Face Selection in Addition and Elimination in Sterically Unbiased Systems

Mira Kaselj,†,§ Wen-Sheng Chung,‡ and William J. le Noble*†

Department of Chemistry, State University of New York, Stony Brook, New York 11794, and Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050, Republic of China

Received July 25, 1998 (Revised Manuscript Received January 20, 1999)

Contents
I. Introduction 1387
II. Cation Formation and Capture 1389
 A. 5-Substituted 2-Adamantyl Cation 1389
 B. 4-Substituted 2-Adamantyl Cation 1392
III. Carbene Capture 1392
 A. 5-Substituted 2-Adamantylidenecarbene 1392
 B. 5-Substituted 2-Vinylideneadamantane 1392
IV. Nucleophilic Addition to Ketones 1392
 A. 5-Substituted Adamantanone 1393
 B. 4-Substituted Adamantanone 1396
 C. Other Carbonyl Probes 1396
V. Electrophilic Addition to Olefins 1398
 A. 5-Substituted 2-Alkylideneadamantane 1398
 B. 4-Substituted 2-Alkylideneadamantane 1399
 C. Other Olefinic Probes 1399
VI. Radical Capture 1400
VII. Carbanion Capture 1400
VIII. Cycloaddition 1401
IX. Sigmatropic Shifts 1404
X. Other Addition Processes 1405
XI. Equilibrium vs Kinetic Ratios 1406
XII. Interpretations 1407
 A. Concerted vs Multistep Bonding Changes 1407
 B. Distortion 1407
 C. Electrostatic Effects 1408
 D. Hyperconjugative Effects 1409
XIII. Acknowledgments 1410
XIV. References 1410

I. Introduction

For the purpose of this review, addition processes are considered to include all of the reactions in which there is an increase in the number of ligands bound to a central atom, and elimination covers all of the chemistry in which there is a decrease. With so wide a range of such processes, there can be little doubt that they are among the most important in all of chemistry, not only because of the multitude of reactions that fit the definition but also, and perhaps especially, because of the stereogenesis that characterizes addition—that is, where stereochemistry begins. The question arises: when a new, additional ligand is going to be bound to the central atom, what will the preferred new configuration be? This question has created the need to know the factors that govern stereoselection.

Beyond any doubt, the best-documented and most powerful factor is the steric one, and for a long time, it was considered to be the only one. Even now, when the root mechanism of a successful new stereoselective reagent or catalyst is discussed, it is virtually always taken for granted that the selectivity is the result of a difference in steric hindrance between the two approaches the reagent may choose. Yet it has been known since the 1950s that products sometimes form as the consequence of reactions in which it is not intuitively obvious how steric crowding could have led to the result. A variety of suggestions have been offered for these observations, and they may be captured under the general description of stereoelectronic effects.

The obvious way to study these effects is to employ probe molecules in which the two faces eligible for addition are sterically equivalent. The power of that approach has been dramatically demonstrated by Hammett, who used p-substituents in phenyl rings to influence rate and equilibrium constants in ways which are impervious to steric effects. The 2-norbornyl cation has provided us with an equally dramatic example of the fact that failure to exclude possible steric effects where electronic influences are sought cannot lead to unassailable conclusions. The nonclassical ion controversy, in fact, was a study of face selection in an elimination reaction as well as of the stereochemistry of the final capture and addition step. In research of addition reactions involving neutral substrates, the most frequently used probes have been cyclohexanone and its derivatives, and from the beginning, there, too, arguments ensued about the degree and even direction of steric differences between the equatorial and axial approaches (to say nothing about the conformational nonrigidity). Thus, important though this simplifying system may be in organic chemistry, it should be recognized that studies employing it will never convincingly reveal the reasons for the observed selectivities.

Unfortunately, it is not possible to design a probe containing a planar atom with two faces which are absolutely indistinguishable sterically, yet different electronically. As we shall see, this ideal can only be
In this article, we review results that have been obtained by means of studies employing several probes that come quite close to the ideal of zero steric bias. We did of course not attempt to incorporate a comprehensive listing of data which have been produced by colleagues who are also authors of papers in this issue, but we did refer to those of their experiments that were needed to produce a seamless account. For investigators planning their own research in this area, it is important to consult earlier reviews and/or accounts by Wigfield,1 Ashby,2 and Gung.3 Reviews are also available in more specialized areas of narrower focus; they include papers by Zimmerman4 and Pollack5 on keto-enol stereochromy, by Fallis6 on pericyclic stereochromy, by Franck7 on the stereochromy of simple cyclohexanes, by Paddon-Row8 and by Bowden and Grubbs9 on the through-bond and through-space transmission of substituent effects, by Juaristi10 and Perrin11 on the anomeric effect, and by Saunders12 on carboxylation chemistry. Each of these papers contains references to earlier summaries and seminal contributions to those topics. Excellent brief summaries may be found in the introductory paragraphs of recent research papers by Houk,13 Fraser,15 Fallis,16 Heathcock,17 Paddon-Row,18 Jorgensen,19 and Tomoda.20 One of us has contributed reviews on the competing viewpoints of what lies behind nonsteric diastereoselection in addition21 and in solvolysis.22

While addition to trigonal centers lies at the heart of stereogenesis, elimination to produce such centers revolves about relative rates. These two processes are, of course, closely related, as each is essentially the microscopic reverse of the other; however, the addition reaction has received far more attention (with carbocation chemistry the main exception), whereas elimination to form such centers revolves about relative rates. These two processes are, of course, closely related, as each is essentially the microscopic reverse of the other; however, the addition reaction has received far more attention (with carbocation chemistry the main exception), presumably because of its importance in synthesis. Much of our own work in this field is based on the unique properties of the adamantane skeleton, such as its rigidity, a point which is elaborated further
below. Perhaps the first chemists to take advantage of these properties have been Schleyer and Martin, who showed in 1969 that the allylic ester 1 solvolyzes extremely slowly, thus demonstrating that when the leaving group is forced to depart in the plane perpendicular to the normal assisting \(\pi \) orbital, the vinyl group is an electron withdrawing one. Their work provided a dramatic example of the power of this probe to reveal insights that are hidden from view where nonrigid molecules are used.

In the sections that follow, we discuss the most important addition processes and explain the observed configurational preferences by means of transition-state hyperconjugation, which we believe has proven to be the most successful theory to date for that purpose. In a final section, we mention the several alternative ideas to have emerged in the literature in recent years and their pros and cons. But first, we digress for a moment for two items of nomenclature. Throughout this paper and others already published, we have found it convenient to employ the numbering system shown in structure 2, even though it is sometimes incorrect; thus, we refer to 1,4,4-trichloroadamantane as the 2,2,5-species, and so on. We also prefer to use the E- and Z-stereochemical designations; E if the higher priority substituent among R and S in 3 is anti to the higher priority substituent among R and S, and Z if it is syn. This is, of course, exactly the same convention as that proposed by Blackwood et al. and now in common use for olefins; we see no reason why it should not also be used for achiral cyclic molecules such as 1,3-disubstituted cyclobutanes, etc. We refer to the two faces of C-2 in 2 as the en and zu faces, where en describes the distal face with respect to the substituent at C-5, and zu represents the proximal one. In a few instances, we shall mention research done with chiral molecules; in all of those cases, the substances used were racemic.

II. Cation Formation and Capture

A. 5-Substituted 2-Adamantyl Cation

The stereochemistry of solvolysis went through a period of intense debate about the cause underlying often huge epimeric rate ratios. The primary reason this dispute lasted for years without resolution was, as noted above, that the probes widely used to investigate the question, the exo-2-norbornyl esters 4, generate cations with two sterically inequivalent faces, and hence it is not possible to offer rigorous proof that the cause of the 103:1 exo/endo rate ratio is electronic in nature. In a few cases, unsaturated probes with sterically near-identical faces did find use, and the \(\pi \)-participation postulated to cause their very large solvolysis rate ratios was not controversial; perhaps the best known example is the 7-norbornenyl tosylate 5. The phenomenon of \(\alpha \)-participation is now well-established as well, but it is interesting to speculate that it might have been studied, much earlier than it was, by means of 2-adamantyl esters or halides carrying a remote substituent to influence the ability of vicinal \(\alpha \) bonds to lend assistance in the heterolysis process. However, the parent 2-adamantyl ester was considered to provide the textbook case of unassisted solvolysis, and thus, there was little or no incentive to study more elaborate specimens.

If one ignores this background, the 5-substituted adamantanes with a trigonal center at C-2 have much to recommend them as probes. The substituent, which is equatorial with respect to all three of the cyclohexyl rings converging at C-5, is remote enough from the trigonal center not to influence it sterically in any but the most extreme cases. There is virtually no conformational freedom in this rigid yet essentially strainless system, and Bredt’s rule forbids the possibility of elimination as a competing process. In early applications, the assignment of configuration was an obstacle that could be overcome only by means of X-ray studies; however, such assignments are now routinely based on NMR spectra.

The first chemist to study the solvolysis of a 2-adamantyl ester carrying a 5-substituent was Whiting, who used a methyl group at that position to show that both secondary and tertiary esters 6 and 7 undergo acetylation with predominant retention of configuration. The result was evidently surprising enough that the authors considered the possibility of an indirect steric effect, operating through the intervening axial hydrogen atoms, as the cause of the retention. Subsequent work in our own laboratory showed that predominant (92:8) retention also characterized the hydrolysis of 5-deuterio-2-adamantyl tosylate E-8 in 40% aqueous acetone (Scheme 1; note that Z-8 was not studied experimentally since its retention may be taken for granted. To suppose otherwise is to postulate a \(\delta \) deuterium isotope effect). That observation rules out the steric possibility,
leaving assistance by the antiperiplanar vicinal bonds as the only reasonable explanation. One other possibility is sometimes mentioned as an alternative, namely, that the solvent molecule trapped between the cation and the leaving group in a solvent-separated ion pair might be a stronger nucleophile than bulk solvent by virtue of its proximity to the anion and thus produce retention. This explanation cannot apply, however, to the tertiary 2-adamantyl cations, as noted in the following paragraphs.

The first insight that a 5-substituent can influence face selection in the capture of a free 2-adamantyl cation derived from a study of the 5-phenyl-substituted propargyl chlorides shown in Scheme 2. Dissolution of both the E- and Z-isomers in methanol caused partial methanolysis and partial rearrangement to the chloroallenes. The latter reaction is stereospecific, and hence there is evidently no crossover between or dissociation of the tight ion pair intermediates. In contrast, the methyl ethers are produced in the same ratio from both epimers; evidently, the free cation is a common intermediate. The composition of this common mixture is of special interest: the Z-ether predominates by a ratio of 3:1 over the E-isomer. The remote phenyl group clearly has a directive effect, which we attribute to \(\sigma\)-delocalization. Of the four C–C bonds vicinal to the cation center, the two proximal to the electron-withdrawing phenyl group are deactivated by it; the other two therefore are the bonds that stabilize the cation and control the stereochemistry. This clear evidence for delocalization is especially noteworthy because the cation is not just a tertiary species, but it is presumably stabilized by the triple bond. The conclusion that this stabilization is not enough to swamp the hyperconjugative interaction with the neighboring bonds is inescapable.

These conclusions were supported by means of extensions to other systems. First, it was found that other electron-withdrawing substituents such as chloro-, fluoro-, trifluoromethyl in the 5-position lead to a similar or even larger preference of the nucleophile for the zu face; thus, exposure of either of the two tertiary alcohols to hydrogen chloride in dichloromethane leads to identical mixtures of 2-chloroadamantanes in which the Z-isomers are present in severalfold excess. Neither the alcohols nor the products interconvert under these conditions (Scheme 3).

When the rates of generation of the cations rather than the ratios of the products are measured, far larger effects are encountered. Thus, a 5-fluoro substituent gives rise to an E/Z rate ratio of solvolysis of the secondary 2-adamantyl tosylates in aqueous acetone of less than 0.01. It was also found that if the 5-substituent is a donor such as trimethylstannyl, E/Z rate ratios far larger than unity result. The most powerful donor effect was found by Grob, who replaced C-5 by a nitrogen atom. The assistance in this case derives from the unshared atom. The stability of this case derives from the unshared atom. The remarkable persistence of the ability of antiperiplanar neighboring bonds to stabilize cations even if the positive center is bound to an ethynyl group led us to try to tune the product ratio in 2-phenyl-2-adamantyl cations by means of \(p\)-substitution. In one series of reactions, the cations were generated from mixtures of E- and Z-alcohols by means of hydrogen chloride gas dissolved in methylene chloride to give chlorides; in another, they were obtained by solvolysis of mixtures of E- and Z-tosylates and captured with sodium borohydride to give reduction products. In all instances, the products resulting from attack at the zu face predominated over their isomers by margins ranging narrowly and apparently randomly between 73:27 to 75:22. Evidently, the assistance is not even swamped by a \(p\)-anisyl group. It should be noted that these cations are essentially cumyl cations, the same species that provide the basis for the \(\sigma^+\) constants! One is led to see that the stability of cumyl cations is derived in part from delocalization by the methyl C–H bonds. It is evident that the \(\sigma\)–applications...
which have been used so often27 to call the existence of σ-delocalization into question provide at best a shaky basis on which to build such conclusions. When the solid salt \textbf{19} is treated with sodium borohydride, even then, the E-ether is formed in excess over the Z-isomer by a margin of 83:17.38 The conclusion is that σ-delocalization from vicinal bonds does not merely occur, but that it cannot be swamped by a substituent bearing unshared pairs.

We take note here of the presumed difference between σ-delocalization and hyperconjugation. As we have argued elsewhere,22 when the participating or delocalizing bond is a vicinal one, there appears to be no difference; in fact, there is to our knowledge no clear definition of these two terms which addresses the difference in the literature (however, see Kirmse et al.;39 "there is no reason to mingle hyperconjugation with σ-delocalization..."). The term σ-delocalization is perfectly descriptive and justified when the assistance is rendered through space by a more remote single bond; thus, McMurry's cation \textbf{20}40 and Sorensen's cation \textbf{21}41 are good examples of σ- participation by a remote C–H bond. Yet, the two-electron three-center bonds, even in these species, are essentially hyperconjugative in nature.

We also note a paper by Liu42 in which he reports a decrease in the E/Z rate ratio of solvolysis of compounds \textbf{16} as Y changes from trifluoromethyl to methyl and claims that this shows our conclusion regarding the absence of swamping to be invalid. However, to "swamp" means to submerge completely, and Liu's data do not indicate that his phenyl groups have stopped the assistance of the vicinal bonds; in fact, the product mixtures reported in Liu's paper show that the capturing nucleophile preferentially attacked the zu face in every case, by margins between three and fifty to one.

The evidence that the 2-adamantyl cations are subject to stabilization by the vicinal bonds has been confirmed by Sorensen43 in a dramatic way. He was able to study the 2,5-dimethyladamant-2-yl cation in superacid solution at low temperature by means of 13C NMR, and found it to be an equilibrating mixture of two structures, presumably \textbf{22} and \textbf{23}. The equilibrium constant for the reaction as written is about 10. At least equally pertinent in this respect are the several studies by Laube, who has been able to carry out X-ray diffraction studies on solid carbocation salts at low temperatures.44 The structure of the 2-phenyl-2-adamantyl cation is of special interest.45 The C\textsubscript{1}–C\textsubscript{2} and C\textsubscript{2}–C\textsubscript{3} bonds are shortened by nearly 0.1 Å; the C\textsubscript{1}C\textsubscript{2}C\textsubscript{3} bridge leans toward one side by 7.86°, and the phenyl group by an additional 5.6°. The vicinal bonds on that side are elongated by about 0.05 Å; all of this is consistent with strong hyperconjugation. Bond shortening in the C–CH\textsubscript{3} bonds has also been observed in the parent cumyl cation itself.46 While one could also attribute the stereochemistry to the greater openness of the leaning bridge or the pyramidality at C-2, because both of these distortions are themselves due to hyperconjugation, these are not different explanations.

The question arises how the substituent at C-5 makes its influence felt in the intervening anti-periplanar vicinal bonds. Carrying the argument of hyperconjugation one step further, we suppose that the effect is ascribable to delocalization of electrons in these bonds into the σ^* orbital of the C–X bond, thus reducing their ability to assist at C-2. Strong support for efficient electron delocalization in this type of extended hyperconjugation has been reported by Grob,47 Adcock,48–51 Borden,52 Michl,53 Verhoeven,54 Vinkovic,55 and Vögtle.56
We summarize as follows. The physical properties of the 2-methyl- and 2-phenyl-2-adamantyl cations clearly show that they are subject to hyperconjugation. We therefore feel that the stereochemistry of capture of 5-substituted 2-adamantyl cations as well as the epimeric rate ratios observed in their generation are not merely conveniently explained by hyperconjugation, but are plainly a consequence of it.

B. 4-Substituted 2-Adamantyl Cation

The preceding section gives rise to the intriguing question of how face selection in 2-adamantyl cations will be affected by a 4-substituent. If this substituent is axial (with respect to the cyclohexyl cation), it will obviously affect the stereochemistry in a sterically way, and hence we will limit this discussion to cases in which it is equatorial. While an electron-withdrawing group in position 4 will undeniably reduce the ability of the C3–C4 bond to assist at C-2, it is not self-evident that this effect will be stronger than that exerted by the same substituent at C-5, the nature of the interaction being different.

Experimental data relevant to this question have been provided by Grob, who found the ability of substituents to affect solvolysis rates of 2-adamantyl esters weaker if they are in the equatorial 4-position than if they are located in the 5-position. He interpreted this fact as evidence that conflicts with the proposal that hyperconjugation is the reason why 5-substituents have such drastic effects as noted in the preceding section. However, this conclusion is certainly debatable; 5-substituents affect both intervening bonds vicinal to C-2, whereas equatorial 4-substituents affect only one. Note also that all four of the bonds vicinal to C-2 are related differently to C-4. We presume that the extended anti-periplanarity of 5-substituents is the factor that renders them so effective in this reaction.

III. Carbene Capture

A. 5-Substituted 2-Adamantylidene Carbene

Carbenes in which neither of the two groups bound to the carbene carbon carries unshared electrons behave as strongly electron-deficient species, and hence they may be expected to mimic carbocations in their stereochemical properties. We see the adamantylidene carbene as a species in which C-2 has a filled sp2 orbital and a vacant p orbital. A report bearing out this expectation has been published by Majerski. He studied the formation of dehydroadamantanes 24 and 25 in the Bamford–Stevens reaction shown below, and observed the product ratio to be 74:26 in favor of 24 when X is methyl, and 92:8 when it is chloro. These results signify that the secondary hydrogen atoms most remote from the substituent are the favored targets for carbene insertion, and that this preference becomes more pronounced the more electronegative the substituent.

B. 5-Substituted 2-Vinylideneadamantane

We referred in section IIA to the neutral solvolysis of the propargyl chlorides E- and Z-9. When these same compounds are exposed to a basic medium, the resulting anions jettison chloride ion to give carbene-anion pairs, which in part undergo retentive isomerization to the allenes and in part dissociate to the common free carbene 26. This carbene has a strongly dipolar character, and the dipole moment should increase because of induction as a nucleophile approaches. Carbenes such as 26 should therefore mimic the 2-adamantyl cation in their behavior, and indeed, captures methanol with a 3:1 preference for Z-11 as the product.

IV. Nucleophilic Addition to Ketones

The stereochemistry of addition to carbonyl groups in open-chain compounds is obviously sensitive to steric and thermodynamic factors, and simple, well-known rules have been developed to predict both the conformation of the necessary nearby chiral center, the least hindered face for the approach of the reagent, and the stability of the products. It was only when cyclohexanone stereochemistry began to be studied that awareness gradually set in that these three influences alone were insufficient to explain the observed results.

The alternative and additional factors that can play a role have been much debated, and there is still much disagreement about them. Because most of the experimental background fueling these discussions is in the area of nucleophilic addition to ketones and because much of the discussion in the literature concerns the relevance of through-bond interactions between substituents and the carbonyl center, a brief digression is inserted here to describe the arguments favoring such interactions, and thus to clarify the purposes of the experiments. Readers wishing to see a fuller discussion of the main schools of thought may consult ref 21, papers quoted in that account, section XII below, and other papers in this issue; suffice it here to say that the similarity in stereochemical behavior between carbenes and cations naturally led to the question whether ketones might not also fit this mold.
observed axial approach of nucleophiles to cyclohexanone, order is correct) in order to explain the oft-repulsive when the synperiplanar bond is electron deficient; hence, this interaction predicts the same opposite predictions. The Felkin approach is least repulsive when the synperiplanar bond is electron deficient; hence, this interaction predicts the same stereochemistry as does the Cieplak model. All three have been successfully applied to cyclohexanone addition stereochemistry; however, the Anh and Felkin models also postulate various conformational distortions to account for the results. The Cieplak model postulates that C−C bonds are better donors than C−C bonds (in other words, that the Baker–Nathan order is correct) in order to explain the oft-observed axial approach of nucleophiles to cyclohexanones.

The 5-substituted adamantane system is virtually ideal to test these models. The skeleton has two carbonyl faces which would be identical but for the remote substituent; its rigidity avoids the distortions apparently important in the Anh and Felkin models, and the propriety of the Baker–Nathan order is immaterial because all four vicinal bonds are C−C bonds which are differentiated only by the remote substituent. This same remoteness is of course also a disadvantage: the product (or rate) ratios are generally quite modest. But, one could say this also about secondary isotope effects. The point of the experiments is not to find large effects, but insightful ones, and, if that is achieved, they are well-chosen.

A. 5-Substituted Adamantanone

The first indication that the usefulness of the adamantanone probe was not limited to electron-deficient intermediates such as carbenoids and carbones came from the observation that the ethynylation of 5-phenyladamantanone did not give a 50/50 mixture as we had supposed; the E-isomer of dominated by a margin of 2:1. In later work, we learned that this deviation was general; the reduction of this ketone by means of the usual complex hydrides also produced E-alcohols in excess. Furthermore, other electron-withdrawing 5-substituents such as methoxycarbonyl, bromo, chloro, fluoro, hydroxy, and trifluoromethyl caused the same behavior; the margins, ranging from 70:30 to 55:45, seemed to reflect the electronegativity of the substituents. In the case of 5-phenyl, in fact, it was possible to tune the ratio by means of variations in the para substituent, although not as much as we at first reported. An electron-withdrawing substituent such as nitro tends to increase the tendency of the phenyl group to direct the nucleophile toward the zu face of the carbonyl carbon, whereas a p-amino group tends to diminish it. These effects can be most clearly seen in the 5,7-diphenyladamantan-2-ones 29−X,Y.

Upon reduction with sodium borohydride in 2-propanol, ketones 29-H-N=O, 29-H,NH2, and 29-NH2,NO2 produce the E- and Z-alcohols in the ratios of 1.30, 0.78, and 1.64, respectively. It is evident that the nitro group which deactivates the proximal vicinal bonds directs the nucleophile to the zu face and that the amino function activates the same bonds and directs the reagent to the en face; in 29-NH2,NO2, both effects team up to give a ratio which is the quotient of the other two. The effects of a donor substituent are also observable in the 5-trimethylsilyl- and -stannyl-2-adamantanones; thus, treatment of 30 with methyllithium gave the tertiary E- and Z-adamantanols in a ratio of 36:64.

One might expect that the magnitude of the selectivity should be somewhat dependent on the nature of the nucleophile, but the variation is surprisingly small. The addition of 5-fluoroadamantan-2-one to six p-substituted phenylmagnesium bromides, with the p-substituent varying from trifluoromethyl to dimethylamino, gave E/Z ratios between 68:32 and 76:24, with no obvious trend or correlation. In our search for such effects, we recalled a drastic case of nucleophile differentiation which had
been reported by Gassman;\(^76\) he had found a complete reversal of face selection in the two reactions in Scheme 4. When these two reagents were allowed to react with 5-fluoroadamantan-2-one, however, the E/Z ratios were found to be nearly identical (2.3 vs 3.0). Evidently, the double bond in norbornenone begins to play a role\(^77\) when the ionic reagent pentafluorothyllithium approaches the keto function.

In any event, we now strongly suspected that transition-state hyperconjugation was driving the stereochemistry, and that the carbonyl group's selectivity was a consequence of its carbocation character. One possible test of this conjecture is to deactivate all four of its vicinal bonds completely. In pursuit of that notion, we studied the reaction of lithium borohydride dissolved in ether with 7-monohydrylperfluoroadamantan-2-one (Scheme 5), in which fluorine substitution abrogates the ability of the vicinal bonds to function as donors, and converts them into acceptors instead. As the scheme indicates, this ketone does indeed follow the prediction made on the basis of reverse electron flow.\(^78\)

The apparently predictable selectivity of the adamantanones led us to search for ways to control it; i.e., to reverse it or to augment it at will. One obvious way to reverse it (by means other than the perfluorination just mentioned) is by introducing a steric factor, for example, by the use of a bulky 5-substituent, or reagent, or both. Indeed, the data for \(^31\) show that en face can be favored in such cases: \(^33\) while a 50/50 product distribution was observed when Y in the reagent is H, alcohol Z-32 predominates by 58:42 when it is tert-butoxy. Even more effective approaches have been devised; they include the blocking of the normally preferred face by means of a catalyst (see section VA), and encapsulating the adamantanone in a cyclodextrin (an example is discussed in section VIII).

There are two ways to enhance the selectivity. The first depends on rendering the substrate more "carbocation-like". This can be done by allowing the carbonyl oxygen atom to complex with a Lewis acid; we had already noted that with lithium aluminum hydride this selectivity was somewhat more pronounced than with sodium borohydride, and assumed that this was due to the complexation of the lithium ion as a Lewis acid. Indeed, the reduction of 5-phenyladamantan-2-one with sodium borohydride in the presence of a variety of Lewis acids such as aluminum chloride, boron trifluoride, stannic chloride, and so on\(^80\) raised the E/Z ratio of alcohols by 15–30%. Antimony pentachloride was among the most effective of these acids; this is of special interest because the complex has been isolated and studied by means of X-ray diffraction.\(^81\) Laube found that the C=O bond and the C_3–C_4 and C_1–C_9 bonds in the complex are lengthened by 0.045 and 0.017 Å, respectively, while the C_1–C_2 and C_2–C_3 bonds are shortened by 0.031 Å, compared to the free ketone. Thus, complexation has the effect of increasing the need for hyperconjugative delocalization. The E/Z ratio (83:17) in the reduction of 5-fluoro-2-methoxy-2-adamantyl cation (19), as already noted, is about triple that of 5-fluoroadamantan-2-one (62:38); this may be seen as an extreme case of complexation of the latter ketone by a Lewis acid, the methyl cation. Interestingly, no increase was seen at all when the methylimine \(^33\) was compared with the iminium salt \(^34\): under a variety of conditions, they showed identical E/Z ratios of about 2:1 in the reduction with sodium borohydride. We assume that the imine, the ratio for which seems abnormally large, is in fact in cationic form (protonated or complexed with lithium cation) during reduction.\(^80\)

Similar effects can be brought about by the introduction of charge at the site of the 5-substituent. Thus, the sodium borohydride reduction of 5-dimethylaminoadamantan-2-one in D_2O, which normally has an E/Z ratio of 65:35, may be compared with the trimethylammonium salt which weighs in at 86:14, a more than threefold increase.\(^80\) The E/Z ratio for 5-hydroxyadamantanone (58:42) is diminished after treatment with sodium hydride to 49:51 and that for 5-methoxycarbonyladamantan-2-one (57:43) may be compared with 45:55 for the carboxylate salt.\(^80\) Even
more drastic effects are observed if C-5 itself is replaced by positive nitrogen, as may be seen in Scheme 6. The E/Z product ratios in these two reactions are 60:40 and 96:4, respectively. This presents an increase in the ratio by a factor of 16, for two substrates which are isoelectronic! Similar results were obtained with iodide of cation 39 and betaine 40. The same high ratio was found in methanol, water, and saturated aqueous sodium chloride (for an alternative interpretation, see section XII).

The behavior of the neutral aminoketone itself is also of interest. We found the secondary alcohol E-42 to be in excess upon reduction in methanol (62:38), but a small excess of the tertiary alcohol Z-43 (55:45) is obtained in the reaction with methyl lithium in THF. We can readily account for this solvent effect; in the latter reaction, we assume that the syn vicinal bonds are activated by the nitrogen unshared pair and that this donation is prevented or thwarted in a hydrogen-bonding solvent (Chart 2). Senda has measured the ratio of sodium borohydride reduction of 45 in D$_2$O is observed to be 7.3, compared to 24 for the monoaza analogue.

In discussions of face selection, questions about the approach angle are often raised. Indeed, if the rigidity of the adamantane skeleton and the location of the axial hydrogen atoms force an abnormal approach trajectory upon the nucleophile, one may argue that the adamantananone probe is not a good one. Conversely, the near-symmetry of the molecule should allow the angle to be the same at both faces and thus cancel it out as a matter of concern. Be that as it may, we sought to gain an insight into this aspect by adjusting the length of the bridge represented by C-6 in the adamantananone probe. As the structures drawn below suggest, a more favorable approach is possible in the noradamantan-9-ones and an even more crowded one seems unavoidable in the homoadamantan-9-ones. Studies of the reduction and alkylation product ratios did not show much difference between these ketones, and the small variations observed were not systematic. The quaternary bridgehead aza analogues, with their substantially larger ratios, were more informative; they suggest that the adamantananone structure provides the largest ratios. Thus, the E/Z ratios for the alcohols obtained by sodium borohydride reduction of 47 and 39 are 87:13 and 96:4, respectively, and those of 48 and 49 are 88:12 and 83:17, respectively. We assume that this trend is due to the more nearly perfect antiperiplanarity of the substituent with the bonds vicinal to it. One additional point of interest is that both methylation and reduction of the azoradamantanone show the same solvent dependence as does the azaadamantanone itself, and surely for the same reason: donation by the unshared nitrogen pair in THF, and electron withdrawal by the nitrogen in a hydrogen-bonding medium such as methanol.
B. 4-Substituted Adamantanone

As noted in section IIB, a 4-substituent, to be useful at all, should be in the equatorial position because otherwise it will affect the stereochemistry sterically; but even then, it has the disadvantage of being poorly aligned and of affecting only one of the vicinal bonds. Nonetheless, its greater proximity to the trigonal center renders such probes interesting.

The steric effect of an axial substituent makes itself felt with even the smallest, namely fluoro: sodium borohydride attacks probe \(\text{50} \) exclusively at the en face to give the pure diaxial alcohol \(\text{51} \), whereas with the equatorial fluorine substitution in \(\text{52} \), the diequatorial alcohol \(\text{53} \) is formed with a 67:33 preference over its isomer \(\text{54} \). Similar data were found for the two bromoketones. In one instance, we were able to prepare a diequatorial species, namely, 4,9-dibromo adamantan-2-one \(\text{55} \). Sodium borohydride reduction in that case gave the two alcohols \(\text{56} \) and \(\text{57} \) in a ratio of 86:14. This ratio is substantially but not spectacularly larger than that observed with 5-bromo adamantan-2-one (59:41), which reinforces our impression that the effect of the bromine atom in the latter case is effectively transmitted via extended hyperconjugation.

C. Other Carbonyl Probes

The face selection studies possible with 2,3-bis-endo-disubstituted 7-norbornanones \(\text{60} \) have been conducted principally by Mehta. Here also, the two faces are sterically equivalent; \(\text{60} \) differs from the 5-substituted adamantanones principally in that, the substituents being closer to the trigonal center, the product ratios are larger. A more minor consideration is that \(\text{60} \) is not as rigid, and the torsional motion possible in the \(\text{C}_2 - \text{C}_3 \) and \(\text{C}_5 - \text{C}_6 \) bonds was once considered as a contributor to the high exo/endo solvolysis rate ratios of 2-norbornyl esters.

Mehta's first report revealed that the E-alcohol formed preferentially when \(X \) and \(Y \) are both methoxycarbonyl groups, both in reduction with complex hydrides (margins of 3:1 to 6:1) and in the reaction with methylthiium (>10:1). Rather surprisingly, however, when \(X \) and \(Y \) are both methoxymethyl, ethyl or vinyl, the Z-alcohols predominate, by margins of 1.5 to 4:1 in the reduction and 5 in the methylation. Thus, if hyperconjugation in the Cieplak sense is expected, these substituents should be functioning as acceptors compared to the endo hydrogen atoms at \(\text{C}_5 \) and \(\text{C}_6 \). Similar findings were reported in instances in which the \(\text{C}_2 - \text{C}_3 \) bond was annelated with a five-membered ring on the endo side. In a later paper, Mehta attempted to correlate the observed ratios with those calculated on the basis of the assumption that the selectivity has an electrostatic origin, with partial success. This explanation was also advanced for the product ratios in the reduction of a number of 2-phenyl-substituted norbornanones in which the phenyl ring itself was also substituted. However, as we pointed out above, a 2-substituent alone affects all four of the vicinal bonds differently, making it difficult to predict what
will happen as a result of hyperconjugation. The tetracyclic bis-ether 61 undergoes reduction at the zu face to give the E-alcohol by a margin of more than 85:15; the result is reproduced by both MNDO and ab initio calculations, but these techniques suggest different reasons for the result (orbital and electrostatic effects, respectively).84

An intriguing contribution by Gassman95 concerns the tricyclic ketone 62. The methylation of this compound occurs with an E/Z ratio which is strongly dependent on the reagent: lithium dimethylcuprate, which operates via an initial electron transfer, reverses to 8:92 the ratio attained with methylaluminium (95:5) or methylmagnesium iodide (90:10). It will be of great interest to learn whether a similar reversal occurs in the 4,9-didehydroadamantan-2-one (the ethylene ketal of which is known.87) No reversal of stereochemistry was observed with 5-phenyladamantan-2-one; the ratio was exactly the same as with sodium borohydride.96 In the case of the more complex norbornanones 63–65, both sodium borohydride and methyllithium preferentially attack the zu face,97 by margins ranging from 57:43 to 68:32. In this case, at least, the norbornanones appear to behave as expected on the basis of transition-state hyperconjugation, which points up the need to use rigid probes in these studies.

McInnes98 observed a reversal of the E/Z ratio when 1-methyladamantan-2-one reacts with dimethylcuprate, to 52:48. More recently, Okada et al.99 have described their results with several 5-monosubstituted substrates 67-X also furnish interesting data; they seem in reasonable agreement with transition-state hyperconjugation, but they also vividly demonstrate the advantage of probes in which each face is anti-periplanar to only a single kind of vicinal bond. Thus, with 67-CN, -COOMe, and -COO-, sodium borohydride attacks the carbonyl face remote from the double bond by margins of 44:56, 68:32, and > 90:10, respectively.

Mehta also found interesting changes in the reduction product ratio if β-cyclodextrin is present:100 with both 7-norbornenones and 7-norbornanones, the amount of Z-alcohol rises. Thus, the E/Z ratio for the reduction of 66-COOMe declines from 55:45 in methanal to 8:92 if β-cyclodextrin is added. Neither the α- nor γ-cyclodextrins101 have much effect. The interpretation is that the methoxy carbonyl groups become complexed in the β-cyclodextrin cavity, thus leaving the en face more exposed. The α- and γ-cyclodextrins do not provide a good fit, and thus affect the ratio less or not at all. This experiment is similar to one reported earlier (see section VIII below).

Berg and co-workers have reported102 interesting data on the sodium borohydride reduction of dione 68. Both carbonyl groups react at nearly equal rates, and both do so stereospecifically: only syn attack occurs in both branches. Both ketols 69 and 70 thereafter undergo a second reduction, the former mostly on the syn side, but the latter on the anti side. This latter result is unexpected in terms of hyperconjugative donation to an electron-deficient incipient bond; a good explanation cannot be given at this time.

Okada et al.102 have described their results with several 7-benzonorbornenones 71-X,Y. The carbonyl faces are not stERICALLY equivalent, but the variation in product distribution as a function of the benzo substitution is significant. These authors report that in the reduction with lithium aluminum hydride, the percent E-alcohol equals 100 with 71-F,F; 92 with 71-Cl,Cl; 62 with 71-H,H; and 45 with 71-COOMe,H. Similar data were obtained with five other common reducing agents. While transition-state hyperconjugation in the Cieplak sense would seem to account for these data, one could also maintain that the

\[\text{Scheme 7} \]

5,6-Bis-endo-disubstituted norbornanones have also been studied by Mehta. While the two faces differ sterically in these cases, one can look for trends as a function of the substituents. Thus, while the parent ketone 66-H reacts with methyllithium to give the tertiary E-alcohol by a margin of 74:26, two methoxy carbonyl groups cause a reversal98 to 90:10 (note that the E- and Z-descriptors must be reversed too! See Scheme 7). In the case of 66-COOMe, the authors were able to obtain X-ray data, which allow several important conclusions to be drawn. One that is particularly pertinent is that there is no significant pyramidalization in this molecule: the three angles at the carbonyl carbon add up to 360°. On the other hand, the carbonyl bridge leans somewhat in the direction of the C5–C6 bond. Thus, whatever the reason for this distortion, the reagent seeks out the more hindered face.99 Some of the 5-monosubstituted substrates 67-X also furnish interesting data; they seem in reasonable agreement with transition-state hyperconjugation, but they also vividly demonstrate the advantage of probes in which each face is anti-periplanar to only a single kind of vicinal bond. Thus, with 67-CN, -COOMe, and -COO-, sodium borohydride attacks the carbonyl face remote from the double bond by margins of 44:56, 68:32, and > 90:10, respectively.

Mehta also found interesting changes in the reduction product ratio if β-cyclodextrin is present:100 with both 7-norbornenones and 7-norbornanones, the amount of Z-alcohol rises. Thus, the E/Z ratio for the reduction of 66-COOMe declines from 55:45 in methanal to 8:92 if β-cyclodextrin is added. Neither the α- nor γ-cyclodextrins have much effect. The interpretation is that the methoxycarbonyl groups become complexed in the β-cyclodextrin cavity, thus leaving the en face more exposed. The α- and γ-cyclodextrins do not provide a good fit, and thus affect the ratio less or not at all. This experiment is similar to one reported earlier (see section VIII below).

Berg and co-workers have reported101 interesting data on the sodium borohydride reduction of dione 68. Both carbonyl groups react at nearly equal rates, and both do so stereospecifically: only syn attack occurs in both branches. Both ketols 69 and 70 thereafter undergo a second reduction, the former mostly on the syn side, but the latter on the anti side. This latter result is unexpected in terms of hyperconjugative donation to an electron-deficient incipient bond; a good explanation cannot be given at this time.

Okada et al.102 have described their results with several 7-benzonorbornenones 71-X,Y. The carbonyl faces are not sterically equivalent, but the variation in product distribution as a function of the benzo substitution is significant. These authors report that in the reduction with lithium aluminum hydride, the percent E-alcohol equals 100 with 71-F,F; 92 with 71-Cl,Cl; 62 with 71-H,H; and 45 with 71-COOMe,H. Similar data were obtained with five other common reducing agents. While transition-state hyperconjugation in the Cieplak sense would seem to account for these data, one could also maintain that the

\[\text{Scheme 7} \]
nucleophile forms a complex with the benzo face and then attacks the carbonyl group on that side; such a complex would be expected to be strongest when the benzo substituents are the most electron-withdrawing.

Burnell has reported103 the reactions of ketone 72 with sodium borohydride and methylolithium, both of which take place at the carbonyl face closest to the double bond. The margins were about 5:1. This finding is readily interpreted in terms of the Cieplak model, and the authors did so.

A closely related experiment was carried out by Halterman.104 The reduction and methylation of ketones 73 gave rise to products resulting from addition of the nucleophile opposite the more electron-rich phenyl rings; a linear relationship was found between the logarithm of the ratio versus the σ constant of substituents varying from amino to nitro.

V. Electrophilic Addition to Olefins

A. 5-Substituted 2-Alkylideneadamantane

One of the interesting questions that may be raised for theories that purport to correctly interpret the stereochemistry of nucleophilic addition to carbonyl groups is whether they can be used to predict the stereochemistry of electrophilic addition. If the σ^* orbital is indeed the recipient of electron donation by the antiperiplanar vicinal bond(s), the stereochemistry in the two types of reaction should be the same. In this view, it is immaterial whether the electrons that will populate the α orbital are contributed by the reagent nucleophile or by the substrate; the important feature is the σ^* component and its acceptance of electrons from the richest available vicinal bond(s). The prediction is therefore that the stereochemistry should be the same. To put it in different words: hyperconjugative assistance will lower the transition-state energy in the same way whether the probe molecule is the substrate or the reagent (the nucleophile or the electrophile).105

Two early reports addressing this question appeared simultaneously in 1987. In one of them,106 5-fluoro-2-methyleneadamantane 74 was treated with several electrophiles, and indeed, syn attack was observed in every case. Thus, epoxidation by means of m-chloroperbenzoic acid gives the Z- and E-oxiranes in a ratio of 66:34, respectively; similar results were obtained in the capture of dihalocarbenes and in the anti Markovnikov hydroboration. Much larger ratios were seen in those cases in which the reagent becomes bound to the methylene carbon, leaving C-2 in cationic form to scavenge anions; in the reaction of 74 with hydrogen chloride in dichloromethane, for example, the E-dihalide product is almost undetectable (0.05%). The other paper just mentioned107 describes a study of electrophilic additions to monocyclic methylenecyclohexanes; the conclusions were the same, although these are of course subject to the same objections which have so often been raised against cyclohexanones as probes.

Burgess108 has published an interesting extension of our study with 5-substituted 2-methyleneadamantanes, using the hydroboration reaction to show not only that syn approach is favored if the substituent is fluoro or phenyl, but also that anti attack predominates if it is trimethylsilyl. The E/Z product ratios were found to be 64:36, 53:47, and 47:53, respectively. Furthermore, all of the results are reversed when a rhodium catalyst is added; the ratios then are 46:54, 42:58, and 75:25, respectively. No solvent effects worth mentioning were encountered. The catalyst apparently affects the outcome of the reaction through prior complexation at the normally favored face.
A similar explanation may apply to the biohydroxylations described by Bailey and Davis. Bailey found that the resulting 2-hydroxy-5-substituted adamantanes all had the E-configuration in a group of eight substrates, each with an electron withdrawing substituent; on the other hand, Davis reported that with the bridgehead substituted azidoadamantane, the resulting 5-azidoadamantan-2-ol was a mixture with a 10:1 predominance of the Z-isomer. Because these oxygenations undoubtedly take place in an environment involving other complex biomolecules, no mechanistic conclusions can be drawn from these observations, interesting though they are.

As was the case in nucleophilic addition, replacing C-5 with positive nitrogen magnified the ratio considerably. To mention one example, the epoxidation of amine oxide gives the Z- and E-epoxides in a ratio of about 5:1. Additional instances may be found in the same paper.

B. 4-Substituted 2-Alkylideneadamantane

The only example appears to be Duddeck's report which describes the catalytic hydrogenation of the 4-fluoro-2-methyleneadamantanes and , however, the presence of an axial fluorine in one case and that of a heterogeneous catalyst in both reactions rules out the possibility of a mechanistic interpretation.

C. Other Olefinic Probes

An early paper by Hoffmann describes his group's results obtained with compounds 78 and 79 in the addition of dichlorocarbene and in hydroboration with 9-BBN. As would be expected, while the former compound directs these reagents to the syn face, a reversal occurs in the latter. It is possible that in the reaction of 79, electron donation from the cyclopropyl group's bent C–C bond plays a significant role.

Mehta and Ohwada have made contributions to our knowledge and understanding of electrophilic addition to 7-methylbenzonornbornanes as well; these are discussed elsewhere in this volume. Gandolfi has made good use of the 3,4-disubstituted cyclobutenes. The osmium tetroxide mediated dihydroxylation of these compounds is of course determined in part by steric interactions; nevertheless, a trend can be seen as a function of the substituents which hints at an electronic contribution. The syn products dominate with R = OSO₂Me (8:1); the ratio is much smaller with R = Cl (3:2), and only anti product is formed when R,R = (CH₂)₄.

Malpass has been able to study the chlorination of 7-azabenzonorbornenes and -norbornadienes, no small feat if one considers that the N-chloroamine products are configurationally stable only up to -50°C. This instability has the advantage, however, that the thermodynamic ratios are also available. In this case also, the two faces differ sterically, but the effect of benzo substitution tells the story. Thus, while the parent compounds react with N-chlorosuccinimide to give the E-chloro compounds, the introduction of electron-withdrawing substituents on the benzo ring leads to a clear shift in favor of the Z-isomers. With tetafluoro substitution as in 82-F, the Z-isomer is the principal product. This is what the Cieplak model predicts; however, as Malpass pointed out, an increasing interaction between the benzo ring and the succinimide anion being released could also be responsible. Furthermore, there is a fair correlation between the ratios under kinetically and under thermodynamically controlled conditions, so that product stability may also have influenced the transition-state barriers. In 83-X, where steric differences should be absent, syn chlorination predominates by a 3:1 margin. But one other reservation must be expressed for these studies: Ohwada has found that even amide 84 has a distinctly pyramidal nitrogen atom, and this is surely also the case with Malpass' amines.

Haltermen has used 3,3-diphenylcyclopentenes very effectively to study both the osmium-catalyzed cis-dihydroxylation and the epoxidation mediated by peracetic acid. In both cases, excellent correlations were obtained in plots of the logarithm of the ratio versus the σ constants, with p-nitro...
VI. Radical Capture

In all of the foregoing sections, the newly forming bond can easily be argued to be an electron-deficient one, at least in the transition state, as either the reagents or the substrate atoms undergoing addition are electron-deficient from the start. The intriguing question arises whether the rules will be different in radical abstraction reactions, which are more electroneutral. An important starting point is that 2-adamantyl has a planar C-2 radical center, while 2-methyl-2-adamantyl has a shallow pyramidal configuration with a barrier to inversion of perhaps 5 kcal/mol.

Two reactions have been reported as favoring the capture of 5-substituted 2-adamantyl radicals at the face syn to the electron-withdrawing substituent. In the first, the radical was generated in a chain process involving an initiator, bromotrichloromethane solvent and 2-methylene-5-phenyladamantane. Bromide Z-89 is then the principal product (64:36). The other study concerned the Hunsdiecker decarboxylation of acid 90 and bromine abstraction by the secondary radical; here also, syn capture predominates, by a margin of 57:43. Thus, the radical behaves the same way as do the carbocation and the carbene, albeit with more modest ratios; we attributed these observations to transition-state hyperconjugation.

A recent study by Pincock has shown that radical cation 94 is captured by cyanide anion to give primarily the Z-nitrile (58:42).

VII. Carbanion Capture

Little has been done about this topic with sterically unbiased probes. Attempts to study the enolate of...
ketone 96 were unsuccessful; it resisted bromination, and protonation and methylation gave only the enol and enol ether, respectively. However, the 5-phenyl-2-adamantyllithium 97 derived from either of the two bromides gave the Z-carboxylic acid and the Z-bromide in excess over the E-products upon carboxylation and bromination, respectively. Thus, as noted earlier, newly forming bonds tend to be electron-deficient in the transition state, regardless of which of the two reactants is contributing the two electrons.

VIII. Cycloaddition

Cycloadditions are perhaps the most important examples of pericyclic reactions, in which doubly bound atoms of the first row undergo addition, and others, singly bound, undergo simultaneous elimination. While the Woodward–Hoffmann rules in symmetry-allowed cases successfully specify whether these reactions occur suprafacially or antarafacially, they are silent about which faces will be presented for reaction. When it appeared that transition-state hyperconjugation could account for face selection in both nucleophilic and electrophilic additions, it occurred to us that pericyclic chemistry might also prove to be predictable by means of this device.

Several thermal cycloaddition processes have been studied with this objective. It should be noted that the concerted or stepwise nature of these reactions is not an issue in these studies: if transition-state hyperconjugation is a valid predictor of configuration in pericyclic chemistry, the face selection will not be affected by the simultaneity or even the sequence of the bonding steps.

The [2+2] cycloaddition of dichloroketene and 2-methylene-5-phenyladamantane gives E- and Z-98 in a 44:56 ratio. The enolate of methyl isobutyrate adds to 5-fluoroadamantan-2-one to give lactone E-99 in a 60:40 excess over isomer Z-99, and the latter product eliminates carbon dioxide six times faster than the former. 5-Fluoro-adamantane-2-thione 100 undergoes the Diels–Alder reaction with 2,3-dimethylbuta-1,3-diene; the adduct E-101 is in excess by a margin of 67:33. Furthermore, the more elaborate but still mostly rigid substrate 102 reacts with tetracyanoethene to give E- and Z-103 in a 42:58 ratio. Thus, all of these cycloaddition processes exhibit face selectivities in accord with the notion of transition-state superhyperconjugation; in fact, the Diels–Alder reactions mentioned show this principle to apply to both diene and dienophile.

Similar findings have been reported for several 1,3-dipolar cycloadditions: benzonitrile oxide adds to 5-halo- and 5-phenyladamantanes and -2-methylene-adamantanes to give, respectively, the E-Δ²-1,4,2-oxathiazolines 104 and the Z-Δ²-isoxazolines 105 in excess, by margins ranging from 69:31 to 56:44. Several photocycloaddition studies have also been published. Adamantanones carrying a variety of electron-withdrawing 5-substituents were found to undergo the Paterno–Büchi reaction with electron-poor olefins such as fumaric and maleic acid as well as with electron-rich alkenes such as Z-diallylcene to give moderate but clear excesses of the oxetanes 106–108, respectively. An especially interesting observation was that a trimethylsilyl group behaves in the same fashion (i.e., as a syn director) as do known electron-withdrawing groups, which poses the question whether this group in the excited ketone functions as an acceptor group.
As noted earlier, an interesting protocol has also been devised by one of us (W.-S.C.) for reversing face selections in the reactions of adamantanonone derivatives: if \(\beta \)-cyclodextrin is present during the addition reaction, it complexes the substrate in such a way as to protect the favored face and leave the alternative site open to attack. Models show that the cavity in \(\alpha \)-cyclodextrin is too small to form such a complex and that \(\gamma \)-cyclodextrin can accommodate both substrate and reagent; indeed, neither of these additives strongly affects the ratio of the isomers during the photocycloaddition of furanoritrile to 5-substituted adamant-2-ones, whereas \(\beta \)-cyclodextrin causes clear reversals from syn to anti attack. In a typical example, 5-phenyladamantan-2-one in aqueous solution gives a syn/anti approach product ratio of 62:38; this is reduced somewhat to 58:42 if either \(R \)-or \(\beta \)-cyclodextrin is present, but with 1.5 equiv of \(\beta \)-cyclodextrin present, the ratio is reversed to 23:77. Complex 109 is clearly responsible.140 In later work, even larger effects were reported;141 in the presence of \(\beta \)-cyclodextrin, 5-trimethylsilyladamantan-2-one suffers as much as 98% attack at the face anti to the silicon. A molecular mechanics calculation by Jaime142 has confirmed our interpretation.

Another interesting extension that should be mentioned in this section is the use of substituted adamantylideneadamantanes 110-\(X \). Hummelen143 reported an early instance of face selectivity in 110-\(\text{NHCOCH}_{3} \): singlet oxygen addition furnished a 3:2 excess of the dioxetane resulting from syn attack. A much more drastic example was later found by Nelsen,144 who found that the preference for syn approach at \(-78^\circ\) was as large as 25:1 in this reaction with 110-\(\text{Cl} \). The active species in this chain reaction is the radical cation; an interesting perspective on this process derives from the observation145 that the radical cation of the parent hydrocarbon 110-\(H \) has an ESR spectrum revealing strong coupling of the signal with the four remote bridgehead hydrogen atoms. In more recent work, Nelsen has measured the ratios with other halogen derivatives in epoxidation, dioxetane formation, and cycloaddition to N-methyltriazolinedione, but although they found syn attack to be predominant in all cases, they also argued that there were small variations that were difficult to square with the Cieplak hypothesis alone.146 The chemiluminescent dioxetane fission to give excited adamantanones should also be of interest, but although one example of a kinetic study has been reported,147 the authors made no mention of having separated the isomers of their substrate 111.

A large amount of work has been lavished on the Diels–Alder reactions of 5-substituted cyclopentadienes which are not free of steric bias but with which variations in product composition as a function of the substituent suggest that the steric factor alone cannot account for all of the data. An early example was reported by Woodward, who found that 5-acetoxy-cyclopentadiene 112 adds ethylene on its syn side.28 The same contrasteric prejudice has been observed with 1,2,3,4,5-pentachlorocyclopentadiene,148 but 5-iodocyclopentadiene undergoes Diels–Alder cycloaddition at its en face;149 evidently, if the 5-substituent is bulky enough, the reaction becomes subject to steric control.

A systematic study by Fallis150 showed that the reaction of 5-substituted pentamethylcyclopentadienes 113-\(X \) with maleic anhydride gave only the syn adduct when \(X = \text{OH}, \text{OMe}, \text{NH}_{2}, \text{or NHAc} \); there is a small excess of syn adduct if \(X = \text{SH} \) but a large excess of anti adduct if \(X = \text{SMe} \), and this becomes the only product with \(X = \text{SOMe} \) or \(\text{SO}_{2}\text{Me} \). The authors initially briefly summarized the several explanations that had been offered in the literature for these and similar observations; in their subsequent view, the stereochemistry of these reactions can be understood in terms of transition-state hyperconjugation tempered or even negated by sterically demanding substituents.151
Another remarkable observation by Fallis152 concerns the Diels–Alder reactions of 2,5-dimethylthiophene oxide 114, generated in situ from the thiophene by peracid oxidation. Several dienophiles were used; in all instances, the cycloaddition occurred exclusively in syn fashion.

\[
\text{114} + (\text{NC})_2 \rightarrow \text{115}
\]

Other rather stark examples have been published by Ishida,153 who reported that N-phenylmaleimide attacks 5-cyanopentamethylcyclopentadiene exclusively at the zu face and the 5-hydroxymethyl analogue equally exclusively at the en face, and by Trost,154 who found that the dimerization of 115 gives primarily compound 116; in this case, the same compound furnishes both the diene and the dienophile, and in both roles, the face syn to the oxygen is the reactive one. Burnell155 and his group have also contributed much valuable information derived from 5-substituted cyclopentadienes; although their data tend to be in general harmony with those quoted above, these authors have stressed mostly the steric aspect of these reactions.

Gandolfi 156 and co-workers have used cis-3,4-disubstituted cyclobutenes to study the stereochemistry of 1,3-dipolar cycloadditions,156 and here also, a remarkable dichotomy was observed. With all of the eight dipoles, cycloaddition occurs exclusively trans to the trimethylene bridge of 117; however, in cyclobutene 118, the same dipoles add predominantly (and in a few cases, exclusively) to the zu face. Similar findings were reported by H.-D. Martin;157 thus, cis-3,4-dichlorocyclobutene reacts with diazomethane to give predominantly the adduct 119, but 2-diazopropane gives mostly product 120. Clearly, syn addition is induced by the chlorine atoms unless the dipole makes this process sterically prohibitive. With dimethoxycyclobutene 121, the syn stereochemistry is predominant even with 2-diazopropane.

Paquette has contributed158 a study of the Diels–Alder reaction of N-methyl-triazolidinedione with dienes 122-X; while the approach to the diene is in favor of the face anti to the benzo ring (75:25) when \(X = H\), the ratio is reduced to 49:51 when \(X = F\).

\[
\text{122-X}
\]

The hexacyclic structure 123 and its reaction with more than twenty dienophiles has been studied by Coxon,159 Pandey,160 and Marchand.161 In most cases, the cycloaddition occurred exclusively at the "carbonyl face" to give adducts such as 124. In a few instances, mixtures were obtained, and in one, with diethyl azodicarboxylate, cycloaddition took place exclusively syn to the cyclobutane ring to give product 125 (with the nitrogen atoms pyramidal and in s-trans conformation). Except for the azo derivatives, all of the dienophiles appear to add in accordance with expectations based on the Cieplak mode of transition-state hyperconjugation. Coxon also reported162 sharply divergent results for ether 126, which reacts primarily at the face syn to oxygen with maleic anhydride but at the opposite face with dimethyl acetylenedicarboxylate and N-phenyltriazolidinedione, and attributed the latter results to repulsion between one of the oxygen unshared pairs and the \(\pi\) electrons of these dienophiles.

An interesting finding by Mehta163 concerns the contrast between dione 123 and its derivatives 127. When \(R = H\), 128 is the principal product (78:22), but when \(R = \text{OMe}\) or \(\text{OAc}\), only 129 is formed. Mehta attributed the behavior of the disubstituted dienes to twisted conformations at the 1,4-positions due to these substituents.

Halterman164 has used a version of his probe 130 to good effect in the Diels–Alder reaction with
dimethyl acetylenedicarboxylate: the zu face was selected when the ring substituent was nitro or chloro, and the en face when it was dimethylamino. A fair correlation of the logarithm of the ratio versus σ was again obtained; the authors attributed their results to the Cieplak mode of transition-state hyperconjugation.

Burnell165 has contributed valuable results with cis-5,6-dihydroxycyclohexadiene 131 and several derivatives, which capture maleic anhydride principally at the zu face. In contrast, benzene oxide 132 suffers attack by dimethyl acetylenedicarboxylate exclusively anti to oxygen. But this appears to be primarily a steric effect; as Burnell points out, the C–O–C fragment is almost perpendicular to the cyclohexadiene part.166

Paquette and Gleiter167 have reported a massive study of the dispirodiene system 133-XYZ. With N-phenylmaleimide, attack occurred exclusively or nearly exclusively at the face syn to the oxygen atom(s) with 133-OOC, -OCC, -SOC, and -OCS. No cycloaddition occurred with 133-SSC, but it would presumably have been about 50/50 because that was the case with 133-SCC. It is, at any rate, clear that the dienophile is strongly directed syn to the oxygen, and that with sulfur, this preference is essentially gone. The other striking result is that with N-methyltriazolidinedione, attack occurs largely to exclusively anti to the oxygen and/or sulfur (only with 133-SCS is the ratio approximately 50/50). The exceptional behavior of the N=N double bond as the dienophile was already mentioned; the authors attribute this to the likely formation of an aziridinium imide zwitterion intermediate which then rearranges to the Diels–Alder adduct. In such an intermediate, particularly in the relatively nonpolar solvents generally used in Diels–Alder reactions, electrostatic effects may well play a more important, even dominant role.

Warner has described168 a retro-Diels–Alder reaction of interest in this connection; in such cases, one depends on relative rates rather than on product ratios. The reactions studied were the fission of benzene from substrates 134 and 135, and of carbon monoxide from substrates 136 and 137, respectively. The diene left behind in all four reactions is norcaradiene. It was found that 134 reacts faster than 135 by a factor of about 10^4, and 136 was faster than 137 by a factor of 10^5. The authors ascribed the fast rates to better homoaromatic delocalization; one could also say that the bond fission is assisted by the electron-rich cyclopropane bonds.

IX. Sigmatropic Shifts

Several examples of 3,3-sigmatropic shifts have been examined in our laboratory, among them those of structures 138–141.169 In all four, the zu face of C-2 was preferred by the migrating group; the ratios varied in a minor way, from 1.35 to 1.65. Two facts are worthy of note in this group. First, 138 and 139 show that the same factor is responsible for face selectivity at both the allyl and vinyl termini of ethers undergoing the Claisen rearrangement. Second, compound 141 shows that no significant change is observed when the C-2 terminus bears a partial negative charge; as we noted in section VII, we had not succeeded in finding many examples of face selection in addition to such carbon atoms. Another noteworthy example is furnished by the cationic substrate 142; the E-salt product predominates over the Z-isomer by a margin of 93:7. This is yet another demonstration of the powerful ability of positive nitrogen at the 5-position to differentiate the donating abilities of the syn and antiperiplanar vicinal bonds.111
A somewhat more complex case is encountered170,171 with the oxy-Cope rearrangement of hexadienols \textbf{143} and \textbf{144}; because the hexadiene fragment contains a chiral center, this substrate occurs in the form of two diastereomers. These isomers rearrange via chair-shaped transition states, the first of which has the phenyl group in an axial position while the second has it in an equatorial position. The consequence is that in \textbf{143}, a steric difficulty opposes the electronic factor normally expected to operate, while in \textbf{144}, both factors reinforce one another. And indeed, the ratios reflect this circumstance; while \textbf{143} gives mostly the Z-isomer of ketone \textbf{145} (64:36), compound \textbf{144} leads to a substantial excess of E-\textbf{145} (81:19). Simple arithmetic then shows that the steric factor alone in this reaction would cause a factor of 2.75, while that caused by the electronic one amounts to 1.54. An even more complex situation arises with sulfoxides \textbf{146} and \textbf{147} (Scheme 7), first, because we were unable to separate mixtures of these two substrates, and second, because under the conditions of the 3,3-sigmatropic shift, the E-sulfine products \textbf{148} and \textbf{149} undergo further rearrangement to the Z-sulfines \textbf{150} and \textbf{151}. Nevertheless, it proved possible to analyze the reaction mixtures by means of their 1H NMR spectra and by numerical approximation of the rate laws;172 the final result was that the steric factor alone (axial versus equatorial oxygen in the pseudo-chair transition states) is a bit larger (68:32 in favor of equatorial oxygen) than the electronic one alone (60:40 in favor of attack at the zu face).

\textbf{X. Other Addition Processes}

The oxidation of divalent sulfur compounds to the pyramidal sulfoxides is a stereogenetic process which has been examined by means of 5-phenyl-2-thiaadamantanes \textbf{152}.173 Isomer Z-\textbf{153} is in excess when the oxidation is carried out by means of sodium periodate or m-chloroperbenzoic acid; a 50/50 mixture is encountered with nitrogen tetroxide and the E-product is predominant when oxone or tert-butyl hypochlorite is used. The 50/50 result is simply an equilibrium mixture; either isomer is quickly converted into it when exposed to nitrogen tetroxide.174 The reaction with the hypochlorite begins with chlorination of the sulfur atom, preferably at the zu face; this step is followed by ion-pair collapse with the tert-butoxide anion and, finally, elimination of chloride ion and 2-methylpropene.174 This sequence of events leaves the oxygen atom at the en face, giving E-\textbf{153} as the main product. This reaction therefore follows the general rule of attack at the face opposite the more electron-rich antiperiplanar vicinal bonds. While the mechanism of the oxone reaction is unknown, a process similar to that of the hypochlorite oxidation is easily conceivable.
exposed to iron pentacarbonyl in refluxing n-butyl ether, the anti and syn complexes 154 are obtained in a 2:3 ratio; the structures were proved by means of X-ray diffraction.

An interesting observation was made with the epimeric alcohols 155. When treated with dilute acid in methylene chloride, both isomers eliminate water to give a mixture of dienes via the common allylic cation 156, but the anti isomer does so an order of magnitude faster than does the syn isomer. This stereochemistry is opposite that observed in the solvolyses of 5-fluoro-2-adamantyl tosylate: we interpret this reversal as evidence that the vicinal Ï¬ bonds can assist even in the formation of an allylic cation, albeit resulting in the opposite stereochemistry, and that the symmetry of the allylic orbital is the cause of change in stereochemistry. By contrast, we found that the allylic alcohols 157 react at the same rate; in this reaction, evidently, Ï-assistance is not accepted by the stable cation. 177

XI. Equilibrium vs Kinetic Ratios

There are good reasons why it is desirable (whenever possible) to determine what the equilibrium ratio would be for the two stereoisomers formed in the addition reactions. First, it should be established that the observed ratio results from kinetic control rather than simply by equilibration; second, one needs to determine whether product stability, foreshadowed in the transition state, is determining the result. It is usually not feasible to equilibrate the products directly, which of course provides the answer to the first question, but in a few cases, we were able to determine the equilibrium position. Thus, as mentioned in section X, the E and Z-sulfoxides 153 undergo rapid equilibration catalyzed by dinitrogen tetroxide; as noted that ratio is exactly 50/50. In that case, the answer to the second question is thus also available, and negative.

An equilibrium constant of unity does not apply in each case, however. The secondary 5-phenyl-adamantan-2-ols can be equilibrated by prolonged exposure to aluminum isopropoxide at 130°; K is found to be 1.310 in favor of the Z-isomer! Thus, the formation of the E-isomer is predominant not because of product stability, but despite product instability: to the extent that this factor plays a role, the ratio in the reduction would have been larger if the relative stabilities had not mitigated against it. 33 We suspect that hyperconjugation is behind the equilibrium position as well: the favored isomer has the acceptor and donor bonds antiperiplanar, in a zigzag pattern. While in the reduction transition state, the incipient C=H bond is electron deficient; that same bond, once fully formed, functions as a donor. The electron deficiency of all incipient and breaking bonds is really the heart of the Cieplak proposal.

An interesting extrapolation can be derived from this insight, namely, that if the hydrogen atom at C-5 in secondary 2-adamantyl derivatives is at one end of a W-conformation with an electron-withdrawing substituent at the other, then that atom should be more reactive than its cousin at C-7. Indirect evidence for this suggestion was found in the oxidation—reduction chemistry of ketone 158. The evidence may be described with the aid of Scheme 8. Both of the reductions displayed there were carried out under identical conditions; the same was true for the two oxidation reactions. 85 Reduction of the keto-N-oxide to the alcohol N-oxides favored the E-species by a ratio of 88:12, whereas the oxidation of the diaza alcohol favored the Z-isomer by a ratio of 69:31. An entirely similar set of data was later reported for ketone 159. Also along this line is the information uncovered by Fukunishi that adamantanes with an electron-withdrawing...
2-substituent give primarily the 5-acetyl derivative Z-160 upon irradiation of a solution containing biacetyl.

XII. Interpretations

A. Concerted vs Multistep Bonding Changes

It is important to recognize that bond formation and cleavage may in some cases be processes more complex than we realize. Experimental evidence is available in some instances in which these apparently simple reactions may involve one or more energy minima on the way to the transition state; perhaps the best known example is that of heterolysis, in which one or more types of ion pairs intercede as intermediates. However, in most types of addition, such as radical abstractions, nucleophilic and electrophilic additions, Woodward–Hoffmann allowed reactions, and so on, there is no such evidence, and in those cases, it seems safe to claim that the stereochemistry is purely a transition-state phenomenon. That is to say that the reactions producing the two stereoisomers have equal energy (or even identical) initial states, and that the energy profiles begin to diverge only on the way to the transition state. The energy difference presumably reaches a maximum there.

One could conceive of the possibility that the energy difference continues to widen beyond that stage to reach a maximum in the final state; indeed, it was at one time proposed that the axial reduction and alkylolation of cyclohexanones to give equatorial alcohols were the result of product stability control. But as noted in the preceding section, in the few cases where we were able to study the direct equilibration of the addition products from adamantanolones and their analogues, the equilibrium positions were either at 50/50 or even favoring the "wrong" isomer. We therefore assume that the explanation of the observed stereochemistry should focus on the transition state.

But before we do so, let us consider what may happen if the reaction is not concerted. If the reagent or catalyst becomes bound to the exocyclic doubly bound atom in the plane perpendicular to the symmetry plane, then there will be only a single (C₅) intermediate. Such an intermediate has actually been proposed for the sodium borohydride reduction of cyclohexanones, and we have found some evidence for the binding of a proton or counterion by the nitrogen atom in the reduction of imines (see section IVA). Such an intermediate may enhance the difference between the two faces, but it does not create a steric bias. If a catalyst is used which acts by engaging the trigonal carbon atom in the symmetry plane, the picture changes more drastically. There will then be two isomeric intermediates, each on the way to its "own" stereoisomer. The energies of these two intermediates then clearly have a role to play; one intermediate will be preferred over the other, and it must be established whether the departure of the catalyst and the arrival of the reagent occur with retention or inversion. These features may apply in the case of the catalytic hydroboration reaction reported by Burgess, which gave the normally disfavored isomer regardless of the nature of the 5-substituent (see section VA). A second example is furnished by the oxidation of 5-phenyl-2-thiadaamantane which gives the normally expected Z-product with several oxidizing agents, but the E-isomer is the principal product with tert-buty1 hypochlorite. In that case, at least, the reason is clear (see section X); the first step is the delivery of positive chlorine to the sulfur atom at the syn face. tert-Butoxide then becomes bound at the opposite face; finally, chloride ion and isobutylene are eliminated, leaving the oxygen atom bound at the anti face.

Chelation has provided the basis of stereogenetic control in some instances: if a substituent which is able to form a complex with the addition reagent prior to the main reaction can be arranged to be present, one may be able to manipulate the outcome. Several impressive examples of this approach have been reported. In the case of the probe molecules discussed in this paper, however, the substituents used have been too innocuous and too remote to play such a role.

B. Distortion

It is common knowledge that the introduction of substituents causes small changes in nearby parts of the skeleton: bond angles and bond lengths are affected in minor ways. The investigators who used distant substituents to study face selection have generally taken it for granted that these changes and their effects on the addition stereochemistry are too minuscule to account for the often surprisingly large product ratios. However, when a particularly large
ratio was observed82 by replacing C_5–F in 2-adamantanone by N–O (see section IVA), this assumption, considered but dismissed by the authors, was challenged by Gung,183 on the basis of calculations suggesting that this replacement causes fairly major changes in the geometry of the carbonyl domain. The principal alteration was concluded to be the "leaning" of the carbonyl bridge away from the nitrogen, by about two degrees in the amine and about four degrees in the amine oxide. These distortions were then held to be responsible for the observed strong preference of the N-oxide and for a reduced one in the free amine.

However, the argument has two weaknesses. First, while the borohydride reduction of the aminoketone in methanol does indeed show a much smaller preference for the en face, the methylthiol reaction in THF gives rise to attack at the zu face. The ab initio calculation therefore predicts the wrong result for this probe unless an acidic (i.e., H-bonding) solvent is used. Senda's results leave no doubt that, in a noninvolved solvent, borohydride also attacks the zu face. This weakens the argument that ab initio computation can account for the selectivity, as no mention was made of any influence by the medium. As we have noted above (section IVA), this solvent dependence can be readily accounted for on our alternative basis.

The second problem is that the cause of the distortion was not addressed in Gung's paper. Our view on this point, qualitative though it may be, is that if it is real, it may well be caused by initial-state hyperconjugation of vicinal bond electron density into the π* orbital. The C1–C8 and C3–C10 bonds, being remote from the N–O group, are best placed for such an interaction, the result of which may well be the sort of leaning Gung described. In the amine, the availability of the nitrogen unshared pair would reverse this situation unless a hydrogen bond ties it down. How such an initial-state distortion would subsequently develop into the transition state is addressed further below.

Various other or additional distortions have been mentioned in the literature; pyramidality of the trigonal carbon function,184 nonplanarity of certain strained olefins,185 and orbital deformations186 are prominent among them. Although there is no doubt that such distortions can and do occur, there is no experimental evidence that they play a significant role in the selectivity of the unstrained probe molecules that are the subject of this paper. It is also important to note here that, while pyramidality may hinder the approach "inside" the pyramid, the "outside" approach lacks the element of rearside displacement of the assisting bond(s), if such assistance does occur. The retentive solvolysis process is a vivid demonstration of the importance of this element. Proposals of pyramidality have generally not included any discussion of the possibility of two equilibrating pyramidal structures (e.g., as in Malpass' amines; see section VC). Curtin–Hammett considerations apply then, and transition-state energies determine the outcome.

C. Electrostatic Effects

Westheimer's computation of the acid strength of chloroacetic acid, which was based on the interaction of the C–Cl and O–H dipoles,187 was an impressive achievement, but at the same time, it became an early indication of how difficult it would be to extend such equilibrium calculations to more complex molecules and to reaction rates. The obstacles to extension include conformational questions, uncertainty of the transition-state "location", and above all, what values to assign to the dielectric constant. As a result, just as steric hindrance was at one time described as "the last refuge of the puzzled organic chemist", so are electrostatic effects now sometimes mentioned as the cause of diastereoselection simply because other plausible explanations appear to fail!

It should be added at once that extensive and promising efforts have been made in the past few years188 to fortify the foundations on which these claims are made, and three of them are briefly mentioned here. Adcock et al. have published189 extensive sets of NMR chemical shift data for 5-substituted 2-adamantanones and 2-methyleadamantanones, and in turn, used these data to distinguish between expectations based on electrostatic and hyperconjugation effects. Although the authors concluded that the former correlation is superior, the argument is not convincing as yet. It may become exactly that if solvent effects are found which can be demonstrated to be in harmony with predictions based on electrostatic considerations. To date, however, such data are not available. We recall that the sodium borohydride reduction of 5-azaadamantan-2-one-N-oxide, which had produced the largest selectivity yet seen,82 is indifferent to medium changes varying from methanol to saturated aqueous sodium chloride; this result may be contrasted with the huge effects seen by Haberfield82,190 in rate studies in which the solvent was varied from moist p-dioxane to water.

The second instance is one in which Wipf reported that several cyclohexadienones of the general type 161 react with methylmagnesium bromide to give the two products 162 and 163 in ratios varying from about 5:1 to more than 30:1, respectively.191 These ratios correlated very well indeed with dipole moments calculated for the dienes, and the implication is that the favored product configuration is a consequence of electrostatic steering. Wipf noted that this behavior is also seen with pentfluoroethyl-lithium as the nucleophile (3:1), but there is a reversal (1:5) if the group OR is methoxy and R' is pentafluoroethyl, and this reversal is accounted for by the dipole moment.

However, the apparently excellent agreement leaves several questions unanswered. Thus, it is not clear...
why one of the substrates (R = R’ = Me) has a much reduced sensitivity to the nature of the nucleophile (with three of them, the selection can only be described as random). More important, and as Wipf conceded, the extra double bond between the carbonyl carbon and the substituent could lead to an inversion of the normal effect (see section X). It is interesting that in two instances in which conjugate addition dominates, the attack occurs exclusively at the zu face.

Finally, an interesting recent paper by Mehta reports a comparison of the reductions with sodium borohydride in methanol of norsnoutan-9-ones and snoutan-9-ones. The Z-alcohols were favored in all cases when X is cyano, methoxycarbonyl, ethynyl, vinyl, and methoxymethyl; however, the ratios were systematically somewhat larger for than for 165. The authors noted that this was expected on the basis of the hyperconjugative model because has two vicinal bonds through which to transmit the remote substituent effect, whereas 165 has only one (see also section II B). Their additional postulate that an electrostatic component is also operating is unnecessary, in our opinion.

![Diagram](image_url)

D. Hyperconjugative Effects

Hyperconjugation (or no-bond resonance) has a long and tumultuous history, some aspects of which were mentioned in an earlier paper by one of us. As noted in the text describing Chart 1, three types of hyperconjugative interactions are possible between an incipient bond i resulting in addition and a vicinal bond v: . The first two of these interactions, which are attractive (energy-lowering) in nature, are associated with the names of Anh and Cieplak, respectively, while the third and repulsive one has been advocated by Felkin.

The experimental results described in this paper provide strong evidence for the following points. First, the Anh model predicts that the electrons of the newly forming bond will delocalize into the more electron-poor antiperiplanar σ* orbital, thus favoring product conformations exactly opposite to those observed. We conclude that this model, whatever its merits in predicting the stereochemistry of the reactions of open-chain or monocyclic compounds, falls as an explanation for addition and elimination with the more rigid polycyclic compounds. Second, both the Cieplak and Felkin models are in accord with the observed facts. However, the latter view, so far as we know, has never been seriously considered as an explanation for the huge rate ratios so often encountered in heterolysis. Because the stereochemistries of the reactions discussed here and of the heterolytic process are invariably the same, we feel that it is unreasonable to accept one model for the one set and a different one for the other. The unified Winstein–Cieplak view is a powerful tool for explaining the stereogenesis (or -demise) in all addition (or elimination) chemistry. The principal distinction between the Winstein and Cieplak models is that the former depends on the possibility of delocalization into an empty p orbital, whereas the latter rests on the availability of a vacant σ* orbital.

This picture has gradually become persuasive to us because of the multitude of reactions the stereochemistry of which was found to be predictable on that basis; they include not only solvolysis and nucleophilic addition to carbonyl compounds but also the capture of carbocations, carbenes, radicals and carbanions, the electrophilic addition to olefins, the full variety of cycloadditions, sigmatropic shifts, metatation of dienes, and sulfide oxidation. It accounts for the effect of introducing remote charge centers, for the solvent effect observed with 5-azaadamantan-2-one, and for the changeover in configuration of the sulfoxides formed from 2-thiaadamantanes depending on the choice of reagent. It helped us find a literature error in the assignment of a 13C chemical shift in a case where the model appeared to fail.134 It allowed us to predict the stereochemistry depicted in Scheme 8; we know of no other basis on which such a prediction could have been made with confidence.

One of the objections occasionally raised against the Cieplak model is the apparent contradiction of stabilizing a transition state by delocalizing bonding electrons into the antibonding component of a newly forming bond.193 However, as we have commented elsewhere, "... by virtue of microscopic reversibility, the transition states for bond formation and cleavage are the same. The explanation is paradoxical only if one attributes too literal a meaning to the term 'antibonding'. The proposition that electronic energy is lowered by delocalization into a vacant orbital of higher energy is a fundamental tenet of quantum chemistry."

To be sure, there are a number of ends that need to be accounted for. One of these concerns some intriguing experiments by Meyers et al. The unsaturated bicyclic amide undergoes cyclopropanation predominantly at its more hindered endo face, leading these authors to attribute their finding to transition-state hyperconjugation with the bridgehead methyl group functioning as the donor. However, it was later found that compound is also subject to endo cyclopropyl formation, yet one would hardly expect the pentafluoro group to have donor properties. One possible explanation might be that with the alkoxy and pentafluoroethyl functions serving as the vicinal bonds, the transition-state polarization is opposite to what it normally is, and the incipient bond becomes the donor (as in the Anh model; see Scheme 5).
Another problem is the peculiar failure of the trimethylstannyl group to assist in radical abstraction by the en face, another, the interesting reversal of the trimethylsilyl group, which appears to function as a donor in ground-state chemistry, but as an acceptor in a photocycloaddition. Also problematic is the behavior of olefin 167-X. While most reactions with the double bond occur syn to the electron-withdrawing substituents if these are cyano or mesylate, cycloaddition with diazomethane occurs mostly anti. Finally, it needs be mentioned that nitroxylation of adamantanes carrying an electron-withdrawing group at C-2 occurs primarily at C-5 (syn), but if the substituent is alkyl, it takes place mostly at C-7 (anti). Thus, alkyl groups would have to be considered electron donors if located at C-2 even though they behave as acceptors at C-5. But regardless of which explanation will eventually be agreed upon as the correct one, the data do seem to tell us that the addition to trigonal centers is assisted by electron-rich antiperiplanar vicinal bonds.

XIII. Acknowledgments

The corresponding author expresses his gratitude to the National Science Foundation and to the donors of the Petroleum Research Fund for supporting the research described herein. We thank two of the referees who read our paper in its entirety and made numerous helpful suggestions.

References

(44) Laube, T. Acc. Chem. Res. 1995, 26, 399. Laube comments: "bridging and hyperconjugation are related phenomena, but hyperconjugation does not lead to such strong changes of geometry as observed for bridging. There is no clear boundary..."
between these two effects; they are considered as regions in the spectrum of charge delocalization effects between the extreme cases "no charge delocalization" and "strong charge delocalization with bridging." To the present authors, this description is a perfect example of the arbitrariness in drawing distinctions between bridging, hyperconjugation, sigma delocalization, neighboring group effects, etc.

A referee has urged readers interested in the topic of hyperconjugation to read also the following classic papers on the subject: (a) Mulliken, R. S. Tetrahedron 1959, 5, 253. (b) de la Mare, P. D. Pure Appl. Chem. 1984, 56, 1755. (c) Cremer, D. Tetrahedron 1988, 44, 7427.