Two basic oxidation modes of silicon carbide/zirconia/mullite (SiC/ZrO2/mullite) composites were defined based on the plotted curve of the gradient of the silica (SiO2) layer thickness (formed on individual SiC particles) versus depth. Mode I, where oxygen diffusivity was much slower in the matrix than in the SiO2 layer, exhibited a relatively large gradient and limited oxidation depth. Mode II, where oxygen diffusivity was much faster in the matrix than in the SiO2 layer, displayed a relatively small gradient and an extensive oxidation depth. When the volume fraction of ZrO2 was below a threshold limit, the composites exhibited Mode I behavior; otherwise, Mode II behavior was observed. For composites with a ZrO2 content above the threshold limit, the formation of zircon (ZrSiO4), as a result of the reaction between ZrO2 and the oxidation product (i.e., SiO2), might change the oxidation behavior from Mode II to Mode I.

I. Introduction

Mullite is an excellent matrix material for ceramic-matrix composites (CMCs), because of features such as its high-temperature properties, low oxygen permeability, and chemical inertness. However, this material is limited primarily by its extremely low fracture toughness. Therefore, to enhance its fracture toughness, mullite-based composites must be developed. In general, ceramics that incorporate silicon carbide (SiC) whiskers and/or partially stabilized zirconia (PSZ) are tougher than conventional monolithic ceramics. However, at high temperatures, the instability and deterioration of SiC content influences the oxidation modes by plotting the curves of the thickness of the oxide layer formed on each SiC particle with respect to its depth below the surface. Also discussed herein is the effect of the formation of ZrSiO4 on the oxidation modes.

II. Experimental Procedure

Composites of silicon carbide particles, zirconia, and mullite (SiCp/ZrO2/mullite), all of which contained 30 vol% SiC particulate and were fabricated via the hot pressing technique, were isothermally exposed to air at 1000° and 1200°C. Each of the specimens was placed in a mullite crucible and then loaded into a box furnace (Model 51333, Lindberg, Watertown, WI) as the exposure temperature was reached. Details of the oxidation test can be found elsewhere.

Table I lists the composition, hot-pressing conditions, density, and X-ray diffractometry (XRD) phases of each composite. For convenience, the “zirconia+mullite” in each SiCp/ZrO2/mullite composite is called the “matrix,” although the matrix itself is a composite. The zirconia+mullite matrix content is 70 vol% in each composite, whereas the ZrO2 content is stated in terms of the matrix itself rather than the entire composite.
The major phases on the exposed samples were identified by using XRD (Model MXP18, Mac Science, Tokyo, Japan). The oxide layer thicknesses of individual SiC particles at various depths were measured using scanning electron microscopy (SEM) (Model S-2500, Hitachi, Tokyo, Japan) and transmission electron microscopy (TEM) (Model 2000FX, JEOL, Tokyo, Japan). Prior to doing so, the cross-sectional samples were prepared as follows. Each oxidized sample was cut into two halves in a direction perpendicular to the exposed surface, followed by ultrasonically cleaning in acetone. Two halves of the oxidized surfaces were glued together facing each other by using epoxy (G-1 epoxy, Gatan, Pleasanton, CA), while applying a proper force, and heated to 100°C for 5 min. Slices ~300 μm thick were cut perpendicular to the surface and then ground on a precision polishing machine (Model Minimet®1000, Buehler Ltd., Lake Bluff, IL) with 0.5 μm diamond paste. The cross-sectional slab was thinned to 10–20 μm (finished preparation of SEM samples) and finally argon-ion-milled at 5 kV using XRD (Model MXP18, Mac Science, Tokyo, Japan). The major phases on the exposed samples were identified by using XRD (Model MXP18, Mac Science, Tokyo, Japan). The oxide layer thicknesses of individual SiC particles at various depths were measured using scanning electron microscopy (SEM) (Model S-2500, Hitachi, Tokyo, Japan) and transmission electron microscopy (TEM) (Model 2000FX, JEOL, Tokyo, Japan). Prior to doing so, the cross-sectional samples were prepared as follows. Each oxidized sample was cut into two halves in a direction perpendicular to the exposed surface, followed by ultrasonically cleaning in acetone. Two halves of the oxidized surfaces were glued together facing each other by using epoxy (G-1 epoxy, Gatan, Pleasanton, CA), while applying a proper force, and heated to 100°C for 5 min. Slices ~300 μm thick were cut perpendicular to the surface and then ground on a precision polishing machine (Model Minimet®1000, Buehler Ltd., Lake Bluff, IL) with 0.5 μm diamond paste. The cross-sectional slab was thinned to 10–20 μm (finished preparation of SEM samples) and finally argon-ion-milled at 5 kV and 1 mA. To avoid charging, all the SEM and TEM samples were coated with a thin layer of carbon. The oxide layer thicknesses of SiC particles at different depths were then examined via SEM and/or TEM; both were equipped for energy-dispersive X-ray spectrometry (EDS). The average SiO₂ layer thickness was taken from SEM and/or TEM observations on several SiC particles at the same depth. However, the small SiO₂ thicknesses for slightly oxidized SiC particles in the inner region had to be determined via TEM, because of the limited resolution of the SEM equipment.

III. Results and Discussion

(1) Microstructural Observations

Table I lists the densities of as-hot-pressed samples. All the densities were >98% of their corresponding theoretical densities. Meanwhile, no additional phases were observed, except those which were inherited from the raw materials.

Figure 1 is a TEM micrograph of the as-hot-pressed MZY15/SiC composite; this figure reveals a typically dense microstructure. SiC particles have an angular shape, whereas the mullite particles seem to have an almost-rectangular shape. Two types of SiC particles seem to have an almost-rectangular shape. Two types of ZrO₂ were observed: one was small and spherical (tetragonal zirconia, t-ZrO₂) and was embedded in the mullite grain, and the other was angular and located along grain boundaries (co-existing as t-ZrO₂ and monoclinic zirconia (m-ZrO₂)). This observation is consistent with the results from a previous study.⁶

Figures 2 and 3 depict distinct microstructures viewed from the cross-sectional direction perpendicular to the surfaces of two exposed samples. Figure 2 presents an SEM micrograph of the MZY25/SiC composite after exposure at 1200°C for 500 h. The gray lumpy phase encircled by a dark layer is SiC, the bright phase is ZrO₂, and the gray matrix is mullite; the outer surface is on the left portion of the micrograph. SiC particles in the outer region began to oxidize and, then, each of them was surrounded by a layer of oxidation product, which was identified via EDS as SiO₂. SiC particles were partially oxidized all the way from the surface to a depth of >450 μm, which is beyond the field of view. This observation indicates that the MZY25/SiC composite had an extensive oxidation zone after exposure at 1200°C for 500 h. Figure 2 also shows how the thickness of the SiO₂ layer varied with respect to the depth of the corresponding SiC particles. The SiO₂ layer in the outer region, from the surface to a depth of ~120 μm, was much thicker than that in the inner region. Figure 3 depicts two oxidation microstructures of the MZY15/SiC composite after exposure at 1200°C for 500 h. Figure 3(a) illustrates an SEM cross-sectional view, indicating a more extremely limited oxidation depth than that in Fig. 2. The SiO₂ layer thickness in the outer region could be easily measured through SEM observations. However, this was not the case for the extremely thin SiO₂ layer of the individual SiC particle in the inner region, because of the resolution limitation of SEM. Figure 3(b) presents a TEM micrograph of the MZY15/SiC composite, revealing an extremely thin SiO₂ layer (~30 nm thick) around a SiC particle at a depth of 38 μm.

(2) Silica Layer Thickness versus Depth Curves

(A) Oxidation at 1000°C: Figure 4 illustrates the SiO₂ layer thicknesses at different depths for various composites after exposure at 1000°C for 500 h in air. SiC particles at the outer surfaces were not completely oxidized after long-term exposure, because the average size of a SiC particle was assumed to be ~7 μm and the thickest SiO₂ layer in the MZY100/SiC composite was ~1 μm. The curve for the MZY20/SiC composite in Fig. 4 had a relatively steep slope (ranging from ~8 × 10⁻³ to ~30 × 10⁻³), with a limited oxidation depth of ~40 μm. In contrast, the curves for the MZY30/SiC, MZY50/SiC, and MZY100/SiC composites had much shallower slopes.

Table I. Designation, Compositions, Hot-Pressed Conditions, Densities, and XRD Phases of Composites

<table>
<thead>
<tr>
<th>Composite</th>
<th>Composition</th>
<th>Hot-pressing conditions</th>
<th>Relative density (%)</th>
<th>XRD phases present</th>
</tr>
</thead>
<tbody>
<tr>
<td>MZY15/SiC</td>
<td>(Mullite + 15 vol% 3Y-PSZ) + 30 vol% SiC</td>
<td>1600°C/45 min</td>
<td>99.1</td>
<td>M, α-SiC, t-Z, m-Z</td>
</tr>
<tr>
<td>MZY20/SiC</td>
<td>(Mullite + 20 vol% 3Y-PSZ) + 30 vol% SiC</td>
<td>1600°C/45 min</td>
<td>99.0</td>
<td>M, α-SiC, t-Z, m-Z</td>
</tr>
<tr>
<td>MZY25/SiC</td>
<td>(Mullite + 25 vol% 3Y-PSZ) + 30 vol% SiC</td>
<td>1600°C/45 min</td>
<td>98.3</td>
<td>M, α-SiC, t-Z, m-Z</td>
</tr>
<tr>
<td>MZY30/SiC</td>
<td>(Mullite + 30 vol% 3Y-PSZ) + 30 vol% SiC</td>
<td>1600°C/45 min</td>
<td>98.5</td>
<td>M, α-SiC, t-Z, m-Z</td>
</tr>
<tr>
<td>MZY50/SiC</td>
<td>(Mullite + 50 vol% 3Y-PSZ) + 30 vol% SiC</td>
<td>1600°C/45 min</td>
<td>98.3</td>
<td>M, α-SiC, t-Z, m-Z</td>
</tr>
<tr>
<td>MZY80/SiC</td>
<td>(Mullite + 80 vol% 3Y-PSZ) + 30 vol% SiC</td>
<td>1600°C/45 min</td>
<td>98.0</td>
<td>M, α-SiC, t-Z, m-Z</td>
</tr>
<tr>
<td>MZY100/SiC</td>
<td>3Y-PSZ + 30 vol% SiC</td>
<td>1600°C/45 min</td>
<td>99.9</td>
<td>α-SiC, t-Z, m-Z</td>
</tr>
</tbody>
</table>

⁶The matrix content (in parentheses) is 70 vol% for each composite; the balance is SiC. The ZrO₂ content is stated in terms of the matrix itself; i.e., the amount of Y-PSZ (vol%) = [(volume of Y-PSZ)/(volume of mullite + volume of Y-PSZ)] × 100. Hot pressing was conducted under a pressure of 30 MPa in a 1 atm argon atmosphere. M = mullite, "t-Z" = tetragonal zirconia (t-ZrO₂), and "m-Z" = monoclinic zirconia (m-ZrO₂).
The ZrO$_2$ content where this transition occurred is the so-called “percolation threshold,” which was ~ 20 vol% ZrO$_2$ based on the weight-gain data in the previous study.25 In addition to the measurements of the SiO$_2$ layer thickness, Lin and co-workers22,23 characterized the oxidation behavior of the exposed composites, based on the oxidation morphologies related to whether SiC particles were completely oxidized within the outer region of the composite. However, the oxidation mode in this study was determined based on the plotted curve of SiO$_2$ layer thickness versus depth. Mode I was characterized by a small oxidation depth and a comparatively large gradient of the curve of SiO$_2$ layer thickness versus depth. Meanwhile, Mode II was characterized by a large oxidation depth and a relatively small gradient. Each of the composites that have a ZrO$_2$ content that is greater than the percolation threshold exhibited a similar tendency, as characterized by a small gradient and a large oxidation depth. The slope for Mode II was approximately one order of magnitude smaller than that for Mode I. In addition, the SiO$_2$ layer thicknesses of those composites at the corresponding depths increased as the ZrO$_2$ content increased; the largest oxidation rate was observed in the MZY100/SiC composite, followed by that of the MZY50/SiC composite. The severe oxidation of the MZY100/SiC composite corresponded to the higher ZrO$_2$ content in the MZY100/SiC composite than in other composites, which leads to faster oxygen transport routes via ZrO$_2$.

Figure 5(a) displays the curves of SiO$_2$ layer thickness versus depth of the MZY20/SiC composite for various times after exposure at 1000°C for 500 h.
the SiO$_2$ layer thickness versus depth for various composites after exposure at 1200°C for 25 h. According to this figure, several composites exhibited very different behavior during oxidation. The characteristic of a steep slope (approximately -13×10^{-3}) with a small oxidation depth was observed in the MZY15/SiC composite, compared with much-smaller slopes (ranging from -0.6×10^{-3} to -6×10^{-3}) for the MZY50/SiC and MZY100/SiC composites. This observation is analogous to that for the MZY20/SiC composite at 1000°C; thus, the oxidation behavior of the MZY15/SiC composite was Mode I. However, the oxidation behavior markedly differed among the MZY25/SiC, MZY50/SiC, and MZY100/SiC composites. For the MZY25/SiC composite after exposure at 1200°C for 25 h, the curve could be divided into two regions, based on very different slopes: the outer region had a larger negative slope (approximately -26×10^{-3}), whereas the inner region had a smaller negative slope (approximately -0.4×10^{-3}) with slightly oxidized SiC. The fact that the behavior of the MZY25/SiC composite at 1200°C for 25 h encompassed two distinctive regions implies that the oxidation mode changed during exposure, because of the formation of ZrSiO$_4$, as discussed later. Thus, the oxidation mode of the MZY25/SiC composite at 1200°C for 25 h was categorized as Mode II+I, as defined previously. Interestingly, after exposure at 1200°C for 25 h, the MZY50/SiC composite rather than the MZY100/SiC composite had the thickest SiO$_2$ layer at corresponding depths. This outcome differed from exposures at 1000°C for 500 h. This observation was also attributed to the presence of ZrSiO$_4$, which resulted from the reaction between ZrO$_2$ and SiO$_2$ at 1200°C. More ZrO$_2$ particles accounted for a larger quantity and an earlier formation of ZrSiO$_4$ in the composites. Without any evident change in slope, but with a larger oxidation depth, the oxidation mode of the MZY50/SiC composite at 1200°C for 25 h was classified as Mode II; the oxidation mode for the MZY100/SiC composite was also classified as Mode II.

Figure 7(a) displays the curves of SiO$_2$ layer thickness versus depth for the MZY15/SiC composite at various intervals. Similar to the MZY20/SiC composite at 1000°C, the MZY15/SiC composite after exposure at 1200°C exhibited Mode I oxidation. Figure 7(b) presents the curves of the SiO$_2$ layer thickness versus depth for the MZY25/SiC composite at different intervals. For exposure after 9 h, the oxidation behavior should be categorized as Mode II, because the composite has a much smaller gradient and a much larger oxidation depth than that of the MZY15/SiC composite at 1200°C for 500 h. However, after exposure for 25 h, the dashed curve, purposely used as an indication of the change in oxidation mode, denoted two distinct slopes that contained a steep slope in the outer region, followed by a dramatic decrease in slope with extensive slightly oxidized SiC in the inner region. As mentioned previ-
ously, the oxidation mode was the mixed mode (Mode II+I). Similarly, for 100 and 500 h, both curves could again be distinguished by two very different slopes. It is also noted that the SiO₂ layer thickness in the outer region sharply increased as the time increased, whereas the SiO₂ layer thickness in the inner region had a tendency not to differ markedly, even for a sufficiently long time. In other words, the SiO₂ layer in the inner region did not thicken after the oxidation behavior changed from Mode II to Mode I. In contrast, the SiO₂ layer thickness of the inner region for Mode II continued to increase as the time increased, as indicated in Figs. 5(b) and (c).

Figure 8 illustrates XRD spectra of the MZY25/SiC composite at 1200°C; this figure indicates the formation of cristobalite and ZrSiO₄. Cristobalite, formed by the devitrification of amorphous silica, was detected after exposure for 9 h; meanwhile, ZrSiO₄ (i.e. the reaction product of ZrO₂ and SiO₂) was detected after exposure for 25 h. The amounts of ZrSiO₄ and cristobalite both increased as the time increased. This observation suggests that the devitrification of amorphous silica was continuously occurring while the remaining SiO₂ was gradually consumed in the chemical reaction with ZrO₂. The formation of ZrSiO₄ could strongly influence the oxidation rate of the MZY25/SiC composite, even if the amount of composite is small. Such an influence was attributed to the fact that the oxygen diffusion rate in ZrSiO₄ was much slower than that in ZrO₂. Correspondingly, the rapid diffusion routes via ZrO₂ were disconnected. Thus, for the MZY25/SiC composite, after the ZrO₂ content immediately above the threshold volume fraction, e.g., the MZY25/SiC composite, the oxidation behavior was quite sensitive to the formation of ZrSiO₄, which caused a reduction in the ZrO₂ content. The change in oxidation mode occurred when the residual ZrO₂ content was lower than the threshold volume fraction. In contrast, the oxidation behavior of the MZY50/SiC composite should be less susceptible to the presence of ZrSiO₄ than that of the MZY25/SiC composite at 1200°C, because the MZY50/SiC composite had a higher ZrO₂ content than did the MZY25/SiC composite. Therefore, the change in oxidation mode should be delayed in the MZY50/SiC composite at 1200°C. In the inner region, the curve for the 100-h exposure fell slightly below that for 25 h, which was attributed to the data scatter and the subsequent curve fitting. Figure 7(d) displays the curves for the MZY100/SiC composite at different intervals; this figure indicates that the oxidation mode did not change and all the oxidation modes were Mode II.

Figure 7. Curves of SiO₂ layer thickness versus depth at various intervals ((a) MZY15/SiC, (b) MZY25/SiC, (c) MZY50/SiC, and MZY100/SiC composites, all after exposure at 1200°C).
The change in oxidation mode after long-term exposure at 1200°C was attributed to the formation of ZrSiO₄, which could be expressed as follows:

\[
\text{SiC} + \text{ZrO}_2 + \frac{3}{2} \text{O}_2 \rightarrow \text{ZrSiO}_4 + \text{CO} \quad (1)
\]

Assuming the densities of ZrO₂ and SiC to be 6.0 and 3.21 g/cm³, respectively, and the atomic weights of ZrO₂ and SiC to be 123.2 and 40 g/mol, respectively, the percentage of SiC (x) allowed to be oxidized before the volume fraction of the remaining ZrO₂ (z) decreased below the threshold value was calculated by using the following equation:

\[
x(\%) = \frac{3.41(z - 0.2)}{2.41} \times 100 \quad (2)
\]

This calculation is based on a ZrO₂ threshold value of 20 vol%, as reported in a previous investigation. Table II summarizes the calculated results. The fact that the formation of ZrSiO₄ requires solid-state diffusion explains why the calculation merely reflects a lower limiting case. On the other hand, the available SiC (30 vol%), at any depth or region, is assumed to be completely oxidized and then continuously react with ZrO₂ after sufficiently long-term exposure. For composites in this study, up to 71 vol% of ZrO₂, if available, could be consumed from the matrix because of the formation of ZrSiO₄. Therefore, the composite did not undergo a change in oxidation mode during long-term exposure when the ZrO₂ content of the as-hot-pressed composite was >91 vol%. Table III lists the amounts of residual ZrO₂ in various composites after sufficiently long-term exposure. This table indicates that, in the MZY100/SiC composite, 29 vol% of ZrO₂ still remained after completely reacting with the available SiO₂. Because the fast-diffusion routes via ZrO₂ continued to operate, the oxidation mode likely remained as Mode II. Conversely, the ZrO₂ contents in the MZY25/SiC and MZY50/SiC composites were reduced below the threshold limit after extremely long-term exposures. As a result, the oxidation mode was modified from Mode II to Mode I, which led to a dramatic decrease in oxida-

![Fig. 8. XRD spectra of the surface of the MZY25/SiC composite after exposure at 1200°C for 9 h (spectrum ‘‘(a)’’), 25 h (spectrum ‘‘(b)’’), 100 h (spectrum ‘‘(c)’’), and 500 h (spectrum ‘‘(d)’’) (‘‘M’’ is mullite, ‘‘C’’ is cristobalite, ‘‘S’’ is SiC, ‘‘Z’’ is zircon, ‘‘m’’ is monoclinic ZrO₂, and ‘‘t’’ is tetragonal ZrO₂).](image-url)
ication rate. The oxidation modes at 1200°C for various composites, prior to the formation of ZrSiO₄ as well as after sufficiently long-term exposures, are also summarized in Table III.

IV. Conclusions

This study investigated the oxidation behavior of SiC-reinforced ZrO₂/mullite matrix composites by examining the relationship between the SiO₂ layer thickness and the depth of the corresponding SiC particle below the outermost surface. Two basic oxidation modes for the SiC/ZrO₂/mullite composites were defined: (i) Mode I, where the oxygen diffusivity is much slower in the matrix than in the SiO₂ layer, and a relatively large gradient and a limited oxidation depth are exhibited, and (ii) Mode II, where the oxygen diffusivity is much faster in the matrix than in the SiO₂ layer, and a relatively small gradient and an extensive oxidation depth are shown. Oxidation modes of the exposed composites were related to their ZrO₂ content:

1. Below the threshold limit of ZrO₂ content and without ZrSiO₄ formation (e.g., the MZY20/SiC composite after long-term exposures at 1000°C), the oxidation mode exhibited Mode I behavior.
2. When the ZrO₂ content exceeded the threshold limit and did not form any ZrSiO₄ (e.g., the MZY30/SiC, MZY50/SiC, or MZY100/SiC composites at 1000°C), the composites exhibited Mode II behavior.
3. Below the threshold limit of ZrO₂ content and with ZrSiO₄ formation (e.g., the MZY15/SiC composite after long-term exposures at 1200°C), the oxidation mode exhibited Mode I behavior.
4. Identification of the oxidation mode was more complicated when the ZrO₂ content exceeded the threshold limit and ZrSiO₄ formed after relatively long-term exposure at 1200°C. When ZrO₂ content decreased below the threshold limit, because of the replacement of ZrO₂ by ZrSiO₄ (such as the case for the MZY25/SiC or MZY50/SiC composites), the oxidation behavior was categorized as mixed mode, consisting of Mode II and subsequent Mode I. If the ZrO₂ content was still higher than the threshold limit after the replacement (such as the case for the MZY100/SiC composite), the oxidation mode was Mode II.

Acknowledgment

The authors would like to thank Professor Avigdor Zangvil of the University of Illinois at Urbana–Champaign (Urbana, IL) for the helpful discussions.

References

Table III: Oxidation Modes and Residual ZrO₂ Contents after Sufficiently Long-Term Exposure at 1200°C

<table>
<thead>
<tr>
<th>Composite</th>
<th>Original ZrO₂ content (vol%)</th>
<th>Oxidation mode prior to zircon formation</th>
<th>Residual ZrO₂ content (vol%) after sufficiently long-term exposure</th>
<th>Oxidation mode after sufficient long-term exposure</th>
<th>Overall oxidation mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>MZY15/SiC</td>
<td>15</td>
<td>Mode I</td>
<td>0</td>
<td>Mode I</td>
<td>Mode I</td>
</tr>
<tr>
<td>MZY25/SiC</td>
<td>25</td>
<td>Mode II</td>
<td>0</td>
<td>Mode I</td>
<td>Mode II+</td>
</tr>
<tr>
<td>MZY30/SiC</td>
<td>30</td>
<td>Mode II</td>
<td>0</td>
<td>Mode I</td>
<td>Mode II+</td>
</tr>
<tr>
<td>MZY50/SiC</td>
<td>50</td>
<td>Mode II</td>
<td>0</td>
<td>Mode I</td>
<td>Mode II+</td>
</tr>
<tr>
<td>MZY80/SiC</td>
<td>80</td>
<td>Mode II</td>
<td>9</td>
<td>Mode I</td>
<td>Mode II+</td>
</tr>
<tr>
<td>MZY100/SiC</td>
<td>100</td>
<td>Mode II</td>
<td>29</td>
<td>Mode II</td>
<td>Mode II</td>
</tr>
</tbody>
</table>

Acknowledgment: The authors would like to thank Professor Avigdor Zangvil of the University of Illinois at Urbana-Champaign for the helpful discussions.