Manuscript received December 8, 1997.
IEEE Log No. T-AES/34/2/03219.

0018-9251/98/$10.00 © 1998 IEEE

Comments on “A New Model and Efficient Tracker for a Target with Curvilinear Motion”

In IMMIE formulation, always an input (cross-track acceleration) estimate is used at every sample instant, regardless of whether the target is accelerating or not and hence it will degrade performance during constant-speed sections of track [1]. Just for reducing computational burden and cost, the authors compromised on the accuracies in the estimates of target state vector. The probabilities a_{ij} are to be found out through innovation and so are their covariances in the corresponding Kalman filters. These are chosen arbitrarily as 0.9. The along-track-acceleration inputs which are supposed to be found out adaptively using input estimation techniques are also chosen arbitrarily.

The authors of [1] reduced NM number of Kalman filters to N number of Kalman filters by incorporating only the estimated along-track acceleration (a_{ij}).

S. KOTESWARA RAO
Scientist ‘E’
Naval Science and Technological Laboratory
Ministry of Defense
Visakhapatnam-530027, A.P.
India

REFERENCE

Maneuvering target tracking with colored noise.
IEEE Transactions on Aerospace and Electronic Systems,