Muon pair production by electron-photon scatterings

H. Athar*
Physics Division, National Center for Theoretical Sciences, Hsinchu 300, Taiwan
and Institute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan

Guey-Lin Lin‡ and Jie-Jun Tseng†
Institute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan

(Rceived 20 April 2001; published 5 September 2001)

The cross section for muon pair productions by electrons scattering over photons, σ_{MPP}, is calculated analytically in the leading order. It is pointed out that for the center-of-mass energy range $s \approx 5m_{\mu}^2$, the cross section σ_{MPP} is less than 1 μb. The differential energy spectrum for either of the resulting muons is given for the purpose of high-energy neutrino astronomy. An implication of our result for a recent suggestion concerning the high-energy cosmic neutrino generation through this muon pair is discussed.

DOI: 10.1103/PhysRevD.64.071302 PACS number(s): 12.15.Ji, 11.80.Gw, 14.60.Ef, 98.70.Sa

High-energy neutrino astronomy is now a rapidly developing field [1]. This entails the identification of possible sources for high-energy cosmic neutrinos. In particular, nonhadronic processes taking place in the cosmos remain an interesting possible source for high-energy neutrinos. In this context, Kusenko and Postma have recently suggested that, for a class of topological defects that may produce ultrahigh-energy photons at high redshift, the dominance of muon pair production (MPP) in $e^{-}\gamma \rightarrow e^{-}\mu^{+}\mu^{-}$ over triplet pair production (TPP) in $e^{-}\gamma \rightarrow e^{-}e^{+}e^{-}$ for $s \approx 5m_{\mu}^2$ enables the MPP process to be an efficient mechanism for generating high-energy cosmic neutrinos [2]. The electrons in the initial state of the above processes are considered as originating from the electromagnetic cascade generated by the ultrahigh-energy photons scattering over the cosmic microwave background photons present at high redshift. Subsequently, assuming that this ultrahigh-energy photon source at high redshift is responsible for the observed flux of ultrahigh-energy cosmic rays, it was pointed out that the decays of muons in MPP give rise to a high-energy cosmic neutrino flux $E_{\nu}^2\phi_{\nu}$ typically peaking at $E_{\nu} \sim 10^{17}$ eV [3]. Concerning the cross sections of the above processes, we note that, although the TPP process has been thoroughly studied before [4], there is still no explicit estimate for σ_{MPP} for $s \approx 5m_{\mu}^2$ to our knowledge. In order to verify whether MPP indeed dominates over TPP for $s \approx 5m_{\mu}^2$, we analytically calculate the σ_{MPP} for $5m_{\mu}^2 \leq s \leq 20m_{\mu}^2$. In this Rapid Communication, we present some details of the calculation and compare our result with the value quoted in Refs. [2,3]. Our conclusion is that, within the above s range, the cross section σ_{MPP} we have obtained is at least three orders of magnitude smaller than the one quoted and used in Refs. [2,3]. This implies that MPP cannot be the dominating high-energy neutrino generating process as suggested in Refs. [2,3]. This conclusion is based upon the value of the ratio R defined as $R = \frac{\sigma_{\text{MPP}}}{\sigma_{\text{TPP}}} = \frac{\eta_{\text{TPP}}}{\eta_{\text{MPP}}}$ [2], where $\eta_{\text{TPP}}(s) \approx 1.768(s/m_{\mu}^2)^{-0.75}$ is the inelasticity for TPP and $\sigma_{\text{TPP}} \approx \alpha^3 m_{\mu}^{-2}[3.11\ln(s/m_{\mu}^2)-8.07]$, both for $s \approx m_{\mu}^2$ [4]. The η_{TPP} is basically the average fraction of the incident energy carried by the final state positron. The original estimate of Refs. [2,3] gives $R \approx 10^2$, which favors the MPP process as the dominating cosmic high-energy neutrino generating process. Namely the electron energy attenuation length due to the TPP process is much longer than the interaction length of the MPP process. However, since the correct value for σ_{MPP} within the energy range $5m_{\mu}^2 \leq s \leq 20m_{\mu}^2$ is three orders of magnitude smaller, the ratio R becomes less than 1. Therefore, MPP is no longer an effective mechanism for generating high-energy cosmic neutrinos at the high redshift.

There are eight Feynman diagrams contributing to the MPP process in the leading order. These are shown in Fig. 1. Among these eight diagrams, four diagrams contain a Z-boson exchange, which can be disregarded for the range of s under discussion. Among the remaining four diagrams, one can also disregard diagrams (c) and (d) due to the inflow of large invariant energies into the electron [diagram (c)] or photon [diagram (d)] propagators. We therefore only perform analytic calculations for diagrams (a) and (b) in Fig. 1 while evaluating the rest of the diagrams numerically. We have applied the equivalent photon approximation [5] to compute diagrams (a) and (b). We write the MPP cross section in the following convolution

$$\sigma_{\text{MPP}} = \int_{4m_{\mu}^2}^{s} dx f_{\gamma/e}(x) \sigma_{\gamma \rightarrow \mu^{+}\mu^{-}}(s=xs),$$

where $f_{\gamma/e}(x) = (\alpha/2\pi)((1+(1-x)^2)/\ln(s/m_{\mu}^2)$ is the probability of finding a photon from the incident electron with an energy fraction $x = E_{\gamma}/E_{e}$. The differential cross section as a function of the outgoing muon energy E_{μ}, in head on collisions, is given by

*Email address: athar@phys.cts.nthu.edu.tw
†Email address: glin@cc.nctu.edu.tw
‡Email address: geny.py86g@nctu.edu.tw

\[
\frac{d\sigma_{\text{MPP}}}{dy} = \frac{\alpha^3}{m_\mu^2 y} \left[1 + \left(1 - \frac{4 m_\mu^2 y^2}{s} \right)^2 \right] \ln \left(\frac{s}{m_\mu^2} \right) \times (1 - v^2) \left[\left(1 + \frac{1}{y^2} \right) \ln \left(\frac{1 + v}{1 - v} \right) - \frac{1}{y^4} \left(\frac{v}{1 - v} + \tanh^{-1}(v) \right) \right],
\]

where \(y = E_\mu / m_\mu \) with \(y_{\text{min}} = 1 \) and \(y_{\text{max}} = \sqrt{s} / 2 m_\mu \); \(v \) is the velocity of the outgoing muon, which is related to \(y \) by \(v = \sqrt{1 - 1/y^2} \). Apart from the trivial prefactor, the first line in Eq. (2) arises from the distribution function \(f_{y_{\mu}}(x) \) while the second line describes the cross section for \(\gamma \gamma \to \mu^+ \mu^- \). The total cross section \(\sigma_{\text{MPP}} \), obtained by performing the \(y \) integration, depends only on the center-of-mass energy \(\sqrt{s} \). For \(s = 5 m_\mu^2 \), \(\sigma_{\text{MPP}} = 4 \times 10^{-3} \) \(\mu \text{b} \), while \(\sigma_{\text{MPP}} \) increases to about 0.1 \(\mu \text{b} \) for \(s = 20 m_\mu^2 \). These cross-section values are at least 3 orders of magnitude smaller than those of Refs. [2,3], which give \(\sigma_{\text{MPP}} \) between 0.1 and 1 \(\mu \text{b} \) in the above energy range. The last equation gives the differential energy spectrum of either of the muons produced in MPP. In the large \(s \) limit, the \(\sigma_{\text{MPP}} \) given by Eq. (2) behaves as

\[
\sigma_{\text{MPP}}(s) = \frac{2 \alpha^3}{m_\mu^2} \ln(2) \ln \left(\frac{s}{m_\mu^2} \right).
\]

The inelasticity for MPP (in the center-of-mass frame) is defined as

\[
\eta_{\text{MPP}}(s) = \frac{1}{\sigma_{\text{MPP}}(s)} \int dE_\mu \left(\frac{E_\mu}{\sqrt{s}} \right) \frac{d\sigma_{\text{MPP}}}{dE_\mu}.
\]

Using Eqs. (2) and (4), we find that the average fraction of incident energy carried by either of the muons in MPP, in the large \(s \) limit, behaves as

FIG. 1. The Feynman diagrams contributing to MPP in the leading order.

FIG. 2. \(\sigma_{\text{MPP}} \) as a function of square of center-of-mass energy \(s \) (in units of \(m_\mu^2 \)). Solid curve is obtained using Eq. (2). Dashed curve is obtained using COMPHEP (it includes contribution from all eight diagrams, see [6]).
\eta_{\text{MPP}}(s) \approx 3.44 \left(\frac{s}{m_e^2} \right)^{-0.5}, \tag{5}

whereas it is close to 0.48 near the threshold for the MPP process and approaches to 0.34 for \(s \sim 20m_\mu^2 \).

We have used a package for computations in high energy physics, COMPHEP (version 33.22), to check our results for \(\sigma_{\text{MPP}} \) [6]. The comparison for \(5m_\mu^2 \leq s \leq 20m_\mu^2 \) is shown in Fig. 2. We note that, for \(s \gg 5m_\mu^2 \), the MPP cross section \(\sigma_{\text{MPP}} \leq 1 \mu b. \)

We have confirmed this remark using COMPHEP as well. We have made a further check on our \(\sigma_{\text{MPP}} \) by generating the amplitude of diagrams (a) and (b) symbolically using the package Feynarts [7]. In this procedure, we do not use the equivalent photon approximation. We then obtained \(\sigma_{\text{MPP}} \) by numerically performing the phase space integration. We have found a rather good agreement numerically performing the phase space integration. We have found a rather good agreement (within a few percent) between the \(\sigma_{\text{MPP}} \) obtained in this way and that given by the equivalent photon approximation. Because of the rather lengthy algebraic expressions occurring in the above procedure, we are omitting further details of this check.

To obtain a consistent estimate of \(R \), it is desirable to compute \(\sigma_{\text{TPP}} \) and \(\eta_{\text{TPP}} \) in addition to \(\sigma_{\text{MPP}} \). This can be easily done in the large \(s \) limit. By replacing \(\mu \) with \(e \) in the final state, the same eight diagrams shown in Fig. 1 also contribute to the TPP process in the leading order. The dominating diagrams are again the first two. In the equivalent photon approximation with \(s \gg m_\mu^2 \), they give

\[\sigma_{\text{TPP}}(s) = \frac{\alpha^3}{m_e^2} \ln(2) \ln \left(\frac{s}{m_e^2} \right), \tag{6} \]

whereas

\[\eta_{\text{TPP}}(s) \approx 3.44 \left(\frac{s}{m_e^2} \right)^{-0.5}. \tag{7} \]

The result for \(\sigma_{\text{TPP}} \) can be easily inferred from Eq. (3) by replacing \(m_\mu^2 \) there with \(m_e^2 \) and multiplying a symmetry factor 1/2 which takes into account the identical-particle effect in the TPP process. The above results for \(\sigma_{\text{TPP}} \) and \(\eta_{\text{TPP}} \) agree well (within a few percent) with the results quoted in [4]. We further evaluated \(\eta_{\text{TPP}}(s) \) in the Lab frame also, which in the large \(s \) limit, for the two dominating diagrams, is \(\sim 0.25(s/m_\mu^2)^{-0.5} \). In practice, one should use the Lab-frame \(\eta_{\text{TPP}} \) in the the definition of \(R \). Numerically, the Lab-frame \(\eta_{\text{TPP}} \) is approximately an order of magnitude smaller than its center-of-mass frame counterpart. This suppression is related to the kinematical factors present in the Lorentz boost from the center-of-mass frame to the Lab frame. Using the Lab-frame \(\eta_{\text{TPP}} \) and the values for \(\sigma_{\text{TPP}} \) and \(\sigma_{\text{MPP}} \), we still obtain \(R < 1 \) for \(5m_\mu^2 \leq s \leq 20m_\mu^2 \).

In summary, the authors in Refs. [2,3] use the value 0.1–1 mb for the cross section \(\sigma_{\text{MPP}} \) in the energy range \(5m_\mu^2 \leq s \leq 20m_\mu^2 \). As a result, they have deduced that \(R = \sigma_{\text{MPP}}/(\eta_{\text{TPP}}\sigma_{\text{TPP}}) \ll 1 \). However, as we have shown, the correct value for \(\sigma_{\text{MPP}} \) obtained from Eq. (2) yields \(R < 1 \). In particular, near the threshold for the MPP process, i.e., for \(s \sim 5m_\mu^2 \), we have \(R \ll 1 \). Therefore, based on this observation, we conclude that MPP cannot be a dominating high-energy cosmic neutrino generating process as suggested in Refs. [2,3]. Furthermore, we have also derived analytic expressions (in the leading order) for differential energy spectrum and the inelasticity of the MPP process in the large \(s \) limit, which might be of relevance in some other contexts of high-energy neutrino astronomy.

For completeness, let us add a final remark concerning the possibility of high-energy cosmic neutrino generation in an electromagnetic cascade at high redshift, \(z \), through \(\gamma\gamma \) collisions. The process \(\gamma\gamma \rightarrow \mu^+\mu^- \) can, in principle, generate high-energy cosmic neutrinos near the threshold for this process, namely, for \(\sqrt{s} = 2m_\mu \). The neutrinos are generated through the subsequent decays of the final-state muons for a rather small range of \(z \) values, typically, for \(z \sim 5–10 \). In this \(z \) range, the interaction length for the process \(\gamma\gamma \rightarrow \mu^+\mu^- \) is smaller than the energy attenuation length dictated by the process \(\gamma\gamma \rightarrow e^+e^- \). Furthermore, this interaction length is also smaller than the horizon length, \(cH(z)^{-1} \), where \(H(z) \) is the Hubble constant in this \(z \) range.

H.A. thanks Physics Division of NCTS for financial support. G.L.L. and J.J.T. are supported by the National Science Council of R.O.C. under the grant number NSC89-2112-M009-041.

