Optimal quantitative group testing on cycles and paths

F.K. Hwanga J.S. Leeb, *

aDepartment of Applied Mathematics, National Chiao-tung University, Hsin-Chu 300, Taiwan, ROC
bDepartment of Mathematics, National Kaohsiung Normal University, Kaohsiung 802, Taiwan, ROC

Abstract

We determine the minimum number of group tests required to search for a special edge when the graph consists of cycles and paths, generalizing previous results of Aigner on paths and on a simple cycle. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Group testing; Search; Graph

1. Introduction

Suppose that we have a set of items containing exactly two defective ones. The problem is to identify them through quantitative group testing [2]. Any subset S of items can be tested, and the feedback $f(s)$ reveals the number of defectives in S, i.e. $f(S) = 0, 1$ or 2. There are constraints on which pairs of items can be the defective pair, and the constraints can be represented by a graph where the vertex-set is the set of items, and the edge-set is the set of allowed pairs. Thus, the problem can also be viewed as searching for a special edge on a graph $G(V,E)$. Suppose $|E| = n$. Since each test has three possible feedbacks, $\lceil \log_3 n \rceil$ is the information lower bound on the number of tests required. Aigner [1] proved

\textit{Theorem 1.} If G consists of paths, then $\lceil \log_3 n \rceil$ tests suffice.

\textit{Theorem 2.} If G is a cycle and $n < 3'$, then t tests suffice. If $n = 3'$, then $t + 1$ tests suffice.

* Corresponding author.

☆ This research is supported by NSC grant 88-2115-M-009-016.
In this paper we consider the case that \(G \) consists of any number of cycles and paths. We give the minimum number of tests required for such \(G \).

2. Optimal testing

We first prove an upper bound.

Theorem 3. Suppose \(G \) consists of cycles and paths. Then \(1 + \lceil \log_3 n \rceil \) tests suffice.

Proof. If \(G \) contain no cycles, then Theorem 3 follows from Theorem 1. If \(G \) has \(m \) cycles \(C_1, C_2, \ldots, C_m \), test \(S_i = \{ v_1, v_2, \ldots, v_m \} \), where \(v_i \) is an arbitrary vertex on \(C_i \). Suppose \(f(S) = 0 \). Then the two edges incident to \(v_i \) on \(C_i \) cannot be special for each \(i = 1, 2, \ldots, m \). Therefore \(C_i \) is reduced to a path. By Theorem 1, \(\lceil \log_3 n \rceil \) more tests suffice. Suppose \(f(S) = 1 \), then the special edge must be an edge incident to one of the \(v_i \). Again, each \(C_i \) is reduced to a path of two edges and Theorem 1 applies. The proof is completed by noting that \(f(S) \) cannot be 2 since no edge can be incident to two vertices in \(S \).

Consider a test \(S \) on a graph \(G \). An edge \((u, v)\) will be called an \(S_i \)-edge, \(i = 0, 1, 2 \) if \(|\{u, v\} \cap S| = 0, 1, 2 \), respectively. Let \(G_0, G_1, G_2 \) be the partition of \(G \) according to the three feedbacks of \(S \). Then \(G_i = \{ S_i \text{-edge} \} \) for \(i = 0, 1, 2 \). A cycle (path) will be called a mixed cycle (path) if it contain an \(S_1 \)-edge. Otherwise it is called a pure cycle (path), or an \(S_0 \) (\(S_2 \))-cycle if we want to be more specific. We also refer to an edge as pure if it is either \(S_0 \) or \(S_2 \).

Lemma 4. Let \(i \) and \(j \) satisfy the conditions \(i \geq 0, j \geq 0 \) and \(i + 2j \leq k \), except when \(j = 0 \), then \(i \) is 0 or \(k \). Then there exists a test \(S \) on a \(k \)-cycle \(C \) such that \(|S_0| = i, |S_1| = 2j \) and \(|S_2| = k - i - 2j \).

Proof. If \(j = 0 \), then either \(S \cap C = \emptyset \) or \(S \cap C = \emptyset \). Otherwise, assign arbitrary \(k - i - 2j + 1 \) consecutive vertices to \(S \), and assign the next \(i + 1 \) consecutive vertices to \(\tilde{S} \) (not in \(S \)). The remaining vertices are assigned \(S \) or \(\tilde{S} \) such that \(S \) and \(\tilde{S} \) alternate.

Lemma 5. Consider a set \(P \) of paths with \(k \) total edges. Let \(i \) and \(j \) satisfy the conditions \(i \geq 0, j \geq 1 \) and \(i + j \leq k \). Then there exists a test \(S \) on \(P \) such that \(|S_0| = i, |S_1| = j \) and \(|S_2| = k - i - j \).

Proof. We order the paths such that the \(k \) edges (hence all vertices) are linearly ordered. Assign the first \(k - i - j \) edges to \(S_2 \), meaning their vertices are all in \(S \). Assign the next \(j \) edges to \(S_1 \), if \(j \) is odd or \(i = 0 \). If \(j \) is even and \(i > 0 \), assign the next \(j - 1 \) edges to \(S_1 \). Furthermore, if there is a change of path during this process, then the vertex starting the new path is in the same set, \(S \) or \(\tilde{S} \), as its preceding vertex. These rules assure that this process ends in an \(\tilde{S} \)-vertex which will start the
final assignment of \(i \) edges in \(S_0 \), meaning all their vertices are in \(S \). For \(j \) even and \(i > 0 \), there is one edge left which will be assigned to \(S_1 \), meaning the last vertex is in \(S \). \(\square \)

Corollary 6. A partition \((i, 0, k - i)\) is possible if and only if there exists a subset of paths with a total of \(i \) edges.

Let \(M(G) \) denote the minimum number of tests required for \(G \).

Theorem 7. Let \(G \) consist only of cycles and paths with \(n \) edges in total, where \(3^{t-1} < n \leq 3^t \). Then \(M(G) = t \) except

(i) \(G \) consists of cycles only and \(n = 3^t \),

(ii) \(t = 2 \) and \(G \) contains two cycles,

(iii) \(t = 3 \) and \(G \) contains seven cycles,

(iv) \(t = 4 \) and \(G \) contains 26 cycles,

and \(M(G) = t + 1 \) in the four exception cases.

Proof. *Sufficiency:* The \(t \leq 2 \) case is easily verified. We prove the general \(t \geq 3 \) by induction. It suffices to prove that if \(G \) is not one of the exception cases, then there exists a test \(S \) where the three feedbacks partition \(G \) into \(G_0, G_1, G_2 \) with \(n_0, n_1, n_2 \) edges, where \(n \leq 3^{t-1} \) and \(G_i \) is not an exception case for \(i = 0, 1, 2 \).

Suppose \(G \) contains \(c \) cycles where \(c \leq 3^{t-1} - 1 \). We consider two cases:

1. \(c < (3^{t-1} - 1)/2 \). Assign \(S_1 \)-edges such that the \(c \) cycles are all mixed. Suppose the \(c \) cycles contain \(n' \) edges. By Lemma 4 we can obtain at least \(2\lceil (n' - c)/2 \rceil \) \(S_1 \)-edges. Assign \(\min\{2\lceil (n' - c)/2 \rceil, 3^{t-1} - 1\} = 3^{t-1} - j \) edges to \(S_1 \), where \(j \geq 1 \) is odd . Again by Lemma 4, the pure edges in the \(c \) cycles can be divided evenly into \(S_0 \) and \(S_2 \). Since \(3^{t-1} - j \geq \lceil n'/3 \rceil \), so \(3^{t-1} - j < \lfloor n/3 \rfloor \) implies the existence of paths with a total of more than \(j \) edges. By Lemma 5, we can obtain \(j \) \(S_1 \)-edges and divide the other edges evenly into \(S_0 \) and \(S_2 \). Note that in the case \(3^{t-1} - j \geq \lceil n/3 \rceil \), even though no \(S_1 \)-edge is needed on the paths, some \(S_1 \)-edges may be forced in the process of dividing the path edges evenly into \(S_0 \) and \(S_2 \). By Lemma 5, at most one \(S_1 \)-edge needs to be forced. This is alright since \(3^{t-1} - j + 1 \leq 3^{t-1} \).

2. \(c \geq (3^{t-1} - 1)/2 \). We will assign the \((3^{t-1} - 1)/2\) largest cycles to be mixed each with two \(S_1 \)-edges. Let \(p \) denote the largest size of the pure cycles. Then \(p \leq 5 \) for otherwise the mixed cycles would have consumed \(3(3^{t-1} - 1) = 3^t - 3 \) edges and there are not enough edges left for a pure \(p \)-cycle with \(p \geq 6 \). Let \((e_0, e_2)\) be a division of edges into the \(S_0 \) and \(S_2 \) type through assigning the pure cycles into \(G_0 \) or \(G_2 \). Then there is a division with \(|e_0 - e_2| \leq 5 \). For \(t \geq 3 \), there are at least four mixed cycles with 12 pure edges on them. By Lemmas 4 and 5, we can divide these pure edges as well as the pure edges on paths (if any) arbitrarily, i.e. the \(n - 3^{t-1} (n - (3^{t-1} - 1) \) if no paths exist) pure edges can be divided evenly into \(G_0 \) and \(G_2 \). Therefore \(n_i \leq 3^{t-1} \) for \(i = 0, 1, 2 \). Furthermore, the number of cycles in \(G_0 \) or \(G_2 \) is at most

\[\left\lceil \frac{3^{t-1} - 1 - (3^{t-1} - 1)/2}{2} \right\rceil < 3^{t-2} - 1 \quad \text{for} \ t \geq 5, \]
\[\frac{25 - (3^3 - 1)/2}{2} = 6 \quad \text{for} \ t = 4, \]
\[\frac{6 - (3^2 - 1)/2}{2} = 1 \quad \text{for} \ t = 3. \]

Hence they are not exception cases.

That \(t + 1 \) tests suffice for the exception cases follow from Theorem 3.

Necessity: That \(t \) tests are necessary for the nonexception case follows from the information lower bound. We now prove that the exception cases cannot be done in \(t \) tests.

(i) Since the number of \(S_1 \)-edges on a cycle must be even, there is no way to partition \(3^t \) edges on cycles into \(3^{t-1}, 3^{t-1} \) and \(3^{t-1} \).
(ii) Suppose \(G \) contains two cycles. Then the number of \(S_1 \)-edges on these two cycles must be 2 (it must be even). That means one of the two cycles, of size \(k \), is pure. If \(k > 3 \), then one more test cannot do it by information lower bound. If \(k = 3 \), then again one more test cannot do it since it is the exception case (i).
(iii) Suppose \(G \) contains seven cycles. Since at most \((3^3 - 1)/2 = 4 \) cycles can be mixed, there are at least three pure cycles. Without loss of generality, assume there are two \(S_0 \)-cycles. Then \(G_0 \) contains two cycles and is the exception case (ii), hence it cannot be done in two more tests.
(iv) Suppose \(G \) contains 26 cycles. Since at most \((3^4 - 1)/2 = 13 \) cycles can be mixed, there are at least thirteen pure cycles. Without loss of generality, assume there are seven \(S_0 \)-cycles. Then \(G_0 \) contains seven cycles and is the exception case (iii), hence it cannot be done in three more tests. \(\square \)

References