ESTIMATING NULL VALUES IN THE DISTRIBUTED RELATIONAL DATABASES ENVIRONMENT

Shyi-Ming Chen, Hsin-Horng Chen

a Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, R.O.C.

b Department of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

Published online: 29 Oct 2010.

To cite this article: Shyi-Ming Chen, Hsin-Horng Chen (2000) ESTIMATING NULL VALUES IN THE DISTRIBUTED RELATIONAL DATABASES ENVIRONMENT, Cybernetics and Systems: An International Journal, 31:8, 851-871, DOI: 10.1080/019697200750038977

To link to this article: http://dx.doi.org/10.1080/019697200750038977
ESTIMATING NULL VALUES IN THE DISTRIBUTED RELATIONAL DATABASES ENVIRONMENT

SHYI-MING CHEN

Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, R.O.C.

HSIN-HORNG CHEN

Department of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

To estimate null values in relational database systems is an important research topic. In Chen and Yeh (1997) a method for estimating null values in relational database systems was presented. In Chen and Chen (1997) a method for fuzzy query translation for information in the distributed relational databases environment was presented. In this article, the works of Chen and Chen (1997) and Chen and Yeh (1997) are extended to propose a method for estimating null values in the distributed relational databases environment. The proposed method provides a useful way to estimate incomplete data when the relations stored in a failed server cannot be accessed in the distributed relational databases environment.

Data processing is an important activity in business processing. There is a lot of information generated when business is running. A database system keeps that information for the enterprise. There are many types...
of database systems on the commercial market. Relational database systems are most widely used in an enterprise (Date, 1995). Sometimes a company is distributed logically into divisions, where each division may have a database. Thus, a distributed system enables the distributed databases to mirror the structure of the company, where local data can be kept locally and remote data can be accessed when necessary by means of computer networks. It may happen that one of the distributed databases stored in a failed server cannot be accessed when queries are submitted from the end users. In this case, a mechanism is needed to derive the incomplete data before the failed server has recovered to the normal state.

Since Zadeh (1965) proposed the theory of fuzzy sets in 1965, some researchers investigated the application of the fuzzy set theory in relational database systems. In Chen and Jong (1997), the techniques of fuzzy query translation for relational database systems were presented. In Yeh and Chen (1994), a method for fuzzy query processing was presented using automatic clustering techniques. In Chang and Ke (1978) they presented a database skeleton and introduced its application to fuzzy query translation. In Chang and Ke (1979) a method for translation of fuzzy queries of relational database systems was presented. In Bosc et al. (1988) an extension of DBMS querying capabilities was proposed in order to allow fuzzy queries to a usual database. In Bosc and Pivert (1995) a fuzzy query language SQLf for relational database systems was presented. In Nakajima and Senoh (1995) the operations of fuzzy data in fuzzy SQL language was investigated. In Zemankova (1989) he proposed a fuzzy intelligent information system. In Kacprzyk et al. (1987) a “human-consistent” database querying system was developed based on fuzzy logic with linguistic quantifiers.

In Chen and Chen (1997) a method for fuzzy query translation was presented based on Chen and Jong (1997) for information retrieval in the distributed relational databases environment. In Chen and Yeh (1997) a method for estimating null values in relational database systems was presented. In this paper, the works of Chen and Chen (1997) and Chen and Yeh (1997) are extended to propose a method for estimating null values in the distributed relational databases environment, when one of the relations stored in a failed server cannot be accessed in the distributed relational databases.
FUZZY QUERY TRANSLATION IN THE DISTRIBUTED RELATIONAL DATABASES ENVIRONMENT

In Chen and Chen (1997), a method for fuzzy query translation for information retrieval has been presented in the distributed relational databases environment based on Chen and Jong (1997), where the developing tools Delphi and open database connectivity (ODBC) are used to implement the distributed relational databases query environment. In the following, the ODBC architecture and the distributed relational databases query environment from Chen and Chen (1997) is briefly reviewed.

The ODBC interface allows applications to access data in database management systems (DBMS) using structured query language (SQL) as a standard for accessing data.

The ODBC architecture has four components:

1. Application: it performs processing and calls ODBC functions to submit SQL statements and retrieve results.
2. Driver manager: it loads drivers according to the behavior of an application.
3. Driver: it processes ODBC function calls, submits SQL requests to a specific data source, and returns results to the application. If necessary, the driver modifies an application’s request such that the request conforms to the syntax supported by the associated DBMS.
4. Data source: it consists of the data in which the user wants to access and its associated operating system, DBMS, and network platform (if any) used to access the DBMS.

The hierarchy of the ODBC architecture is shown in Figure 1 (Chen & Chen, 1997). Figure 2 shows the fuzzy query translation architecture in the distributed relational databases environment (Chen & Chen, 1997). There are four parts of components in Figure 2. These components are described as follows:

1. Fuzzy SQL statements: this component contains the SQL statements that are issued by the users. The statements can be either standard SQL statements or fuzzy SQL statements.
2. Fuzzy SQL translator: this component parses the query statements issued from the component “fuzzy SQL statements” and performs the following operations based on Chen and Jong (1997):
a. When the query statement is not a legal SQL statement or fuzzy SQL statement, this component will reject this query statement.
b. If the query statement is a fuzzy SQL statement, this component will translate it into a standard SQL statement. According to the linguistic term corresponding to the attribute in the condition part and the retrieve threshold value written in the query statement, the translator will perform the α-cut operation on the fuzzy term and translate the condition part into the precise
c. If the query statement is a standard SQL statement, this component just passes the whole SQL statement to the next component without any modification.

The membership function library is used in this component. It keeps the membership functions which are used when doing the α-cuts operations.

3. SQL-type database management environment: this component takes charge of access data from data sources. Database operations are actually performed by this component. When the fuzzy SQL translator passes the precise SQL statement to this component, it will take
some necessary operations to deal with this query statement. For example, if there are some databases residing in remote sites, this component maintains the communication links between the remote databases and the local program to ensure the successful access to the databases.

4. Remote database connectors: these components serve as the communication devices between the local program and the remote database servers. These remote database connectors are database dependent, i.e., each type of database has its specific driver. Through these drivers, the program will not necessarily decide what kind of database system it will deal with. Therefore, the methods for accessing databases are totally transparent to the program.

The architecture of this system is based on the client/server database operating environment. This system resides at the user’s local site as a client. The databases can be located either in the local site or in the remote site. These two database servers act as the server sites. The distributed relational databases environment presented in Chen and Chen (1997) is shown in Figure 3.
Estimating Null Values in the Distributed Relational Databases Environment

In Chen and Yeh (1997), a method for estimating null values in relational database systems has been presented. In the following, a method for estimating null values in the distributed relational databases environment is presented.

A distributed relational databases environment is a new trend for business data processing. Sometimes a business distributes its data to each related department. Each department manages its own data. This is for the convenience of speed and management. However, there are some cases that database servers fail when end-users are querying databases. In this situation, a method must be provided to estimate the data stored in the failed server.

In the following, a fuzzy similarity matrix is used to represent a fuzzy relation. Suppose a linguistic variable (Zadeh, 1975a,b,c) \(V \) is defined, which contains linguistic terms \(v_1, v_2, \ldots, v_n \). Then, a fuzzy relation matrix is made for the linguistic variable \(V \) as shown in Figure 4, where \(u_{ij} \) is the closeness degree between \(v_i \) and \(v_j \), \(u_{ij} \in [0, 1] \), \(1 \leq i \leq n \), and \(1 \leq j \leq n \).

One can say that the closeness degree \(CD(v_i, v_j) \), between the fuzzy term \(v_i \) and the fuzzy term \(v_j \) is \(u_{ij} \), denoted as

\[
CD_V(v_i, v_j) = R_v[v_i][v_j] = u_{ij},
\]

where each value of \(u_{ij} \) in the fuzzy relation matrix \(V \) is defined by an experienced database administrator.

For example, in Table 1, “DEGREE” is a linguistic variable. Suppose this linguistic variable contains fuzzy terms \{Ph.D., Master, Bac-
The fuzzy relation matrix can be constructed for the linguistic variable “DEGREE.”

For saving storage, one can, as shown in Table 1, construct the fuzzy relation matrix illustrated in Table 1 by using the fuzzy relation table shown in Table 2.

From Table 2, the closeness degree can be seen between the fuzzy terms “Master” and “Ph.D.” is $CD_{\text{degree}}(\text{Master}, \text{Ph.D.}) = 0.7$.

A fuzzy term ranking function can also be defined to keep the rank of each fuzzy term in the same linguistic domain. Suppose the linguistic term V contains fuzzy terms $\{v_1, v_2\}$, and fuzzy term v_1 is prior to fuzzy term v_2, then it can be defined as follows:

$$\text{Rank}(v_1) > \text{Rank}(v_2).$$

A rule base is used for keeping relationships in which one attribute determines other attributes (Yen, 1993). Each rule in the rule base is given by the experts according to their experiences of the data. For example, if the attributes A_1, A_2, \ldots, A_n determine the attribute A_A, then a set of fuzzy rules can be constructed as shown in Table 3.

Table 1. A fuzzy relation for the linguistic variable “DEGREE”

<table>
<thead>
<tr>
<th></th>
<th>Ph.D.</th>
<th>Master</th>
<th>Bachelor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph.D.</td>
<td>1.0</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>Master</td>
<td>0.7</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Bachelor</td>
<td>0.4</td>
<td>0.6</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 2. A fuzzy relation table

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>$CD(X, Y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph.D.</td>
<td>Ph.D.</td>
<td>1.0</td>
</tr>
<tr>
<td>Master</td>
<td>Ph.D.</td>
<td>0.7</td>
</tr>
<tr>
<td>Bachelor</td>
<td>Ph.D.</td>
<td>0.4</td>
</tr>
<tr>
<td>Ph.D.</td>
<td>Master</td>
<td>0.7</td>
</tr>
<tr>
<td>Master</td>
<td>Master</td>
<td>1.0</td>
</tr>
<tr>
<td>Bachelor</td>
<td>Master</td>
<td>0.6</td>
</tr>
<tr>
<td>Ph.D.</td>
<td>Bachelor</td>
<td>0.4</td>
</tr>
<tr>
<td>Master</td>
<td>Bachelor</td>
<td>0.6</td>
</tr>
<tr>
<td>Bachelor</td>
<td>Bachelor</td>
<td>1.0</td>
</tr>
</tbody>
</table>
In Table 3, one can see that a_{ij} denotes the attribute value, w_{ij} is the weight for each attribute in the antecedent part of the rule, and each w_{ij} is assigned by an experienced expert, where $w_{ij} \in [0, 1]$, $1 \leq i \leq m$, and $1 \leq j \leq n$. For example, in a relation EMPLOYEE, one can define that the attribute “DEGREE” and the attribute “EXPERIENCE” determine the attribute “SALARY,” and each weight value can be assigned to the attributes “DEGREE” and “EXPERIENCE”; then one can get the rules for the attribute “SALARY” as shown in Table 4.

The rule base shown in Table 4 stores important information about estimating null values. It will be used to estimate failed attribute values of a relation in the distributed relational databases environment.

Table 3. Rules for determining the attribute AA

<table>
<thead>
<tr>
<th>Rule</th>
<th>IF</th>
<th>THEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule 1:</td>
<td>$A_1 = a_{11}(W = w_{11})$ AND $A_2 = a_{12}(W = w_{12})$ AND \cdots AND $A_n = a_{1n}(W = w_{1n})$, THEN $AA = t_1$</td>
<td>$AA = t_1$</td>
</tr>
<tr>
<td>Rule 2:</td>
<td>$A_1 = a_{21}(W = w_{21})$ AND $A_2 = a_{22}(W = w_{22})$ AND \cdots AND $A_n = a_{2n}(W = w_{2n})$, THEN $AA = t_2$</td>
<td>$AA = t_2$</td>
</tr>
<tr>
<td>Rule m:</td>
<td>$A_1 = a_{m1}(W = w_{m1})$ AND $A_2 = a_{m2}(W = w_{m2})$ AND \cdots AND $A_n = a_{mn}(W = w_{mn})$, THEN $AA = t_m$</td>
<td>$AA = t_m$</td>
</tr>
</tbody>
</table>

Table 4. Rules for determining the attribute “SALARY”

<table>
<thead>
<tr>
<th>IF</th>
<th>THEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEGREE = Master ($W = 0.6$) AND EXPERIENCE = 3.6 ($W = 0.4$) THEN SALARY = 41000</td>
<td>SALARY = 41000</td>
</tr>
<tr>
<td>DEGREE = Ph.D. ($W = 0.6$) AND EXPERIENCE = 7.8 ($W = 0.4$) THEN SALARY = 65000</td>
<td>SALARY = 65000</td>
</tr>
<tr>
<td>DEGREE = Bachelor ($W = 0.65$) AND EXPERIENCE = 5 ($W = 0.35$) THEN SALARY = 36000</td>
<td>SALARY = 36000</td>
</tr>
</tbody>
</table>

In Table 3, one can see that a_{ij} denotes the attribute value, w_{ij} is the weight for each attribute in the antecedent part of the rule, and each w_{ij} is assigned by an experienced expert, where $w_{ij} \in [0, 1]$, $1 \leq i \leq m$, and $1 \leq j \leq n$. For example, in a relation EMPLOYEE, one can define that the attribute “DEGREE” and the attribute “EXPERIENCE” determine the attribute “SALARY,” and each weight value can be assigned to the attributes “DEGREE” and “EXPERIENCE,” then one can get the rules for the attribute “SALARY” as shown in Table 4.

The rule base shown in Table 4 stores important information about estimating null values. It will be used to estimate failed attribute values of a relation in the distributed relational databases environment.

Sometimes a relation may be partitioned into two or more related relations by the method of the relation normalization (Codd, 1971). Moreover, they may be distributed to different locations in the business, just for convenient management of the database. These relations are obtained by vertically partitioning the original relation. It might happen that one of the relations fails when a query is submitted. In such a case, a method is proposed to estimate the failed attribute value of a relation in the distributed relational database environment.
Consider the relation EMPLOYEE shown in Table 5. This relation can be vertically partitioned into two relations EMP_INFO and EMP_SALARY as shown in Table 6 and Table 7.

Then, these two relations can be joined (i.e., EMP_INFO and EMP_SALARY) into the original relation EMPLOYEE with the following SQL statements:

\[
\text{SELECT ID, Degree, Experience, Salary}
\text{FROM EMP_INFO, EMP_SALARY}
\text{WHERE EMP_INFO.ID = EMP_SALARY.ID}
\text{WITH RSV = 0.90,}
\]

where RSV means the retrieval threshold value (Chen & Chen, 1997). Suppose these two relations are distributed in two different locations. Then, a view called EMP can be created by the following SQL statements:
CREATE VIEW EMP AS
SELECT ID, DEGREE, EXPERIENCE, SALARY
FROM EMP_INFO, EMP_SALARY
WHERE EMP_INFO.ID = EMP_SALARY.ID
WITH RSV = 0.90.

We know that the results of the relation EMPLOYEE and the view EMP will be identical. Now, suppose the relation EMP_SALARY failed to access when the query is submitted as follows:

SELECT *
FROM EMP
WHERE ID = 'S1'
WITH RSV = 0.90.

In this case, the query cannot be processed correctly. Thus, a method must be proposed to estimate the attribute values in a failed relation.

Table 6. Relation EMP.SALARY

<table>
<thead>
<tr>
<th>ID</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>63000</td>
</tr>
<tr>
<td>S2</td>
<td>37000</td>
</tr>
<tr>
<td>S3</td>
<td>40000</td>
</tr>
<tr>
<td>S4</td>
<td>47000</td>
</tr>
<tr>
<td>S5</td>
<td>53000</td>
</tr>
<tr>
<td>S6</td>
<td>26000</td>
</tr>
<tr>
<td>S7</td>
<td>29000</td>
</tr>
<tr>
<td>S8</td>
<td>50000</td>
</tr>
<tr>
<td>S9</td>
<td>54000</td>
</tr>
<tr>
<td>S10</td>
<td>35000</td>
</tr>
<tr>
<td>S11</td>
<td>40000</td>
</tr>
<tr>
<td>S12</td>
<td>41000</td>
</tr>
<tr>
<td>S13</td>
<td>68000</td>
</tr>
<tr>
<td>S14</td>
<td>57000</td>
</tr>
<tr>
<td>S15</td>
<td>36000</td>
</tr>
<tr>
<td>S16</td>
<td>50000</td>
</tr>
<tr>
<td>S17</td>
<td>23000</td>
</tr>
<tr>
<td>S18</td>
<td>55000</td>
</tr>
<tr>
<td>S19</td>
<td>51000</td>
</tr>
<tr>
<td>S20</td>
<td>65000</td>
</tr>
<tr>
<td>S21</td>
<td>64000</td>
</tr>
<tr>
<td>S22</td>
<td>70000</td>
</tr>
</tbody>
</table>
The basic idea of this method is that the failed tuple compares to each rule in the rule base shown in Table 1 to see which is the closest rule. Then, the failed tuples can be estimated by their closeness degrees.

Assume that relation R_1 contains attributes A_1, A_2, \ldots, A_m and assume that relation R_2 contains attributes B_1 and B_2. Furthermore, assume that attribute A_1 and B_1 are the primary keys of R_1 and R_2, respectively, and A_1 and B_1 are in the same domain. If one performs a joint operation on R_1 and R_2 with a condition "$R_1.A_1 = R_2.B_1$," then one can derive a new relation named R_3, where relation R_3 contains attributes A_1, A_2, \ldots, A_m and B_2. If attribute B_2 is a failed attribute, then attribute B_2 can be estimated by the following method.

Case 1: First, each tuple T_i in relation R_3 is scanned. If attribute B_2 is in a numerical domain, then the closeness degree can be computed between tuple T_i and the chosen rule according to the rules that determine

<table>
<thead>
<tr>
<th>ID</th>
<th>Degree</th>
<th>Experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Ph.D.</td>
<td>7.2</td>
</tr>
<tr>
<td>S2</td>
<td>Master</td>
<td>2.0</td>
</tr>
<tr>
<td>S3</td>
<td>Bachelor</td>
<td>7.0</td>
</tr>
<tr>
<td>S4</td>
<td>Ph.D.</td>
<td>1.2</td>
</tr>
<tr>
<td>S5</td>
<td>Master</td>
<td>7.5</td>
</tr>
<tr>
<td>S6</td>
<td>Bachelor</td>
<td>1.5</td>
</tr>
<tr>
<td>S7</td>
<td>Bachelor</td>
<td>2.3</td>
</tr>
<tr>
<td>S8</td>
<td>Ph.D.</td>
<td>2.0</td>
</tr>
<tr>
<td>S9</td>
<td>Ph.D.</td>
<td>3.8</td>
</tr>
<tr>
<td>S10</td>
<td>Bachelor</td>
<td>3.5</td>
</tr>
<tr>
<td>S11</td>
<td>Master</td>
<td>3.5</td>
</tr>
<tr>
<td>S12</td>
<td>Master</td>
<td>3.6</td>
</tr>
<tr>
<td>S13</td>
<td>Master</td>
<td>10.0</td>
</tr>
<tr>
<td>S14</td>
<td>Ph.D.</td>
<td>5.0</td>
</tr>
<tr>
<td>S15</td>
<td>Bachelor</td>
<td>5.0</td>
</tr>
<tr>
<td>S16</td>
<td>Master</td>
<td>6.2</td>
</tr>
<tr>
<td>S17</td>
<td>Bachelor</td>
<td>0.5</td>
</tr>
<tr>
<td>S18</td>
<td>Master</td>
<td>7.2</td>
</tr>
<tr>
<td>S19</td>
<td>Master</td>
<td>6.5</td>
</tr>
<tr>
<td>S20</td>
<td>Ph.D.</td>
<td>7.8</td>
</tr>
<tr>
<td>S21</td>
<td>Master</td>
<td>8.1</td>
</tr>
<tr>
<td>S22</td>
<td>Ph.D.</td>
<td>8.5</td>
</tr>
</tbody>
</table>

Table 7. Relation EMP.INFO

Table 7. Relation EMP.INFO

S.-M. CHEN AND H.-H. CHEN
attribute B_2. If rule r_j is the closest to T_i, then that rule is picked as the rule base, where rule r_j is shown as follows:

\[
\text{IF } A_1 = A_{j1}(W = w_{j1}, \text{ AND } A_2 = A_{j2}(W = w_{j2}) \text{ AND } \cdots \text{ AND } A_n = A_{jn}(W = w_{jn}) \text{ THEN } B_2 = N_j,
\]

where attribute A_k may be either a numerical or a nonnumerical domain, where $1 \leq k \leq n$. The following two cases are considered:

1. A_k is in a numerical domain.
 If A_k is in a numerical domain, its closeness degree can be directly computed by the following formula:

\[
CD_{v_{ji}}(r_j,A_k, T_i,A_k) = \frac{T_i.A_k}{r_j.A_k}.
\] (2)

2. A_k is in a nonnumerical domain.
 If A_k is in a nonnumerical domain and the linguistic term rank $\text{Rank}(T_i.A_k) > \text{Rank}(r_j.A_k)$, then we can look up the closeness degree $CD_{v_{ji}}(r_j,A_k, T_i,A_k)$ from the fuzzy relation matrix shown in Table 1, where

\[
CD_{v_{ji}}(r_j.A_k, T_i.A_k) = \frac{1}{R_{\text{domain}}[r_j.A_k][T_i.A_k]}.
\] (3)

If A_k is in a nonnumerical domain and the linguistic term priority $\text{Rank}(T_i.A_k) \leq \text{Rank}(r_j.A_k)$, then one can look up the closeness degree $CD_{v_{ji}}(r_j,A_k, T_i,A_k)$ from the fuzzy relation matrix shown in Table 1, where

\[
CD_{v_{ji}}(r_j.A_k, T_i.A_k) = R_{\text{domain}}[r_j.A_k][T_i.A_k].
\] (4)

The total closeness degree between tuple T_i and Rule r_j is

\[
CD(r_j,T_i) = \sum_{k=1}^{n} CD_{v_{ji}}(r_j.A_k, T_i.A_k) * w_{jk}.
\] (5)

After all closeness degrees are computed between tuple T_i and all rules r_j, the rule closest to T_i is chosen. Suppose the following rule
is the closest one to tuple T_i:

\[
\text{IF } A_1 = A_{j1}(W = w_{j1}) \text{ AND } A_2 = A_{j2}(W = w_{j2}) \\
\quad \quad \text{AND } \cdots \text{ AND } A_n = A_{jn}(W = w_{jn}) \text{ THEN } B_2 = N_j,
\]

then the attribute value of B_2 in tuple T_i can be estimated by the following calculation:

\[
T_i.B_2 = CD(r_j, T_i) \ast N_j
\]

(6)

Repeat each tuple T_i until all failed attributes have been estimated.

Case 2: If the failed attribute B_2 is in a nonnumerical domain, the closeness degree can also be computed between tuple T_i and the chosen rule according to the rules that determine attribute B_2. If rule r_j is the closest to T_i, then that rule is picked as the base rule, where rule r_j is shown as follows:

\[
\text{IF } A_1 = A_{j1}(W = w_{j1}) \text{ AND } A_2 = A_{j2}(W = w_{j2}) \\
\quad \quad \text{AND } \cdots \text{ AND } A_n = A_{jn}(W = w_{jn}) \text{ THEN } B_2 = W_j,
\]

where attribute A_k may be either a numerical or a non-numerical domain, where $1 \leq k \leq n$. We consider the following two cases:

1. A_k is in a numerical domain.
 If A_k is in a numerical domain, we can directly compute its closeness degree by the following formula:

\[
CD_{vji}(r_j.A_k, T_i.A_k) = \frac{T_i.A_k}{r_j.A_k}.
\]

(7)

2. A_k is in a non-numerical domain.
 If A_k is in a non-numerical domain and the linguistic term rank $\text{Rank}(r_j.A_k) > \text{Rank}(r_j.A_k)$, then we can look up the closeness degree $CD_{vji}(r_j.A_k, T_i.A_k)$ from the fuzzy relation matrix shown in Table 1, where

\[
CD_{vji}(r_j.A_k, T_i.A_k) = \frac{1}{R_{\text{domain}} [r_j.A_k] [T_i.A_k]}.
\]

(8)

If A_k is in a nonnumerical domain and the linguistic term priority $\text{Rank}(T_i.A_k) < \text{Rank}(r_j.A_k)$, then we can look up the closeness degree
from the fuzzy relation matrix:

\[CD_{ji}(r_j.A_k, T_i.A_k) = R_{\text{domain}}[r_j.A_k] [T_i.A_k]. \]

(9)

The total closeness degree between tuple \(T_i \) and Rule \(r_j \) is

\[CD(r_j, T_i) = \sum_{k=1}^{n} CD_{ji}(r_j.A_k, T_k.A_k) \ast w_{jk}. \]

(10)

After all the closeness degrees are computed between tuple \(T_i \) and all rules, the rule closest to \(T_i \) is chosen. Suppose the following rule is the closest one to tuple \(T_i \):

IF \(A_1 = A_{j1}(W = w_{j1}) \) AND \(A_2 = A_{j2}(W = w_{j2}) \)
AND \(\ldots \) AND \(A_n = A_{jn}(W = w_{jn}) \) THEN \(B_2 = W_j \),

then the estimated attribute value of \(B_2 \) is \(W_j \), where

\[T_i.B_2 = W_j. \]

(11)

Repeat each tuple \(T_i \) until all failed attributes have been estimated.

AN EXAMPLE

In the following, an example is used to illustrate the null values estimation process in the distributed relational databases environment.

Example: Consider the relation EMPLOYEE shown in Table 5. This relation can be vertically partitioned into two relations EMP_INFO and EMP_SALARY as shown in Tables 6 and 7.

Then, these two relations can be joined into the original relation EMPLOYEE with the following SQL statements:

```
SELECT ID, DEGREE, EXPERIENCE, SALARY
FROM EMP_INFO, EMP_SALARY
WHERE EMP_INFO.ID = EMP_SALARY.ID
WITH RSV = 0.90.
```

Suppose these two relations are distributed in two different locations. Then, a view can be created called EMP by the following SQL statements:
CREATE VIEW EMP AS
SELECT ID, DEGREE, EXPERIENCE, SALARY
FROM EMP_INFO, EMP_SALARY
WHERE EMP_INFO.ID = EMP_SALARY.ID
WITH RSV = 0.90.

One can see that the results of the relation EMPLOYEE and the view EMP are identical. Now suppose the relation EMP_SALARY failed to access when a query is submitted shown as follows:

```
SELECT *
FROM EMP
WHERE ID = S1
WITH RSV = 0.90.
```

In this case, the query cannot be processed correctly. Thus, the attributes must be estimated in the failed relation. According to the problem described above, when the database system that stores the relation EMP_SALARY failed, the query submitted by the user cannot be executed. In this case, the join result may be like the failed result shown in Table 8.

Now, all the data will be estimated in the relation EMP_SALARY. Every tuple is scanned in the relation EMP_INFO. First, the first tuple in the relation EMP_INFO is picked. From the rules for the attribute “SALARY,” one knows that the attribute “DEGREE” and the attribute “EXPERIENCE” determine the attribute “SALARY.” Thus, the closeness degree is calculated between the first tuple of the relation EMP_SALARY to each rule for the attribute “SALARY.” For example, the first rule (i.e., Rule 1) is chosen in the rule base shown in Table 4 as follows:

```
IF DEGREE = Master (W = 0.6) AND EXPERIENCE = 3.6 (W = 0.4) THEN SALARY = 41000.
```

In the condition part of this rule, one can see that “DEGREE = Master”

<table>
<thead>
<tr>
<th>ID</th>
<th>Degree</th>
<th>Experience</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Ph.D.</td>
<td>7.2</td>
<td>?????</td>
</tr>
</tbody>
</table>

Table 8. A failed join result
is a nonnumerical domain. One cannot directly calculate the closeness degree between "Master" and "Ph.D." One can see that Rank(Ph.D.) > Rank(Master). Therefore, their closeness degree is computed using formula (3):

\[
CD_{\text{degree}}(\text{Master, Ph.D.}) = \frac{1}{R_{\text{degree}}[\text{Master}][\text{Ph.D.}]}
\]
\[
= \frac{1}{0.7}
\]
\[
= 1.428571428571.
\]

For the attribute "EXPERIENCE," one can see that it is a numerical domain attribute. According to formula (2), their closeness degree can be directly calculated:

\[
CD_{\text{experience}}(3.6, 7.2) = \frac{7.2}{3.6} = 2.
\]

From Rule 1 shown in Table 4, one can see that the weights for the attributes "DEGREE" and "EXPERIENCE" are 0.6 and 0.4, respectively. Then, the total closeness degree is calculated between the first tuple of the relation EMP.INFO and Rule 1 using formula (5):

\[
CD(\text{Rule1, EMP}.T_1) = 1.428571428571 \times 0.6 + 2 \times 0.4
\]
\[
= 1.657142857143.
\]

Again, the closeness degree is calculated between the first tuple of the relation EMP.INFO and the rest rules in the rule base for the attribute "SALARY." The same method described above is used to calculate each CD value:

\[
CD(\text{Rule2, EMP}.T_1) = 1 \times 0.6 + 0.9230769230769 \times 0.4
\]
\[
= 0.969230769231,
\]
\[
CD(\text{Rule3, EMP}.T_1) = 2.5 \times 0.65 + 1.44 \times 0.35 = 2.129.
\]

In this case, the closest rule is chosen to estimate the value of the attribute "SALARY," say, Rule 2. By formula (6), one can estimate the first tuple of the relation of the failed attribute "SALARY" as follows:

\[
\text{EMP}.T_1.\text{SALARY} = 0.96923069231 \times 65000 = 63000.
\]
In the same way, after scanning the rest of the tuples in the relation to estimate the values for the failed attribute “SALARY,” one can get the estimated relation shown in Table 9.

Compared to the original EMPLOYEE relation shown in Table 5, the estimated salaries of the employees and the estimation errors are shown in Table 10, where the estimated error is calculated as follows:

\[
\text{Estimated Error} = \frac{\text{Estimated Value} - \text{Original Value}}{\text{Original Value}}.
\]

In this paper, the estimated errors are represented using three digits of significant numbers.

From Table 10, one can see that the average estimated error is 0.061. That is, the forecasting accuracy of the example is 93.9%.

Table 9. An estimated relation for the relation EMP.INFO

<table>
<thead>
<tr>
<th>ID</th>
<th>Degree</th>
<th>Experience</th>
<th>Salary (estimated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Ph.D.</td>
<td>7.2</td>
<td>63000</td>
</tr>
<tr>
<td>S2</td>
<td>Master</td>
<td>2.0</td>
<td>33711</td>
</tr>
<tr>
<td>S3</td>
<td>Bachelor</td>
<td>7.0</td>
<td>46648</td>
</tr>
<tr>
<td>S4</td>
<td>Ph.D.</td>
<td>1.2</td>
<td>36216</td>
</tr>
<tr>
<td>S5</td>
<td>Master</td>
<td>7.5</td>
<td>56200</td>
</tr>
<tr>
<td>S6</td>
<td>Bachelor</td>
<td>1.5</td>
<td>27179</td>
</tr>
<tr>
<td>S7</td>
<td>Bachelor</td>
<td>2.3</td>
<td>29195</td>
</tr>
<tr>
<td>S8</td>
<td>Ph.D.</td>
<td>2.0</td>
<td>39861</td>
</tr>
<tr>
<td>S9</td>
<td>Ph.D.</td>
<td>3.8</td>
<td>48061</td>
</tr>
<tr>
<td>S10</td>
<td>Bachelor</td>
<td>3.5</td>
<td>32219</td>
</tr>
<tr>
<td>S11</td>
<td>Master</td>
<td>3.5</td>
<td>40544</td>
</tr>
<tr>
<td>S12</td>
<td>Master</td>
<td>3.6</td>
<td>41000</td>
</tr>
<tr>
<td>S13</td>
<td>Master</td>
<td>10.0</td>
<td>64533</td>
</tr>
<tr>
<td>S14</td>
<td>Ph.D.</td>
<td>5.0</td>
<td>55666</td>
</tr>
<tr>
<td>S15</td>
<td>Bachelor</td>
<td>5.0</td>
<td>35999</td>
</tr>
<tr>
<td>S16</td>
<td>Bachelor</td>
<td>6.2</td>
<td>51866</td>
</tr>
<tr>
<td>S17</td>
<td>Bachelor</td>
<td>0.5</td>
<td>24659</td>
</tr>
<tr>
<td>S18</td>
<td>Master</td>
<td>7.2</td>
<td>55200</td>
</tr>
<tr>
<td>S19</td>
<td>Master</td>
<td>6.5</td>
<td>52866</td>
</tr>
<tr>
<td>S20</td>
<td>Ph.D.</td>
<td>7.8</td>
<td>65000</td>
</tr>
<tr>
<td>S21</td>
<td>Master</td>
<td>8.1</td>
<td>58200</td>
</tr>
<tr>
<td>S22</td>
<td>Ph.D.</td>
<td>8.5</td>
<td>67333</td>
</tr>
</tbody>
</table>
CONCLUSIONS

In this paper, the works of Chen and Chen (1997) and Chen and Yeh (1997) have been extended to present a method for estimating null values in the distributed relational databases environment. The proposed method provides a useful way to estimate incomplete data when the relations stored in a failed server cannot be accessed in the distributed relational databases environment.

REFERENCES

