On the time complexity of minimum and maximum global snapshot problems

Loon-Been Chen¹, I-Chen Wu *

Department of Computer Science and Information Engineering, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, Taiwan

Received 1 June 1997; received in revised form 28 April 1998
Communicated by T. Asano

Abstract

Deriving the minimum and maximum global snapshots is very useful for some error detection problems in distributed programs. Several researchers, e.g., Groselj, Chen and Wu, have shown that the minimum and maximum global snapshot problems are linear-time reducible to the maximum constant-ratio network flow (MCNF) problem, here defined as the well-known maximum network flow problem with \(m = \Theta(n) \), where \(m \) is the number of edges and \(n \) is the number of vertices in the given flow network. In this paper we show in a reverse way that the MCNF problem is also linear-time reducible to these global snapshot problems. Thus, we can conclude that the global snapshot problems are "as difficult as" the MCNF problem in terms of time complexity. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Distributed systems; Computational complexity; Error detection; Global snapshot

1. Introduction

Error detection and debugging are critical tasks in developing distributed programs. Many research results [3,4,8] suggest that a distributed program usually adheres to certain invariant conditions to function properly. For example, in a distributed program, several tokens may be distributed over the processors (e.g., the token may represent the number of resources and critical sections), and the number of these tokens is bounded in a range at any snapshot, regardless of how tokens are moved over different processors. The conventional means of detecting whether or not the above condition holds are to derive the minimum or maximum number of tokens for all possible snapshots.

This problem is referred to as the minimum or maximum global snapshot problem [6].

Groselj [6] recently proposed an interesting method to derive the minimum global snapshot. In this method, he reduced this snapshot problem to a maximum constant-ratio network flow (MCNF) problem. The MCNF problem is defined herein as the well-known maximum network flow problem with \(m = \Theta(n) \), where \(m \) is the number of edges and \(n \) is the number of vertices in the given flow network. Chase and Garg [1] independently obtained similar results. Later, Chen and Wu [2] proposed a general technique, called normalization, for deriving both minimum and maximum global snapshots. According to their results, these snapshot problems are linear-time reducible to the MCNF problem.

Above investigations only point out that the time complexities of the minimum and maximum global
snapshot problems will not be higher than those of the MCNF problem. However, whether or not the time complexities for the above snapshot problems can be lower than those of the MCNF problem remains unknown. To resolve this question, this paper shows in a reverse manner that the MCNF problem is also linear-time reducible to these global snapshot problems. Thus, we can conclude that the above global snapshot problems are "as difficult as" the MCNF problem in terms of time complexity.

The rest of this paper is organized as follows. Section 2 describes our model and the notations used in this paper. Sections 3 and 4 discuss the time complexities of the minimum and maximum global snapshot problems, respectively. Concluding remarks are finally made in Section 5.

2. Model and notations

A distributed program consists of processes communicating via a network. These processes share no memory and no global clock. Pairs of processes must communicate via network channels. In addition, the state of such a program is distributed over these processes and channels in each snapshot.

Events

The states of processes change only when events [7] (atomic actions) are executed. Three kinds of events on each process are of relevant concerned:

1. **internal event**: performs a local computation;
2. **send event**: sends a message to another process via the channel; and
3. **receive event**: receives a message from another process via the channel.

Note that each process should start with an initial internal event and end with a final internal event.

Next, the chronological order of events is defined by assuming that the event e_i happens before event e_j, denoted by $e_i \rightarrow e_j$, if and only if one of the following conditions holds [7]:

1. events e_i and e_j occur in the same process and e_i occurs before e_j;
2. event e_i is the sent event of a message and event e_j is the receive event of the same message; and
3. another event e_k exists such that $e_i \rightarrow e_k$ and $e_k \rightarrow e_j$.

Global snapshot

Consider a possible run for a distributed program. The system can proceed from one state to another by executing events. A set E_C of events are said to be consistent if event $e \in E_C$ and event $e' \rightarrow e$ imply that $e' \in E_C$. A global snapshot is a collection of states, one from each process and channel, immediately after executing a consistent set of events. Herein, of relevant concern is the total number of tokens. Therefore, a state value can actually be represented by its token number. In addition, the minimum (maximum) global snapshot is the global snapshot with the minimum (maximum) number of tokens among all possible snapshots.

Event graph

An event graph is used to represent a run for a distributed program under the following conditions:

- (1) a vertex denotes an event, and
- (2) if event $e_i \rightarrow e_j$ and no event e_k exists such that $e_i \rightarrow e_k$ and $e_k \rightarrow e_j$, there is a corresponding arc, denoted by (e_i, e_j);

For example, Fig. 1 illustrates an event graph. An arc (e_i, e_j) is referred to as a message arc if it corresponds to an in-transit message from event e_i to e_j. Otherwise, the arc is referred to as an internal arc because it corresponds to an internal state transition inside a process. For each message arc a, S_a denotes the number of message tokens; for each internal arc $a = (e_i, e_j)$, S_a denotes the token number of the corresponding process after execution of the event e_i and before the event e_j. In addition,
the vertex corresponding to an initial (final) internal event is called an \textit{i-vertex} (\textit{f-vertex}). Moreover, the arc incident to \textit{i-vertex} (\textit{f-vertex}) is called an \textit{i-arc} (\textit{f-arc}). Clearly, each process has an \textit{internal path} from its \textit{i-vertex} to its \textit{f-vertex} without going through any message arcs.

\textbf{Cuts}

A cut in an event graph \(H\) partitions the vertex set \(U\) into two disjoint sets such that one, called the \textit{source part} and denoted by \(U_s\), contains all the \textit{i-vertices}. Meanwhile, the other, called the \textit{sink part} and denoted by \(U_f\), contains all the \textit{f-vertices}. The cost of a cut \(C\) is

\[
\text{cost}(C) = \sum_{\forall u: u=(u, v), u \in U_s, v \in U_f} S_a.
\]

For example, in Fig. 1, the costs of cuts \(C_1\), \(C_2\) and \(C_3\) are 14, 12 and 16, respectively.

A cut of the event graph is \textit{consistent} if and only if the set of all events in the source part are consistent. From this definition, we can infer that each consistent cut corresponds to a global snapshot and the cut cost is actually the number of tokens of the global snapshot. Obviously, for each consistent cut \(C\), each arc in \(C\) must be from the source part to the sink part.

The minimum (maximum) consistent cut is the consistent cut with the least (largest) cost among all consistent cuts. Also, the minimum (maximum) consistent cut cost is the cost of the minimum (maximum) consistent cut. Clearly, the minimum (maximum) consistent cut corresponds to the minimum (maximum) global snapshot.

\textit{Global snapshot model}

In the proposed model, the event graph with arc costs is assumed to be given in advance. Garg and Waldecker [4] suggested that in practice, for each event in each process \(P_i\), \(P_i\) sends its token number to a process, called the \textit{checker process}. This process runs an algorithm for deriving the minimum or maximum global snapshot.

\section{Minimum global snapshot}

This section shows that the MCNF problem is linear-time reducible to the minimum global snapshot problem. Given a flow network \(N\) (see Definition 1 below), the linear-time reduction algorithm given below constructs an event graph \(H\) such that the min-cut capacity of \(N\) equals the minimum consistent cut cost of \(H\). Fig. 2 presents an example of the reduction.

\textbf{Definition 1.} A flow network \(N = (V, E)\) is a directed graph in which each edge \((u, v) \in E\) has a non-negative capacity \(c(u, v) \geq 0\). One node \(s\) is designated as the source and another node \(t\) is designated as the sink. A cut is a set of arcs all incident to two disjoint vertex sets partitioned from \(V\), where one set
with node s is referred to as the source set, and the other with node t is referred to as the sink set. The capacity of a cut C, denoted by $\text{capacity}(C)$, is the total capacity of all arcs (on C) from the source set to the sink set. A minimum cut of the flow network is the cut with the least capacity. The least capacity is also called the min-cut capacity.

Reduction Algorithm.
1. For each vertex v in N, create the corresponding internal path P_v. This operation takes $\Theta(n)$ time.
2. For each pair of vertices (u, v), if (u, v) or (v, u) is in N, create the corresponding internal path $P_{(u,v)}$ (or, equivalently, $P_{(v,u)}$). This operation takes $O(m)$ time.
3. For each internal path, add two internal events such that the path is divided into three parts: the i-arc, the middle part, and the f-arc. All message arcs added below must have their vertices incident to the middle parts. This operation takes $O(m + n)$ time.
4. For each internal path $P_{(u,v)}$, create a message arc $a_{(u,v)}$ from $P_{(u,v)}$ to P_u and a message arc $a_{(v,u)}$ from $P_{(u,v)}$ to P_v. This operation takes $\Theta(m)$ time.
5. Set the cost of f-arc of P_s and i-arc of P_t to ∞, where s is the source and t is the sink of N. Set the costs of other i-arcs and f-arcs to 0. Set the costs of all other internal arcs (in the middle parts) to ∞. This operation takes $\Theta(m + n)$ time.
6. For each message arc $a_{(u,v)}$, if (u, v) is in N, set $S_{a_{(u,v)}} = c(u, v)$; otherwise, set $S_{a_{(u,v)}} = 0$. This operation takes $\Theta(m)$ time.

In the above reduction algorithm, each consistent cut C_H in H is said to correspond to a cut C_N in N, denoted by $C_H \leftrightarrow C_N$, if and only if the following property holds:

A1. For each vertex v in N, v is in the source (sink) part of cut C_N if and only if C_H cuts across the i-arc (f-arc) of the internal path P_v.

For example, in Fig. 2, $C_H \leftrightarrow C_N$. Note that since the source s (the sink t) is always in the source (sink) part, C_H must always cut across the i-arc of P_s (the f-arc of P_t). Theorem 2 proves that the minimum consistent cut cost of H equals the min-cut capacity in N.

Theorem 2. For a given flow network, its min-cut capacity equals the minimum consistent cut cost in the event graph constructed from the above reduction algorithm.

Proof. Let N be the given flow network and H be the reduced event graph. In addition, let K_H be the set of all the consistent cuts in H, $K_{H\mapsto N}$ be the set of all cuts in K_H, that correspond to some cut in N, and $\bar{K}_{H\mapsto N}$ be $K_H - K_{H\mapsto N}$. In this proof, it obviously suffices to prove that the following two properties hold:

B1. For each consistent cut C_H in $\bar{K}_{H\mapsto N}$, $\text{cost}(C_H) = \infty$.

B2. Among all consistent cuts C_H in $K_{H\mapsto N}$,

$$\min_{C_H \in K_{H\mapsto N}} \text{cost}(C_H) = \min_{C_N \in N} \text{capacity}(C_N).$$

This holds if the following two properties hold:

B21. For each cut C_N, there exists at least one C_H in $K_{H\mapsto N}$ such that $C_H \leftrightarrow C_N$.

B22. For each cut C_N,

$$\text{capacity}(C_N) = \min_{C_H \in K_{H\mapsto N}} \text{cost}(C_H).$$

Properties B21 and B22 imply Property B2 owing to the following reason:

$$\min_{C_N} \left(\min_{C_H \in K_{H\mapsto N}} \text{cost}(C_H) \right) = \min_{C_H \in K_{H\mapsto N}} \left(\min_{C_N} \text{cost}(C_H) \right).$$

Initially, Property B1 must be proven. From Property A1, for each consistent cut in $K_{H\mapsto N}$, the cut must cut across i-arcs or f-arcs except for the f-arc of P_s and the i-arc of P_t (s and t are the source and sink vertices of N). On the other hand, for each consistent cut C_H in $\bar{K}_{H\mapsto N}$, the cut C_H must cut across some internal arc in the middle parts or the f-arc of P_s or the i-arc of P_t. Since these arcs have costs ∞ (see the Reduction Algorithm), we obtain $\text{cost}(C_H) = \infty$.

Second, both Properties B21 and B22 must be proven. Given a cut C_N that partitions the vertices
of N into V_s and V_t, a consistent cut C_H (in H) can be constructed, having the minimum cost among all consistent cuts in $K_{H \rightarrow N}$, as follows. First, to let $C_H \mapsto C_N$, C_H must cut across each P_u as in Property A1. Then, we need to verify the consistency and examine the minimum cost among each set of P_u, P_v, and $P_{(u,v)}$:

1. If C_H cuts across i-arc of both P_u and P_v ($u \in V_s$ and $v \in V_s$), as shown in Fig. 3(a), a consistent cut in $K_{H \rightarrow N}$ can cut across either i-arc or f-arc of $P_{(u,v)}$. We let C_H cut across the i-arc because the arc will have a smaller cost. In this case, no edge contributes cost to C_N and no message arc contributes cost to C_H.

2. If C_H cuts across i-arc of P_u and f-arc of P_v ($u \in V_s$ and $v \in V_t$), as shown in Fig. 3(b), C_H must cut across f-arc of $P_{(u,v)}$. Otherwise, the cut will be inconsistent. In this case, edge (u, v) contributes $c(u, v)$ to C_N. Corresponding message arc $a_{(u,v)}$ contributes $S_{a_{(u,v)}}$ to C_H.

3. If C_H cuts across f-arc of P_u and i-arc of P_v ($u \in V_t$ and $v \in V_s$), C_H must cut across f-arc of $P_{(u,v)}$. This case is similar to case (2).

4. If C_H cuts across f-arc of both P_u and P_v ($u \in V_t$ and $v \in V_t$), as shown in Fig. 3(d), C_H must cut across f-arc of $P_{(u,v)}$. In this case, no edge contributes cost to C_N and no message arc contributes cost to C_H.

From above discussion, cut C_H is consistent due to the consistency among each set of $P_{(u,v)}$, P_u, and P_v. In addition, it is obvious from above that

$$
capacity(C_N) = cost(C_H) = \min_{C_H, C_H' \mapsto C_N} \left(cost(C_H') \right).
$$

Thus, both Properties B21 and B22 hold.

4. Maximum global snapshot

Herein, both minimum and maximum global snapshot problems can be reduced to each other in the following manner: (1) based on the normalization technique [2], reset the cost of each message arc to zero, while not changing any consistent cut cost; and (2) change the cost S of each internal arc to $M - S$, where M is the maximum cost among all arcs. Thus, we can conclude that the maximum global snapshot problem is also "as difficult as" the maximum network flow problem in terms of time complexity.

5. Conclusion

From the investigations of Chase and Garg [1], Chen and Wu [2], and Groselj [6], the minimum and maximum global snapshot problems are linear-time reducible to the MCNF problem. In this paper, we show in a reverse manner that the MCNF problem is also linear-time reducible to these global snapshot problems. Thus, we can conclude that the global snapshot problems are "as difficult as" the MCNF problem in terms of time complexity. The fact that
$O(n^2 \log n)$ has been the optimal time complexity for the MCNF problem for many years [5] implies the difficulty in improving the $O(n^2 \log n)$ global snapshot algorithms (as well as that for the MCNF problem).

Acknowledgments

The authors would like to thank the National Science Council of the Republic of China for financially supporting this research under Contract No. NSC-86-2213-E-009-32.

References

