that, by choosing β, β_1, β_2 properly, our robust controller seems to be more promising than Kanellakopoulous’ adaptive one although it can no longer achieve asymptotic tracking.

VI. CONCLUSION

We have designed a robust output-feedback controller with a very simple structure for a class of nonlinear uncertain systems. The global boundedness of all closed-loop signals can be guaranteed and the output tracking error can be made arbitrarily small if the controller constants are chosen large enough. We find in our simulations, for a second order system, besides its simplicity, our robust controller is also superior to Kanellakopoulous’ adaptive one in a sense that it achieves similar tracking performance with much less effort in the transient period. We have also found in our simulations that we can achieve similar performance with much less control effort if we choose a better choice of the positive design functions. Therefore, it is very important to find a suitable choice of the positive design functions we introduced. More effort will be made in this direction in our future work.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their helpful remarks. They are also grateful to M. Krstic for his sending them a copy of an important reference paper they badly needed.

REFERENCES

Optimal Minimal-Order Least-Squares Estimators Via the General Two-Stage Kalman Filter

Chien-Shu Hsieh and Fu-Chuang Chen

Abstract—A direct derivation of the optimal minimal-order least-squares estimator (OMOLSE) is presented using the recently developed general two-stage Kalman filter (GTSKF). Using this new result, the reduced-order estimators of O’Reilly and Fairman are readily shown to be equivalent. A practical implementation issue to consider these two estimators is also addressed.

Index Terms—Least-squares estimator, minimal-order estimator, reduced-order estimator, two-stage Kalman filter.

I. INTRODUCTION

The problem of estimating the system state in a discrete-time linear stochastic system having partially noise free measurements is considered. It is solved by the well-known Kalman filter (KF). However, to reduce the computational burden of the KF, researchers have tried to incorporate Luenberger observers (LO) [1]. Aoki and Huddle [2] and Brammer [3] first suggested the use of a LO to solve this problem. Other researchers have also contributed to this area, e.g., Tse and Athans [4], Tse [5], Yoshikawa [6], Leondes and Novak [7], Fairman [8], [9], Fogel and Huang [10], and O’Reilly [11]. Among these, two approaches are considered in this note. Fairman [8], [9] proposed to solve this problem by way of a so-called “hybrid estimator” consists of first introducing the LO, and then using the KF to estimate the states of the observer. It was claimed suboptimal by O’Reilly [11], [12]. Although this misleading result has been clarified by Fairman [13], however the derivation is somewhat complex. On the other hand, Yoshikawa [6] and O’Reilly [11] presented a structurally simple minimal-order estimator. This approach as noted in [13] is to introduce the KF first and then modify it by using a LO. However, the result did not conform to standard KF forms. Furthermore, the gain...
computation involves the inversion of an $m \times m$ matrix, where m is the measurement dimension.

The main goal of this note is to derive a new optimal minimal-order least-squares estimator (OMOLSE) directly via the recently developed general two-stage Kalman filter (GTSKF) [16]. The GTSKF consists of two reduced-order filters and is equivalent to the KF. By a suitable preprocessing of the measurement matrix, it is shown that one reduced-order filter of the GTSKF generates the noise-free measurements, which represents part of the filtered state, and the other filter generates the remaining state. Unlike the derivations in [8] and [11], the GTSKF is obtained by directly applying a two-stage U-V transformation to the KF. Since this two-stage transformation is non-singular, the optimality of the proposed OMOLSE is self-evident. Furthermore, it is shown that the above-mentioned two minimal-order estimators are equivalent under the suitable preprocessing of the measurement matrix. Thus, a second goal is to show that the Fairman’s hybrid estimator [13] is equivalent to the minimal-order estimator of O’Reilly [11]. To this end, the classical sequential measurement update equations [14] is used to establish this connection.

This note is organized as follows. The problem and the previous proposed GTSKF are stated in Section II. In Section III, we derive the OMOLSE directly from the GTSKF. In Section IV, it is shown that the OMOLSE is equivalent to the Yoshikawa-O’Reilly estimator [11]. In Section V, the Fairman’s hybrid estimator [13] is derived directly from the OMOLSE by using the classical sequential measurement update equations [14]. Section VI is the conclusion.

II. THE GENERAL TWO-STAGE KALMAN FILTER

Consider the following discrete-time system:

$$\begin{align*}
x_{k+1} &= A_k x_k + B_k u_k + w_k \\
y_k &= \begin{bmatrix} y^1_k \\ y^2_k \end{bmatrix} = C_k x_k + \begin{bmatrix} 0 \\ \eta_k \end{bmatrix}
\end{align*}$$

(1) (2)

where

$x_k \in R^n$

$u_k \in R^m$

$y_k \in R^{m_1}$, $y^1_k \in R^{m_1}$, and $y^2_k \in R^{m_2}$

Matrices A_k, B_k, and C_k have the appropriate dimensions (rank of C_k is $m < n$). The process noise w_k and the measurement noise η_k are zero-mean white Gaussian sequences with the following covariances:

$E[w_k] = \begin{bmatrix} Q_k & \delta_k \end{bmatrix}$, $E[\eta_k] = \begin{bmatrix} 0 \\ \delta_k \end{bmatrix}$, and $E[w_k]\eta_k] = 0$

where ‘\trans’ denotes transpose and δ_k denotes the Kronecker delta function.

The initial state x_0 is assumed to be uncorrelated with the white noise sequences w_k and η_k, and is assumed to be Gaussian random variables with $E[x_0] = x_0$ and $Cov(x_0) = \Sigma_0$.

It is well-known that the KF can be used to produce the optimal state estimate. However, the computational cost and the numerical errors of the KF increase drastically with the state dimension. Hence, the KF may be impractical to implement. In such cases, reduced-order filters are preferable since there is no need to estimate those states which are known exactly. In this paper, we show that the recently proposed GTSKF [16] may serve as an alternative to solve this problem. The GTSKF is obtained by applying the following two-stage transformation:

$$T(M) = \begin{bmatrix} I_p & M \\ 0 & I_{n-p} \end{bmatrix}$$

(3)

where p is chosen appropriately, to a standard KF. Then, the transformed filter becomes

$$\begin{align*}
T_{k|k-1} &= T(\{-U_k\} x_{k|k-1} \\
T_{k|k} &= T(\{-V_k\} x_{k|k} \\
P_{k|k-1} &= T(-U_k) P_{k|k-1} T(-V_k)
\end{align*}$$

(4) (5) (6)

where $\vec{A} = \begin{bmatrix} \vec{A}_1 \vec{A}_2 \end{bmatrix}$, $\vec{P} = \begin{bmatrix} \vec{P}_1 \vec{P}_2 \end{bmatrix}$, and $\vec{V} = \begin{bmatrix} \vec{V}_1 \vec{V}_2 \end{bmatrix}$, and $\vec{V} = \text{diag}(\vec{V}_1, \vec{V}_2)$. The blinding matrices U_k and V_k are left to be determined to make the predicted and the filtered covariances block diagonal, respectively.

Next, based on the two-stage iterative substitution method of [15] and the following notations:

$$\begin{align*}
[T_k \ E_k] &= T(U_k), \quad [T_k \ T_{k|k}] = T(V_k) \\
\begin{bmatrix} H_k & N_k \\ L_k & M_k \end{bmatrix} &= A_k T(V_k)
\end{align*}$$

(9)

the transformed filter expressed by (4)-(8) can be recursively calculated by the following two-stage decoupled subfilter one (TSDSO):

$$\begin{align*}
\pi_{k|k-1} &= \vec{H}_{k-1} \pi_{k|k-1} + \vec{N}_k \pi_{k|k-1} + \vec{B}_{k-1} u_{k-1} - U_{k} \vec{P}_{k|k-1} \\
\pi_{k|k} &= \pi_{k|k-1} + \vec{R}_k (y_k - C_k T_k \pi_{k|k-1}) \\
T_{k|k-1} &= \vec{H}_{k-1} T_{k|k-1} - N_{k-1} T_{k|k-1} N_{k-1} + Q_{k-1} \vec{H}_{k-1} \pi_{k|k-1} \\
T_{k|k} &= (I - \vec{H}_k T_k) T_{k|k-1}
\end{align*}$$

(10) (11) (12)

and the following two-stage decoupled subfilter two (TSDST):

$$\begin{align*}
\pi_{k|k-1} &= \vec{M}_{k-1} \pi_{k|k-1} + \vec{L}_{k-1} \pi_{k|k-1} + B_{k-1} u_{k-1} \\
\pi_{k|k} &= \pi_{k|k-1} + \vec{K}_k (y_k - C_k T_k \pi_{k|k-1} - C_k E_k \pi_{k|k-1}) \\
T_{k|k-1} &= \vec{M}_{k-1} T_{k|k-1} - M_{k-1} T_{k|k-1} M_{k-1} + L_{k-1} \\
T_{k|k} &= (I - \vec{K}_k T_k) T_{k|k-1}
\end{align*}$$

(15) (16) (17) (18)

where

$$\begin{align*}
P_{k|k-1} &= \vec{H}_{k-1} \pi_{k|k-1} + \vec{L}_{k-1} \pi_{k|k-1} + Q_{k-1} \\
R_k &= \begin{bmatrix} 0 & 0 \\ 0 & R_{k}^{22} \end{bmatrix}
\end{align*}$$

(19) (21)

The blinding matrices are then given by

$$\begin{align*}
U_k &= P_{k|k-1}^{-1} (T_{k|k-1}^{-1}) \\
V_k &= U_k - \vec{R}_k C_k E_k
\end{align*}$$

(22) (23)

Based on the above two-stage covariance-decoupled subfilters, i.e., (10)-(19), it can be shown (see [16]) that the Kalman estimates can be reconstructed by the following GTSKF:

$$\begin{align*}
\hat{x}_{k|k} &= T_k \pi_{k|k} + \vec{E}_k \pi_{k|k} \\
\hat{P}_{k|k} &= T_k \pi_{k|k} T_k + \vec{E}_k \pi_{k|k} \vec{E}_k
\end{align*}$$

(24) (25)

The initial condition and the efficiency of the GTSKF are given in [16].

The implication of the above result is that a standard KF can be decomposed into two covariance-decoupled reduced-order KFs by the two-stage decoupling technique. The advantage of using this new result
is that the optimality of the obtained filter is guaranteed. One application of applying the GTSKF is to obtain the optimal modified stochastic Luenberger observer (OMSLO) [17], which can be used to derive the optimal minimal-order observer of Leondes and Novak [18]. In the following section, we show another application to apply the GTSKF to derive a new optimal minimal-order least-squares estimator, which is shown later to be equivalent to the Yoshikawa–O'Reilly estimator [11] and the Fairman’s hybrid estimator [13].

III. THE OPTIMAL MINIMAL-ORDER LEAST-SQUARES ESTIMATOR

It is well-known that the reduced-order filter is obtained by replacing part of state estimates directly by noise-free measurements. Thus, the reduced-order filter is readily obtained from the TSDST filter presented in the preceding section if we can verify that the output of the TSDSO filter generates the following:

\[\hat{x}_k | k = y_k - T_k \hat{x}_k | k = 0. \]

(26)

This is achieved if \(C_h \) and \(p \) of the GTSKF are chosen by

\[C_h = \begin{bmatrix} I_{m_1} & 0 \\ C_{h1} & C_{h2} \end{bmatrix} \quad p = m_1. \]

(27)

The first equation of (27) is always promised (see [11]). Then, one has

\[C_h T_k = \begin{bmatrix} I_{m_1} \\ C_{h1} T_k \end{bmatrix}, \quad C_h E_k = \begin{bmatrix} U_k \\ C_{h1} U_k + C_{h2} \end{bmatrix}. \]

(28)

Using (22) and the first equation of (28), the TSDSO filter, i.e., (10)–(14), becomes

\[\hat{x}_k | k = y_k + N_{h-1} \hat{x}_k | k - 1 + B_{h-1} u_{k-1} - U_k \hat{x}_k | k - 1 \]

(29)

\[\tilde{x}_k | k = z_k \]

(30)

\[T_k \]

(31)

\[T_k | k = 0. \]

(32)

The blending matrix \(V_k \) in (23) is given, by using the second equation of (28) and (32), as

\[V_k = 0. \]

(34)

Using (34) in (9) yields

\[\begin{bmatrix} H_k & N_k \\ L_k & M_k \end{bmatrix} A_k = \begin{bmatrix} A_{h1} & A_{h2} \\ A_{h1}^2 & A_{h2}^2 \end{bmatrix}. \]

(35)

Using the above results (28)–(35), the following notations:

\[F_k = \begin{bmatrix} I_{m_1} & 0 \\ 0 & I_{n_m-1} \end{bmatrix}, \quad D_k = \begin{bmatrix} C_{h1} & 0 \\ 0 & I_{n_m-1} \end{bmatrix} \]

\[\tilde{s}_k = C_h E_k, \quad \tilde{z} = \tilde{x}_k, \quad \tilde{y}^p = T_k, \quad \tilde{K}^2 = K^2 \]

the TSDST filter, i.e., (15)–(19), and (24)–(25), we propose the following optimal minimal-order least-squares estimator (OMOLSE):

\[\hat{x}_k | k = F_k y_k + D_k \tilde{z}_k | k \]

(36)

\[\tilde{P}_k | k = D_k \hat{P}_k | k D_k' \]

(37)

where

\[\tilde{z}_k | k = A_{h1}^2 \tilde{z}_k | k - 1 + A_{h2}^2 \tilde{y}_k | k - 1 + B_{h-1} u_{k-1} \]

(38)

\[\tilde{z}_k | k = z_k | k - 1 + \tilde{K}_k \left(\tilde{y}_k - \tilde{s}_k \tilde{z}_k | k - 1 \right) \]

(39)

\[P_k | k - 1 = \begin{bmatrix} A_{h1}^2 & A_{h2}^2 \end{bmatrix} \tilde{P}_k | k - 1 \begin{bmatrix} A_{h1} & A_{h2} \end{bmatrix} + Q \]

(40)

\[\tilde{K}_k = \begin{bmatrix} \tilde{P}_k | k - 1 \tilde{S}_k \tilde{S}_k' + \tilde{R}_k \end{bmatrix}^{-1} \]

(41)

\[\hat{P}_k | k = (I - \tilde{K}_k \tilde{S}_k) \tilde{P}_k | k - 1 \]

(42)

in which

\[\tilde{y}_k = y_k - C_k T_k \hat{y}_k | k - 1 \]

(43)

\[\tilde{R}_k = C_k T_k \tilde{S}_k' \tilde{S}_k (\tilde{R}_k | k - 1) \]

(44)

To facilitate the following derivation, we show that the above OMOLSE can be further simplified. First, we rewrite the gain equation of the OMOLSE, i.e., (41), by using (42) as follows:

\[\tilde{K}_k = \begin{bmatrix} I \\ C_k \end{bmatrix} \begin{bmatrix} \tilde{P}_k | k - 1 \tilde{S}_k' (\tilde{R}_k | k - 1)^{-1} \end{bmatrix}. \]

(45)

Next, let the LDU decomposition of the measurement noise covariance \(\tilde{R}_k \) be given as

\[\tilde{R}_k = \begin{bmatrix} I & 0 \\ C_k & I \end{bmatrix} \begin{bmatrix} \tilde{P}_k | k - 1 & 0 \\ 0 & \tilde{R}_k | k - 1 \end{bmatrix} \begin{bmatrix} I & (C_k \tilde{S}_k')^{-1} \end{bmatrix}. \]

(46)

Substituting (46) into (45), we obtain

\[\tilde{K}_k = \tilde{K}_k | k - 1 \begin{bmatrix} I \\ -C_k \end{bmatrix} \]

(47)

where

\[\tilde{K}_k = \begin{bmatrix} \tilde{P}_k | k - 1 \tilde{S}_k \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \tilde{P}_k | k - 1 \tilde{S}_k' \end{bmatrix}^{-1} \end{bmatrix} \]

(48)

\[\tilde{S}_k = \begin{bmatrix} U_k (C_k \tilde{S}_k')^{-1} \end{bmatrix} \]

(49)

\[U_k = \begin{bmatrix} A_{h1}^2 \tilde{P}_k | k - 1 \tilde{S}_k' + \tilde{Q} \tilde{z}_k | k - 1 \end{bmatrix} \]

(50)

Substituting (47) into (39) and (42) yields

\[z_k | k = z_k | k - 1 + \tilde{K}_k \left(y_k - \tilde{s}_k \tilde{z}_k | k - 1 \right) \]

(51)

\[\hat{P}_k | k = (I - \tilde{K}_k \tilde{S}_k) \tilde{P}_k | k - 1 \]

(52)

where

\[y_k = y_k + \begin{bmatrix} U_k \tilde{z}_k | k - 1 + A_{h1}^2 \tilde{y}_k | k - 1 \\ 0 \end{bmatrix} \]

(53)

Using (52), (48) can be rewritten as follows:

\[K_k = \begin{bmatrix} \tilde{P}_k | k - 1 \tilde{S}_k \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \tilde{P}_k | k - 1 \tilde{S}_k' \end{bmatrix}^{-1} \end{bmatrix} \]

(54)

where

\[R_k = \begin{bmatrix} \begin{bmatrix} \tilde{P}_k | k - 1 \tilde{S}_k' \end{bmatrix}^{-1} \end{bmatrix} \]

(55)

At last, through (51), (52), and (54), we can obtain the following compact OMOLSE:

\[\hat{x}_k | k = F_k y_k + D_k \tilde{z}_k | k \]

(56)

\[\hat{P}_k | k = D_k \tilde{P}_k | k D_k' \]

(57)

where

\[z_k | k - 1 = A_{h1}^2 \tilde{z}_k | k - 1 + A_{h2}^2 \tilde{y}_k | k - 1 + B_{h-1} u_{k-1} \]

(58)
More important than the above is that it provides a simple way to establish the equivalence of the Yoshikawa–O'Reilly estimator [13] and the proposed simplified estimator shown to be equivalent to the Fairman’s hybrid estimator [11].

Owing to that the measurement noise covariance in (55) is in block diagonal form, the reduced-order filter (58)–(62) can be further simplified by applying the following two stages measurement update equations [14]:

Stage 1:

\[z_{k|k} = (A_{k-1}^{22} - \bar{K}_k A_{k-1}^{12}) z_{k-1|k-1} + (A_{k-1}^{11} - \bar{K}_k A_{k-1}^{11}) y_{k-1} + \bar{K}_k y_{k-1} \]

\[\tilde{z}_{k|k} = (I - \bar{K}_k) y_{k} \quad \implies \quad \tilde{z}_{k|k} = \tilde{P}_{k|k} \]

Stage 2:

\[\tilde{z}_{k|k} = (A_{k-1}^{22} - \bar{K}_k A_{k-1}^{12}) z_{k-1|k-1} + (A_{k-1}^{11} - \bar{K}_k A_{k-1}^{11}) y_{k-1} + \bar{K}_k y_{k-1} \]

\[\tilde{z}_{k|k} = (I - \bar{K}_k) y_{k} \quad \implies \quad \tilde{z}_{k|k} = \tilde{P}_{k|k} \]

At last, one has the optimal estimates \(z_{k|k} = \tilde{z}_{k|k} \) and \(P_{k|k} = \tilde{P}_{k|k} \) (for the proof, see [14, Th. 1]). Note that in deriving (73), the following equation is first obtained:

\[\tilde{z}_{k|k} = z_{k|k-1} + \bar{K}_k \left(y_{k} - A_{k-1}^{12} z_{k-1|k-1} - A_{k-1}^{11} y_{k-1} - B_{k-1}^{1} u_{k-1} \right) \]

and then applied (38). Furthermore, the matrix \(U_k \) in (74) and (75) is redundant and can be eliminated as follows. Using (50) in (74) and (75) yields

\[\tilde{P}_{k|k} = (A_{k-1}^{22} - \bar{K}_k A_{k-1}^{12}) P_{k-1|k-1} (A_{k-1}^{22})' + Q_{k-1} \]

Next, using the following notations:

\[\Omega_k = K_k' \Sigma_{k|k-1} \Omega_k = \tilde{P}_{k|k} \]

\[\Sigma_{k|k} = \tilde{P}_{k|k} \]

and introducing auxiliary variables \(\tilde{z}_{k|k-1} \) and \(\tilde{z}_{k|k} \) such that

\[\tilde{z}_{k|k} = \tilde{z}_{k|k-1} + \Omega_k y_k' \]

\[\tilde{z}_{k|k} = \tilde{z}_{k|k} + \Omega_k y_k' \]

one can reformulate the compact OMOLSE filter (56)–(62) by using (73)–(78) as

\[\tilde{z}_{k} = \tilde{F}_k y_k' + D_k \tilde{z}_{k|k} \]

\[\tilde{P}_{k|k} = D_k \Sigma_{k|k} D_k' \]
where
\[
\hat{z}_{k|k-1} = (A^{22}_{k-1} - \Omega_k A^{12}_{k-1}) \hat{z}_{k-1|k-1} + (A^{21}_{k-1} - \Omega_k A^{11}_{k-1}) y_{k-1} + (B^2_{k-1} - \Omega_k B^{12}_{k-1}) u_{k-1}
\]
\[
\hat{z}_{k|k} = \hat{z}_{k|k-1} + G_k (y_k - C^2_k \hat{z}_{k|k-1})
\]
\[
\Sigma_k^{2|k} = (A^{22}_{k-1} - \Omega_k A^{12}_{k-1}) \Sigma_{k-1|k-1}^{-1} (A^{22}_{k-1} - \Omega_k A^{12}_{k-1})' + Q^{22}_{k-1} - \Omega_k Q^{12}_{k-1} \Omega_k'
\]

Then, we show that (88) is equivalent to the following one:
\[
\Sigma_k^{1|k-1} = (A^{22}_{k-1} - \Omega_k A^{12}_{k-1}) \Sigma_{k-1|k-1}^{-1} (A^{22}_{k-1} - \Omega_k A^{12}_{k-1})' + \Gamma_k \Omega_k \Gamma_k'
\]

where \(\Gamma_k = [-\Omega_k \ I_{n-1}] \). Expanding (94) yields
\[
\Sigma_k^{2|k} = (A^{22}_{k-1} - \Omega_k A^{12}_{k-1}) \Sigma_{k-1|k-1}^{-1} (A^{22}_{k-1} - \Omega_k A^{12}_{k-1})' + Q^{22}_{k-1} - \Omega_k Q^{12}_{k-1} \Omega_k'
\]

Using (79) and (81), one obtains that the second and third lines of (95) equal to zero, and, hence, (94) is verified. Thus, the obtained simplified filter (84)-(90) is equivalent to that proposed by Fairman et al. [13].

In view of (61), (89), and (93), it is clear that the Fairman estimator [13] is numerically more efficient than the Yoshikawa–O’Reilly estimator [11] since the smaller matrix inverse is involved. Comparing (56) and (84), it is clear from the above derivation that the significance of the coordination used by Fairman, e.g., \(P^2_k (k) \) in [11, (36)] and \(\Omega_k \) in this paper, is that it transforms the original measurement equation (2) into a new one (also see [13, (14)]) which facilitates the further derivation for reducing the computational complexity of the reduced-order estimator.

VI. CONCLUSION

This note derives the OMOLSE via the GTSKF. Using this new filter, the equivalence of the Yoshikawa–O’Reilly estimator [11] and the Fairman’s hybrid estimator [13] is established. A practical implementation issue to consider these two estimators is addressed. It is shown that the former can be further simplified to the latter by using the classical sequential measurement update equations [14]. Furthermore, the significance of the coordination used by Fairman’s hybrid estimator is also addressed.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees for their insightful comments.

REFERENCES