A New Approach to Determine the Drain-and-Source Series Resistance of LDD MOSFET's

Steve Shao-Shiun Chuang and Jenq-Sheng Lee

Abstract—A new method for determining the intrinsic drain-and-source series resistance and the effective channel length of LDD MOSFET's is proposed. The method is based on the experimentally measured device I-V characteristics and a new parameter extraction procedure. A consistent set of the effective channel length and the gate-voltage-dependent drain-and-source series resistance was thus determined. The comparison between the measured and experimental drain current characteristics shows excellent agreement using the present model values.

I. INTRODUCTION

The determination of drain-and-source series resistance \(R_s \) in the lightly doped drain (LDD) MOS device has become an important issue for modeling its I-V characteristics since the value of this resistance is comparable with the channel resistance for short-channel devices. The present I-V model in SPICE for conventional MOS devices has lost in accuracy for LDD MOS devices due to the larger series resistance effect. Various methods for determining the effective channel length along with the drain-and-source resistances in single-drain (conventional) MOS devices have been reported [1]-[3]. Due to the partial overlap (between the n+ region and the gate) structure in LDD devices, \(R_s \) becomes gate-voltage-dependent [4], [5] and so the method for single-drain device cannot be applied any more. Different approaches have been employed to determine this resistance effect. Sheu et al. [4] proposed a substrate bias technique to extract the effective channel length and the drain-source resistance. However, their way to extract the effective channel length becomes inadequate for I-V modeling at different gate voltages. Hu et al. [5] presented a measurement algorithm to describe the gate-voltage-dependent feature of the effective channel length and the drain-and-source resistance. However, a model for practical circuit simulation application is not available. A better way to implement this drain-source resistance effect and an extraction algorithm to extract the above resistance and the effective channel length will be shown in this work.

II. NEW METHOD AND EXTRACTION ALGORITHM

Based on the modeling of I-V characteristics of LDD MOS devices [6], an LDD MOS device can be considered as an intrinsic MOS device in series with two resistors connected between the drain and source, respectively. These two resistors are gate- and drain-voltage-dependent. In this brief, only the so-called "intrinsic drain-and-source series resistance" is investigated, i.e., the resistance that includes the drain and source region measured at low drain-source bias. The drain-voltage dependent feature and the channel length will be shown in this work.

LDD MOS device operating in the linear region, the total drain-to-source resistance of an LDD MOS device operated in the linear region equals to the drain-and-source side series resistance and the channel resistance given by

\[
R_T = R_s(V_{GS}) + r_n
\]

where

\[
r_n = V_{DS}/I_D = (1/\beta)(V_{GS} - V_T - 0.5aV_{DS})^{-1}
\]

\[
\beta = \beta_0[1 + \theta(V_{GS} - V_T)(1 + a/V_{DS})]
\]

and

\[
\beta_0 = \mu_C \mu_W W/L
\]

Here, \(R_T = (R_s + r_n) \) is the resistance outside the intrinsic MOS device, which includes the drain-source (n+ and n− regions), contact, and wiring resistances. For the following extraction, the contact and wiring resistances are assumed small compared with the n+ and n− region resistances. \(V_T \) is the threshold voltage. \(V_{DS} \) and \(V_{GS} \) are the terminal voltages of the intrinsic MOS device shown in the insert of Fig. 2. \(\eta \) and \(\theta \) are the mobility degradation factors due to the lateral and transverse fields, respectively. \(\alpha \) is the charge sharing factor related to the geometry effect. \(\mu_C \) is the low-field surface mobility. \(L \) and \(W \) are the effective channel length and width, respectively. For a detailed description of these parameters, please refer to [6].

The test structure used consists of a series of n-channel LDD MOS devices fabricated using 0.8-μm CMOS technology. The devices have the same drawn gate width (\(W = 25 \mu m \)) but varying drawn channel lengths, \(L_m = 0.6, 0.7, 0.8, 1.2, 1.5, \) and 25 μm. The gate oxide thickness is 14 nm. To determine the effective channel length, \(L_o \), \(V_{DS} \) characteristics are measured at small \(V_{DS} \) (e.g., \(V_{DS} = 0.1 \) V). Hence, for small \(V_{DS} \), (1)-(3) can be rearranged for various gate voltages as follows:

\[
R_T = R_s(V_{GS}) + [(L_m - \Delta L)/\mu_C \mu_W W] [1/(V_{GS} - V_T) + \theta]
\]

where the denominator term in (2), \(V_{GS} - V_T - 0.5aV_{DS} \approx V_{GS} - V_T \) by applying \(V_{GS} = V_{GS} - 0.5aV_{DS} \) and \(V_{DS} = V_{DS} - I_oR_o \). Here, \(a \approx 1, \theta \approx 0, \) and \(V_{GS} - V_T > > 0.5aV_{DS} \) at small \(V_{DS} \). \(L = L_m - \Delta L \), where \(L_m \) is the masked channel length and \(\Delta L \), the channel length reduction due to process bias and the lateral diffusion.

In a similar manner to that of De La Moneda's method [7] by plotting \(R_T \) versus \(V_{DS} \) for the transistors with different channel lengths, a family of curves can be obtained as shown in Fig. 1. Using the least-squares fit, the slope of these curves is \(1/\beta_0 = (L_m - \Delta L)/\mu_C \mu_W W \). Again, a plot of \(1/\beta_0 \) against \(L_m \) in the insert of Fig. 1 gives a straight line from which the intercept gives \(\Delta L \) and the slope gives \(\mu_C \).

Unlike in the method used by Suciu et al. [3] or De La Moneda et al. [7], we use the measured data in Fig. 1 and plot \(R_T \) versus \(L_m \) for a set of transistors at various gate biases, and a family of curves is obtained as shown in Fig. 2. Here, the value of \(R_T \) at each \(V_{DS} - V_T \) bias can be obtained from (3) by drawing a vertical line at \(\Delta L \) in Fig. 2 and its intercept with the curves gives \(R_T \).

Values of \(R_T \) are then plotted against \(V_{GS} - V_T \) and can be fitted by an empirical form as shown in Fig. 3 which can be easily implemented in a previous analytical I-V model [6]. With various gate voltages applied for LDD structure device, the n− region is partially depleted and results in larger values of resistance at lower gate voltages while it is fully depleted at very high gate voltages and as a result exhibits smaller resistances. This confirms the re-
Fig. 1. Plot of R_T versus $(V_{GS} - V_T)^{-1}$ for various channel lengths to determine the effective channel length. $\Delta L = 0.13 \, \mu m$ and $\mu_0 = 525 \, cm^2/V \cdot s$.

Fig. 2. Plot of R_T versus L_m at various gate voltages for determining R_{ds}. The insert gives the equivalent circuit model of an LDD MOS device.

Fig. 3. Variation of the extracted drain-and-source series resistance with the gate voltage. Solid lines can be fitted by an empirical form as $R_{ds} = R_0 + R_1 (V_{GS} - V_T) + R_2 (V_{GS} - V_T)^2$, where $R_0 = 78.9$, $R_1 = -4.1$, and $R_2 = 0.12$.

Fig. 4. Extraction of ΔL using the method in [4]. Note that different ΔL's are obtained for different gate voltages, $\Delta L_1 = 0.32 \, \mu m$, $\Delta L_2 = 0.44 \, \mu m$.

III. COMPARISON WITH REPORTED METHODS

Comparisons between the present method and the other methods to characterize R_{ds} are described as follows. The results shown in Fig. 3 that R_{ds} decreases with the increasing gate voltages. Furthermore, once ΔL and R_{ds} have been found, θ can be determined as follows. It can be extracted from Fig. 1 by using the limiting value of R_{ds} at very high gate voltages, which is about 45 Ω in this case from Fig. 3. At very high gate voltages, the second term in (5) vanishes and so θ can be calculated from the intercept of the straight lines with the vertical axis using R_{ds} and ΔL values as obtained above. All different channel length devices have different intercept values and so the resultant θ is channel-length-dependent.

Comparisons between the present method and the other methods to characterize R_{ds} are described as follows. The results shown in Fig. 4 to determine the ΔL using the method in [4] have been taken for the same device. One ambiguous situation encountered in [4] is that ΔL is not uniquely defined since for different values of gate voltages, we may obtain different values of ΔL. The method in [4] used an arbitrary gate voltage to extract the ΔL value. Also, each curve at the same gate voltage will not necessarily cross at the same point which is even worse due to the experimental uncertainty. This will leave the experimental procedure inaccurate. In the present method, however, ΔL is uniquely defined based on a given set of I-V equations and hence is much better than the previous method.
Suciu et al. [3] or De La Moneda et al. [7], a fixed value of R_d approaches is obtained (which is about 45 Ω) by the extrapolation of R_t versus L_n or $(V_{GS} - V_t)^{-1}$ at a limiting value of very high gate voltage or $(V_{GS} - V_t)^{-1} = 0$. Unfortunately, these methods can only be applied to a device with gate-voltage-independent drain- and-source resistance (e.g., conventional MOS device). For LDD or partially overlapped drain structure MOS devices, R_d should be gate-voltage-dependent due to the modulation of the depletion regions in the n^- region by the gate voltages. As a consequence, a fixed resistance model [3], [7] will further lose accuracy to model the linear region $I-V$ characteristics.

Although the effective channel length, L_e, or L_d, is also gate-voltage-dependent as revealed in [5], this will complicate the computation of an $I-V$ model for practical circuit simulation application. Hence, for a tradeoff between computational efficiency and accuracy for real applications, gate-voltage-independent property (i.e., constant L_d is assumed for different gate biases) is assumed and used here. The validity of this assumption can be justified by comparing the modeled and experimental $I-V$ characteristics, in which excellent agreements can be achieved by using the present modeled L_d, R_d, and θ values in our model equations in [6]. Therefore, we believe that the proposed method based on a consistent set of L_d and R_d should be more reliable than the above methods.

IV. CONCLUSION

In this brief, a novel approach to extract the drain-and-source series resistance and the effective channel length from the measured $I-V$ characteristics of LDD MOS devices has been proposed. The gate-voltage-dependent characteristics of the drain-and-source series resistance have been adequately demonstrated. The procedure is quite simple and the extracted results are well suited for circuit simulation use, such as in SPICE.

ACKNOWLEDGMENT

The authors wish to thank M.-C. Chang and C.-N. Chen of the Submicron CMOS Process Technology Development Group, ERSO, ITRI, Taiwan, ROC, for technical support of test samples.

REFERENCES

Measurements of Gate Voltage Dependence of Electron Mobility in δ-Doped HFET's

Byung-jong Moon, Seongheam Lee, Michael Shur, Hadis Morkoç, and Anand Gopinath

Abstract—We report the results of the measurements of the gate voltage dependence of the electron mobility in Heterostructure Field Effect Transistors (HFET's) using a split C-V technique. This method allows us to deduce this dependence without making any assumptions about other parameters such as the threshold voltage. The dependence of the electron mobility in the HFET channel on the gate voltage depends on the heterointerface quality. In some samples, the mobility increases with the increase of the gate voltage. In other samples (grown on a different Molecular Beam Epitaxy machine), the mobility drops to nearly a half of its maximum value at high gate voltages. This means that, in these samples, the electron mobility is strongly dependent on the transverse electric field (similar to an analogous behavior in p- and n-channel MOSFET's).

The electron and hole mobilities in n- and p-channel Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFET's) depend on the gate voltage because the effective transverse electric field determines the degree of localization of the carrier inversion layer at the interface between the semiconductor and gate insulator and thus affects surface scattering. These dependencies must be accounted for in MOSFET modeling (see, for example, [1], [2]). In Heterostructure Field-Effect Transistors, the low-field mobility also plays an important role in determining the device performance. In spite of the original name for these devices—High Electron Mobility Transistors (HEMT's)—the values extracted from the $I-V$ measured characteristics of short-channel AlGaAs/GaAs HFET's (with gate length of 1 µm or less) are usually quite low (ranging from 500 to 5000 cm2/V·s). A reliable, in situ measurement of the field-effect mobility in HFET's is very important for HFET modeling and characterization as well as for a better understanding of physical mechanisms determining the value of the mobility. In addition, the Hall mobility does not always represent the channel mobility. Hence, it is not appropriate to use the Hall mobility as the channel mobility in the modeling.

From the device modeling point of view, it is absurd to use the constant channel mobility regardless of the gate voltage. For the better model, it is necessary to include the dependence of the low-field channel mobility upon the gate voltage.

In n-channel Heterostructure Field Effect Transistors (HFET's), the electron Hall mobility may increase with the gate voltage because the increase in surface carrier concentration leads to a more effective screening of impurity scattering [3]. The effective field-effect mobility exhibits a similar behavior for the same reason [4].

Manuscript received February 11, 1993; revised April 23, 1993. This work was supported in part by the Virginia Center through a subcontract from the Naval Research Laboratory and by the Office of Naval Research. The review of this brief was arranged by Associate Editor J. Xu.

M. Shur is with the Department of Electrical Engineering, University of Virginia, Charlottesville, VA 22903.
H. Morkoç is with the University of Illinois at Urbana Champaign, the Coordinated Science Laboratory, and the Materials Research Laboratory, Urbana, IL 61801.
A. Gopinath is with the Department of Electrical Engineering, University of Minnesota, Minneapolis, MN 55455.

IEEE Log Number 9210623.