The worst case analysis of algorithm on multiple stacks manipulation *

Been-Chian Chien
Institute of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu 300, Taiwan, ROC

Wei-Pang Yang
Department of Computer and Information Science, National Chiao Tung University, Hsinchu 300, Taiwan, ROC

Communicated by K. Ikeda
Received 6 February 1991
Revised 24 October 1991

Keywords: Analysis of algorithms; data structures; multiple stacks

1. Introduction

A stack is a simple and useful data structure. The simplest and most natural way to keep a stack inside a computer is to put items in a sequential memory area. It is quite convenient in dealing with only one stack. However, system developers frequently encounter programs which involve multiple stacks, each of which has dynamically varying size. In such a situation, keeping multiple stacks in a common area with sequential allocation with cause some trouble. First, developers would hate to impose a maximum size on each stack, since the size is usually unpredictable. Second, to store multiple variable-size stacks in sequential locations of a common memory area, the obstacle of overflow must be solved. An overflow situation will cause an “error”; it means the stack is already full, yet there are still more items that ought to be put in. A solution for overflow is realocating memory, making room for the overflowed stacks by taking some space from stacks that are not yet filled. This operation may cause many items to be moved to their proper locations in order to keep correctness of the push operations coming later.

A number of possible solutions for overflow have been suggested. Knuth proposed a simple solution in reallocating memory by move operations [2]. The method will be described in detail in the next section. He also analyzed the average number of movements when overflow occurs and got a formula concerning the number of stacks and pushed items. Here, we focus on the worst sequence of pushed data instead of the individual worst case, getting some interesting properties similar to [1,3].

2. Knuth’s method

The method of multiple stacks manipulation proposed by Knuth [2] is briefly presented here. Assume there are n stacks, and the value BASE[i] and TOP[i] represent the bottom location and the top location of stack i. These stacks all share a common memory area consisting of all locations L with \(L_0 < L < L_x \), where \(L_0 \) and \(L_x \) are constants specifying the total number of locations available for use. Knuth’s method starts out with
all stacks empty, $BASE[i] = TOP[i] = L_0$, for all i, and $BASE[n + 1] = L_\infty$. The Push and Pop algorithms are as follows:

Push:

$TOP[i] \leftarrow TOP[i] + 1$;

if $TOP[i]$ = $BASE[i + 1]$ then Overflow
else $CONTENTS[TOP[i]] \leftarrow Y$;

Pop:

if $TOP[i] = BASE[i]$ then Underflow
else begin

$Y \leftarrow CONTENTS[TOP[i]]$;

$TOP[i] \leftarrow TOP[i] - 1$;
end

When stack i overflows, the reallocating strategy will find the smallest k for which $i < k \leq n$ or the largest k for which $1 \leq k < i$, and k satisfying $TOP[k] < BASE[k + 1]$. It then moves the items between stack $(i + 1)$ and stack k one entry to the right, if $i < k \leq n$; and between stack $(k + 1)$ and stack i one entry to the left, otherwise.

This method works simply. It needs, however, some move operations when overflow occurs. Knuth found that the average number of move operations required is

$$\frac{1}{2} \left(1 - \frac{1}{n} \right) \left(\frac{m}{2} \right),$$

where m is the number of pushed items and n is the number of stacks. The number of movements is essentially proportional to the square of number of pushed items.

3. The worst push sequence and its analysis

Some important symbols and terminologies must first be defined:

Definition 1. Assume there are n disjoint sets: S_1, S_2, \ldots, S_n, $(S_i \cap S_k) = \emptyset$, for $1 \leq j, k \leq n, j \neq k$.

1. I_i denotes an element in set S_i, and $\bigcup_{1 \leq i \leq n} S_i = U$.

2. A push sequence P with m numbers denoted p_1, \ldots, p_m where $p_j \in U$; and let $p_j \equiv I_i$, if $p_j \in S_i$.

3. $\#(I_i)_P$ is the number of I_i, in push sequence P.

Example 2. If there are 4 stacks and 6 push operations, the 4 stacks here can be viewed as 4 disjoint sets and I_1 representing pushing an item into stack 1. The push sequence $p_1p_2p_3p_4p_5p_6$ may be

$I_1I_1I_1I_1I_1I_1, I_1I_2I_1I_2I_2I_2, I_1I_2I_3I_4I_4I_2, \ldots$.

For push sequence $I_1I_2I_3I_4I_2$ we have: $\#(I_1)_P = 2, \#(I_2)_P = 2, \#(I_3)_P = 1, \#(I_4)_P = 1$. The total number of push sequences is 4^6 in this example.

Definition 3. Let P be a push sequence with m numbers and n disjoint sets as defined in Definition 1. We say $p_i > p_k$ if $p_i \equiv I_j$ and $p_k \equiv I_l$, $j > l$.

$\Phi(p_k)$, the number of p_i, with $1 \leq i < k$ and $p_i > p_k$, is called the potential of P_k.

The potential defined above is actually equal to the number of movements when p_k are pushed into stack l.

Example 4. Following Example 2, the relations between push sequence and the total number of movements are shown in Table 1.

<table>
<thead>
<tr>
<th>Push sequence</th>
<th>$\sum_{i=1}^{m} \Phi(p_i)$ = number of movements</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_1I_1I_1I_1I_1$</td>
<td>0 + 0 + 0 + 0 + 0 + 0 = 0</td>
</tr>
<tr>
<td>$I_1I_2I_1I_2I_2$</td>
<td>0 + 0 + 1 + 0 + 2 + 0 = 3</td>
</tr>
<tr>
<td>\ldots</td>
<td></td>
</tr>
<tr>
<td>$I_4I_1I_2I_1I_1$</td>
<td>0 + 1 + 2 + 3 + 3 + 3 = 12</td>
</tr>
<tr>
<td>$I_4I_2I_2I_2I_1$</td>
<td>0 + 1 + 2 + 3 + 2 + 4 = 12</td>
</tr>
<tr>
<td>$I_4I_1I_2I_2I_1$</td>
<td>0 + 1 + 2 + 2 + 4 + 4 = 13</td>
</tr>
<tr>
<td>\ldots</td>
<td></td>
</tr>
</tbody>
</table>

Questions arising are: how many movements are needed under the worst push sequence and which push sequence is the worst one?
The above example gives us important information; i.e., for different push sequences, when their \(\#(I_i) \), \(1 < i < n \), are all the same, the number of pushed items are fixed, the sequence of pushing will affect the number of movements. For instance, the number of movements is 12 when the push sequence is \(I_1 I_2 I_3 I_4 I_5 I_6 \) and it is 13 when the push sequence is \(I_4 I_3 I_2 I_1 I_6 \). The following lemma explains this fact.

Lemma 5. Let there be given \(n \) disjoint sets and a push sequence \(P \) defined as in Definition 1. Let \(\#(I_i) = x_i, 1 \leq i \leq n; \sum_{j=1}^{n} x_j = m \). We get a maximal \(\Sigma_{k=1}^m \Phi(p_k) \) if and only if \(p_i = I_i, \) for \(0 < i < x_n; p_i = I_{i-1}, \) for \(x_n < i \leq (x_n + x_{n-1}); \ldots; p_i = I_1, \) for \(\sum_{j=2}^{n} x_j < i \leq \sum_{j=1}^{n} x_j \).

Proof. \(\Phi(p_k) \) is the number of \(p_i \) with \(1 \leq i \leq k \) and \(p_i > p_j \). We have

\[
\max \left(\sum_{k=1}^m \Phi(p_k) \right) = \sum_{k=1}^m (\max (\Phi(p_k))),
\]

and

\[
\max (\Phi(p_k)) = \begin{cases}
(x_n + \cdots + x_{j+1}) & \text{if } p_k = I_j, \text{ for } 1 \leq j \leq n-1, \\
0 & \text{if } j = n.
\end{cases}
\]

There are at least \((x_n + \cdots + x_{j+1}) \) elements that appear before \(p_k \), i.e. \(k > (x_n + \cdots + x_{j+1}) \). Furthermore, the number of \(p_i \) satisfying \(p_i > p_k \) for \(1 \leq i < k \) is also at most \((x_n + \cdots + x_{j+1}) \). These force sequence \(p_k, 1 \leq k \leq m \) to become

\[
p_j = \begin{cases}
I_n, & \text{for } 0 < i \leq x_n, \\
I_{n-1}, & \text{for } x_n < i \leq (x_n + x_{n-1}), \\
\vdots & \\
I_1, & \text{for } \sum_{j=2}^{n} x_j < i \leq \sum_{j=1}^{n} x_j = m,
\end{cases}
\]

if and only if \(\max (\sum_{k=1}^m \Phi(p_k)) \) is achieved. \(\square \)

Let \(x_j, \Phi(p_j) \) be defined as in Lemma 5 and Definition 1. \(\Sigma_{k=1}^m \Phi(p_k) \), summation of total potential, is equal to the total number of movements. From Lemma 5,

\[
\sum_{k=1}^m \Phi(p_k) = (x_n x_{n-1}) + (x_n + x_{n-1}) x_{n-2} + \cdots + (x_n + \cdots + x_2) x_1
\]

Now, the following needs to be found:

\[
\max \left(\sum_{k=1}^m \Phi(p_k) \right) = \max \left(\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} x_i x_j \right),
\]

subject to \(\sum_{i=1}^{n} x_i = m, x_i \geq 0 \).

It can be formulated as an \((n-1) \times (n-1) \) triangle matrix:

\[
\begin{bmatrix}
x_n x_{n-1} & x_n x_{n-2} & x_{n-1} x_{n-2} & x_{n-2} x_{n-3} & \cdots \\
x_n x_{n-3} & x_{n-1} x_{n-3} & x_{n-2} x_{n-3} & \cdots & \cdots \\
\vdots & \vdots & \vdots & \ddots & \ddots \\
x_n x_1 & x_{n-1} x_1 & x_{n-2} x_1 & \cdots & x_2 x_1 \\
x_1 x_1 & x_1 x_2 & x_1 x_3 & \cdots & \cdots \\
\end{bmatrix}
\]

\(\sum_{k=1}^m \Phi(p_k) \) is the sum of the terms in the above matrix. In order to sum these terms, another similar \(n \times n \) matrix is considered:

\[
\begin{bmatrix}
x_n x_n & x_n x_{n-1} & x_{n-1} x_{n-2} & x_{n-2} x_{n-3} & \cdots \\
x_n x_{n-1} & x_{n-1} x_{n-1} & x_{n-2} x_{n-2} & x_{n-3} x_{n-3} & \cdots \\
x_n x_{n-2} & x_{n-1} x_{n-2} & x_{n-2} x_{n-2} & \cdots & \cdots \\
\vdots & \vdots & \vdots & \ddots & \ddots \\
x_n x_1 & x_{n-1} x_1 & x_{n-2} x_1 & \cdots & x_2 x_1 \\
x_1 x_1 & x_1 x_2 & x_1 x_3 & \cdots & \cdots \\
\end{bmatrix}
\]

109
It has the property \(x_i x_j = x_j x_i \) and is symmetrical about the main diagonal. Let

\[
T_{\text{upper}} = \sum_{1 \leq i < j \leq n} x_i x_j = \sum_{i=1}^{n} \sum_{j=i+1}^{n} x_i x_j,
\]

\[
T_{\text{lower}} = \sum_{1 \leq i < j \leq n} x_i x_j = \sum_{i=1}^{n} \sum_{j=i}^{n} x_i x_j.
\]

In fact, \(T_{\text{upper}} = T_{\text{lower}} \), therefore

\[
T_{\text{upper}} + T_{\text{lower}} = \sum_{1 \leq i < j \leq n} x_i x_j + \sum_{i=1}^{n} x_i^2 = \left(\sum_{i=1}^{n} x_i \right)^2 + \sum_{i=1}^{n} x_i^2.
\]

\[
= 2 T_{\text{lower}}.
\]

Summation of triangle matrix is

\[
\sum_{k=1}^{m} \Phi(p_k) = T_{\text{lower}} - (\text{main diagonal})
\]

\[
= \frac{1}{2} \left(\left(\sum_{i=1}^{n} x_i \right)^2 - \sum_{i=1}^{n} x_i^2 \right)
\]

\[
= \frac{1}{2} \left(\left(\sum_{i=1}^{n} x_i \right)^2 - \sum_{i=1}^{n} x_i^2 \right),
\]

\[
\max \left(\sum_{k=1}^{m} \Phi(p_k) \right)
\]

\[
= \max \left(\frac{1}{2} \left(\left(\sum_{i=1}^{n} x_i \right)^2 - \sum_{i=1}^{n} x_i^2 \right) \right)
\]

\[
= \frac{1}{2} \left[\left(\sum_{i=1}^{n} x_i \right)^2 + \min \left(\sum_{i=1}^{n} x_i^2 \right) \right].
\]

From Schwarz’ inequality,

\[
\sum_{i=1}^{n} x_i^2 \geq \frac{\left(\sum_{i=1}^{n} x_i \right)^2}{n}, \quad \text{and} \quad \sum_{i=1}^{n} x_i = m,
\]

\[
x_i \geq 0, \quad \text{for} \quad 1 \leq i \leq n.
\]

\[
\max \left(\sum_{k=1}^{m} \Phi(p_k) \right)
\]

\[
= \frac{1}{2} \left(m^2 - \frac{m^2}{n} \right) = \frac{1}{2} \left(1 - \frac{1}{n} \right) m^2.
\]

Theorem 6. There are \(n \) stacks and \(m_{\text{max}} \) sequential memory locations. The total number of movements caused by Knuth’s method is at most \(\frac{1}{2}(1 - 1/n)m^2 \) after any sequence of \(m \) push operations, where \(0 \leq m \leq m_{\text{max}} \).

Proof. Let the \(n \) stacks be the \(n \) disjoint sets \(S_1, \ldots, S_n \). The \(m \) push operations are \(m \) numbers in push sequence \(P \). After Knuth’s manipulating method is executed, the total number of movements is exactly equal to \(\sum_{k=1}^{n} \Phi(p_k) \). From the above description, Knuth’s method has number of movements at most \(\frac{1}{2}(1 - 1/n)m^2 \) after any sequence of \(m \) push operations. \(\square \)

The result of worst case after a sequence of \(m \) push operations is smaller than the summation of individual worst cases, and it approximates 2 times the average case. The number of movements for individual worst case might be equal to the total present items each time a new item is pushed. That is, the total number of movements is the summation from 1 to \(m - 1 \). It is equal to \(m(m - 1)/2 \). This case is actually only satisfied while \(m = n \). For most cases, they will be smaller than this.

Another question is: how many item numbers in each stack are there when the maximum value occurs. This will be shown in the next theorem.

Theorem 7. The maximum value in Theorem 6 can be attained while there being \((m - n)\lfloor m/n \rfloor \) number of \(x_i = \lfloor m/n \rfloor + 1 \) and the others \(x_i = \lfloor m/n \rfloor \) for \(1 \leq i \leq n \).

Proof. From the proof of Theorem 6,

\[
\max \left(\sum_{k=1}^{m} \Phi(p_k) \right) = \frac{1}{2} \left[\left(\sum_{i=1}^{n} x_i \right)^2 - \min \left(\sum_{i=1}^{n} x_i^2 \right) \right].
\]

If \(x_1, \ldots, x_n \) are real numbers, the minimum can be achieved when \(x_1 = \cdots = x_n = m/n \).

Unfortunately, \(x_1, \ldots, x_n \) are integers here. Let \(x_i = \lfloor m/n \rfloor + y_i \), \(y_i \) integer, and \(-\lfloor m/n \rfloor \leq y_i \leq m \), for \(1 \leq i \leq n \). We have

\[
\sum_{i=1}^{n} y_i = (m \mod n) = m - n \left[\frac{m}{n} \right].
\]
\[
\min \left(\sum_{i=1}^{n} x_i^2 \right) \\
= \min \left(\sum_{i=1}^{n} \left(\left\lfloor \frac{m}{n} \right\rfloor + y_i \right)^2 \right) \\
= \min \left(\sum_{i=1}^{n} \left\lfloor \frac{m}{n} \right\rfloor^2 + 2 \left\lfloor \frac{m}{n} \right\rfloor \sum_{i=1}^{n} y_i + \sum_{i=1}^{n} y_i^2 \right) \\
= n \left\lfloor \frac{m}{n} \right\rfloor^2 + 2 \left\lfloor \frac{m}{n} \right\rfloor \left(\frac{m}{n} - \left\lfloor \frac{m}{n} \right\rfloor \right) \\
+ \min \left(\sum_{i=1}^{n} y_i^2 \right).
\]

Therefore, \(\min(\sum_{i=1}^{n} y_i^2) \) can be achieved when the number of \(y_i = 1 \) will be \((m - n[m/n]) \) and else \(y_i = 0 \). Restated, the number of \(x_i = \left\lfloor \frac{m}{n} \right\rfloor + 1 \) is \((m - n[m/n]) \). Furthermore, \(x_i = \left\lfloor \frac{m}{n} \right\rfloor + 1 \) can be at any \(i \), for \(1 \leq i \leq n \). Except for \(i \) of \(x_i = \left\lfloor \frac{m}{n} \right\rfloor + 1 \), \(x_i \) is equal to \(\left\lfloor \frac{m}{n} \right\rfloor \) elsewhere.

By Theorem 7, the total number of movements may be smaller than the number in Theorem 6.

Because
\[
\left(\min \sum_{i=1}^{n} x_i^2 - \min \sum_{i=1}^{n} \left(\frac{m}{n} \right)^2 \right) > 0,
\]
and
\[
\max \left(\min \sum_{i=1}^{n} x_i^2 - \min \sum_{i=1}^{n} \left(\frac{m}{n} \right)^2 \right) \\
= \max \left(\left(\sum_{i=1}^{n-k} \left\lfloor \frac{m}{n} \right\rfloor^2 \right) + \sum_{i=1}^{k} \left(\left\lfloor \frac{m}{n} \right\rfloor + 1 \right)^2 \right) \\
- \sum_{i=1}^{n} \left(\frac{m}{n} \right)^2 \\
= \frac{n}{4}, \text{ while } (m \mod n) = \frac{n}{2};
\]
where \(k = m - n[m/n] \).

The actual bound of number of movements may then be \(\frac{1}{2}(1 - 1/n)m^2 - n/8 \), while \((m \mod n) = n/2 \) exactly occurs.

References