Comparison of ultrathin CoTiO 3 and NiTiO 3 high-k gate dielectrics

Tung Ming Pan, Tan Fu Lei, and Tien Sheng Chao

Citation: Journal of Applied Physics 89, 3447 (2001); doi: 10.1063/1.1347405

View online: http://dx.doi.org/10.1063/1.1347405

View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/89/6?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Soft-breakdown-suppressed ultrathin atomic-layer-deposited silicon–nitride/SiO 2 stack gate dielectrics for advanced complementary metal–oxide–semiconductor technology

Effective enhancement of C54 TiSi 2 phase formation with multi-thermal-shock processing at 600°C

Characterization of RuO 2 electrodes on Zr silicate and ZrO 2 dielectrics

X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry study of the role of Ti and TiN caps on the cobalt/SiO 2 interface
J. Vac. Sci. Technol. A 17, 1244 (1999); 10.1116/1.581804

Effect of Al 3 Ti intermetallic compound on electromigration lifetime of Al alloy interconnections
J. Appl. Phys. 84, 742 (1998); 10.1063/1.368132
Comparison of ultrathin CoTiO_3 and NiTiO_3 high-\k gate dielectrics

Tung Ming Pan, Tan Fu Lei, and Tien Sheng Chao

Department of Electronics Engineering and Institute of Electronics, National Chiao-Tung University, Hsinchu 300, Taiwan, Republic of China

(Received 23 August 2000; accepted for publication 13 December 2000)

High-\k cobalt–titanium oxide (CoTiO_3) and nickel–titanium oxide (NiTiO_3) were formed by directly oxidizing sputtered Co/Ti and Ni/Ti film. Al/CoTiO_3/Si_3N_4/Si and Al/NiTiO_3/Si_3N_4/Si capacitor structures were fabricated and measured. The effective dielectric constant (\k value\approx 45) with buffer layer for CoTiO_3 is larger than that of NiTiO_3. In addition, CoTiO_3 depicts excellent electrical properties at the same time. This metal oxide thus appears to be a very promising high-\k gate dielectric for future ultralarge scale integrated devices. © 2001 American Institute of Physics.

[DOI: 10.1063/1.1347405]

I. INTRODUCTION

To continue the scaling trend of complementary metal–oxide–semiconductor (CMOS) technology, the high leakage current is inevitable due to direct tunneling when oxide thickness is less than 25 Å.\(^1\) In order to suppress the tunneling current, alternative gate dielectric with higher dielectric constant than conventional SiO_2 is necessary to provide a physically thicker film for the required equivalent oxide thickness \E_{OT}.\) Gate dielectric materials having high dielectric constant, low interface state density, and good thermal stability are needed for future gate dielectric applications. Ultrathin silicon nitride\(^2\) and Al_2O_3 (Ref. 3) gate dielectrics are proposed to replace the conventional oxide to meet the need for increased capacitance, while maintaining a low gate leakage. Because the dielectric constant is only two times larger than that of SiO_2, the technology life span of nitride or Al_2O_3 is expected to last no longer than two or three generations. Recently, many high-\k materials such as HfO_2, ZrO_2, Ta_2O_5, and TiO_2 gate dielectric films have been widely studied;\(^4–7\) however, these high-\k films having a slightly higher leakage current and lower \k value may not be an adequate choice for alternative gate dielectric application. Materials having too high dielectric constant such as SrTiO_3 or BaTiO_3 may cause short-channel performance degradation due to the fringing fields from the gate to source/drain regions.\(^8\) Also, dielectric constant materials larger than 50 are suitable only for dynamic random access memory applications, but inadequate as the gate dielectric of metal–oxide–semiconductor devices.

The formation of interfacial silicon oxide layer during the metal–oxide deposition process is a serious issue high-\k gate dielectric development. An interfacial SiO_2 layer with a thickness over 20 Å was obtained when Ta_2O_5 was deposited directly on silicon. This interfacial oxide layer will limit the scalability of high-\k dielectrics and cause poor interface quality.\(^9\) Besides, thermal stability of the high-\k dielectric is another major concern, as severe degradation of the dielectric quality has been shown to occur after Ta_2O_3 is subjected to processing temperature above 800 °C.\(^10\) In this article, we report high-\k dielectrics, i.e., CoTiO_3 and NiTiO_3, which is formed by direct oxidation of sputtering Co/Ti and Ni/Ti films. These metal–oxides were explored for their electrical property influence on oxidizing different temperature and time.

II. EXPERIMENT

Samples were fabricated on 6-in.-diam, \p-type (100)-oriented Si wafers with resistivity of 14–21 Ω cm. All the wafers were first cleaned by the standard RCA clean method. To avoid reaction between metal and silicon during the sputtering process and later high-temperature oxide step, a 10 Å Si_3N_4 film was grown by NH_3 (flow rate 105 sccm, pressure 500 mTorr) nitridation of the Si substrate in a low pressure chemical vapor deposition system at 800 °C for 1 h. Afterward, all samples were immediately deposited in sequence with Ti (50 Å) and then Co (50 Å) or Ni (50 Å) film from independent targets by using the physical vapor deposition method. The direct thermal oxidation was carried out at 700, 750, or 800 °C in diluted O_2/N_2/O_2=2/1 gas as listed in Table I to form cobalt–titanium oxide and nickel–titanium oxide films. A 5000 Å Al film was deposited on the wafer by a thermal coater to serve as the gate electrode. The gate of the MOS capacitor was defined by lithography, and then Al was etched by wet etching solutions. Finally, a 5000 Å Al film was also deposited on the backside of the wafers after stripping the oxide on the backside. The x-ray diffraction (XRD) provides identify of the composition and the phase of these new metal–oxide films. The equivalent oxide thickness of CoTiO_3 and NiTiO_3 oxidized for Si_3N_4 buffered layer structures was by high frequency capacitance–voltage (\C–V) of 0.1 MHz at an operating range of −3–2 V in the strong accumulation region without considering quantum mechanical effects. The physical thickness was doubly checked by transmission electron micros-
copy to obtain the k value. The electrical properties and reliability characteristics of the metal–oxide were measured by using the Hewlett-Packard (HP) 4156 semiconductor parameter analyzer.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Oxidation and annealing time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Oxidation for 5 min in diluted $O_2(N_2/O_2=1/1)$ gas</td>
</tr>
<tr>
<td>B</td>
<td>Oxidation for 5 min in diluted $O_2(N_2/O_2=1/1)$ gas and annealing for 5 min in N_2 gas</td>
</tr>
<tr>
<td>C</td>
<td>Oxidation for 10 min in diluted $O_2(N_2/O_2=1/1)$ gas</td>
</tr>
<tr>
<td>D</td>
<td>Oxidation for 10 min in diluted $O_2(N_2/O_2=1/1)$ gas and annealing for 10 min in N_2 gas</td>
</tr>
</tbody>
</table>

III. RESULTS AND DISCUSSION

Film crystallization and degradation during the backend thermal process is a major concern for metal–oxide with high dielectric constant. The Ilmenite structure is the CoTiO$_3$ (Ref. 11) and NiTiO$_3$ compounds in which Co or Ni and Ti both prefer to form a structure of octahedral coordination.12 This structure is similar to the corundum structure of Al$_2$O$_3$, which is density and stable.3,12 Figures 1(a) and 1(b) show XRD spectra of oxidizing at various conditions for CoTiO$_3$ samples. Samples with the Si$_3$N$_4$ buffer layer and oxidized at either 700 or 800°C reacted with oxygen and formed cobalt–titanium oxide films (named CoTiO$_3$/Si$_3$N$_4$/Si). Samples oxidized at 800°C under conditions A and B [Fig.
had a stronger spectrum than those of samples oxidized at 700 °C [Fig. 2(a)]. No noticeable CoTiO₃ crystal peak is observed for oxidation at 700 °C and 5 min, suggesting that there was insufficient time for crystallization. The CoTiO₃/Si₃N₄/Si oxidized at either 700 or 800 °C for condition D (oxidation for 10 min, with additional 10 min N₂ annealing) has a stronger spectrum than that oxidized at condition C (only oxidation for 10 min). This implies that a sample oxidized and annealed for a long time can enhance crystallization of CoTiO₃. Figures 2(a) and 2(b) show the NiTiO₃ with the Si₃N₄ buffer layer (named NiTiO₃/Si₃N₄/Si) for oxidation at 700 and 750 °C. Samples oxidized at 750 °C have a stronger spectrum than those oxidized at 700 °C. However, samples oxidized at 700 and 750 °C with condition D exhibit a weak peak. This phenomenon could be explained by the fact that the ultrathin silicon nitride buffer layer was not able to retard the nickel diffusion at an elevated oxidation and annealing process.

The tendency to form an interfacial silicon oxide layer during sputtering and thermal process makes it very difficult to realize the high k that one wishes to achieve. The use of a high quality silicon nitride buffer layer solves this problem. The E_OT of these metal oxides with Si₃N₄ buffer layers are extracted from the C–V curves of Figs. 3(a) and 3(b). Well behavior C–V characteristics were observed for the CoTiO₃/Si₃N₄/Si capacitor even with an E_OT of less than 20 Å. It is clear that the CoTiO₃/Si₃N₄/Si capacitor with oxidation at 800 °C shows less distortion in the depletion region.
than that of oxidation at 700 °C. This indicates that there could be insufficient temperature for densification and crystallization by oxidizing and annealing at 700 °C. The C–V curves and E_{OT} with various process conditions for the NiTiO$_3$/Si$_3$N$_4$/Si capacitor are shown in Figs. 4(a) and 4(b). The flatband voltage of the NiTiO$_3$/Si$_3$N$_4$/Si capacitor is over -1.5 V, which is a larger than that of CoTiO$_3$/Si$_3$N$_4$/Si of -1 V. The result is that CoTiO$_3$ can imply a lesser amount of fixed charge than NiTiO$_3$. In addition, as the E_{OT} of the NiTiO$_3$/Si$_3$N$_4$/Si capacitor increases, it is suggested that nickel diffusion into the buffer layer will limit the scalability of high-k dielectrics and cause poor interface quality. The decreased capacitance value of conditions A and B oxidized at 700 °C for the NiTiO$_3$/Si$_3$N$_4$/Si capacitor could be due to insufficient time for crystallization at this temperature. Nevertheless, the NiTiO$_3$/Si$_3$N$_4$/Si capacitor oxidized at 750 °C for conditions A and D decreases capacitance value. This suggests that film crystallization has insufficient time at 750 °C and NiTiO$_3$ crystallization damages the ultrathin silicon nitride buffer layer to reduce k value.

The effective dielectric constant (k value) of these metal–oxides with buffer layer depends on the process conditions. The CoTiO$_3$ film including the silicon nitride buffer layer depicts a higher value than that of NiTiO$_3$ as shown in Fig. 5. On the other hand, it shows that samples oxidized at 700 °C in condition C for the CoTiO$_3$/Si$_3$N$_4$/Si and NiTiO$_3$/Si$_3$N$_4$/Si stacks have the highest k value among the four conditions. This result could be explained because metal–oxide for crystallization was insufficient by oxidizing time in conditions A and B. The metal–oxide formed crystallization in condition D seems to have damaged the ultrathin nitride buffer layer. Condition C is the optimum condition.

Figures 6(a) and 6(b) show the corresponding $J–V$ characteristics of CoTiO$_3$/Si$_3$N$_4$/Si samples oxidized at 700 and 800 °C, respectively. It is noted that metal–oxides oxidized at 800 °C show compatible leakage current compared to the sample oxidized at 700 °C. Since all curves are close to each other, the gate leakage current and breakdown voltage of CoTiO$_3$ film is almost independent of those oxidized at different conditions. However, the gate leakage current and breakdown voltage of NiTiO$_3$ film depend on oxidizing at different conditions, as shown in Figs. 7(a) and 7(b). The gate leakage current density at a low field of NiTiO$_3$/Si$_3$N$_4$/Si oxidized at 750 °C is lower than that oxidized at 700 °C. Thus, high temperature processes benefit from full crystallization of film.

Figure 8(a) shows the result after constant current stressing at -1 mA/cm2 for the CoTiO$_3$/Si$_3$N$_4$/Si stack. Time dependent dielectric breakdown measurement shows that there was no considerable charge trapping for these capacitors oxidized at 800 °C for condition C. No significant stress-induced-leakage current (SILC) was observed for these
samples even after 10^5 s stressing, as shown in the inset of Fig. 8(a). On the other hand, from Fig. 8(b), the time dependence of the gate voltage shows that there is no significant charge trapping for the NiTiO$_3$/Si$_3$N$_4$/Si stack oxidized at 700 °C in condition C. No significant increase of leakage current was formed for these samples after 10^5 s stressing, as shown in the inset of Fig. 8(b). However, it indicates that some traps or defects exist in the NiTiO$_3$/Si$_3$N$_4$/Si structure. This phenomenon could result from nickel diffusion into the silicon interface, causing excessively fixed charge. From the above result, it is clearly seen that CoTiO$_3$/Si$_3$N$_4$/Si capacitors exhibit a less significant increase of leakage current in SILC than NiTiO$_3$/Si$_3$N$_4$/Si capacitors.

IV. CONCLUSION

We have reported high-k material cobalt–titanium oxide (CoTiO$_3$) and nickel–titanium oxide (NiTiO$_3$), which is formed by direct oxidation of the sputtered Co/Ti and Ni/Ti film. The CoTiO$_3$/Si$_3$N$_4$/Si structure shows higher k value and better electrical properties, such as low gate leakage current at low voltage operation and high reliability after stressing, than the NiTiO$_3$/Si$_3$N$_4$/Si structure. This high-k material with CoTiO$_3$ thus appears to be very promising for future ultralarge scale integrated devices.

ACKNOWLEDGMENTS

The authors would like to express their appreciation to the entire staff of the Semiconductor Research Center, National Chiao Tung University for their technical help.
cial support was from National Science Council Taiwan, Republic of China under Contract No. NSC89-2215-E009-306.