On the log-Sobolev constant for the simple random walk on the n-cycle: the even cases

Guan-Yu Chen and Yuan-Chung Sheu*

Department of Applied Mathematics, National Chiao-Tung University, Hsinchu, Taiwan

Received 27 June 2002; revised 25 November 2002; accepted 11 December 2002

Communicated by L. Gross

Abstract

Consider the simple random walk on the n-cycle \mathbb{Z}_n. For this example, Diaconis and Saloff-Coste (Ann. Appl. Probab. 6 (1996) 695) have shown that the log-Sobolev constant α is of the same order as the spectral gap λ. However the exact value of α is not known for $n \geq 4$. (For $n = 2$, it is a well known result of Gross (Amer. J. Math. 97 (1975) 1061) that $\alpha = \frac{1}{2}$. For $n = 3$, Diaconis and Saloff-Coste (Ann. Appl. Probab. 6 (1996) 695) showed that $\alpha = \frac{1}{2} \log 2 < \frac{1}{2} = 0.75$. For $n = 4$, the fact that $\alpha = \frac{1}{2}$ follows from $n = 2$ by tensorization.) Based on an idea that goes back to Rothaus (J. Funct. Anal. 39 (1980) 42; 42 (1981) 110), we prove that if $n \geq 4$ is even, then the log-Sobolev constant α and the spectral gap satisfy $\alpha = \frac{1}{2}$. This implies that $\alpha = \frac{1}{2} (1 - \cos \frac{2\pi}{n})$ when n is even and $n \geq 4$.

MSC: Primary 60J60; 60J27; 60F05

Keywords: Random walk; n-cycle; Spectral gap; log-Sobolev constant; Mixing time

1. Introduction

Consider a finite state space \mathcal{S} equipped with an irreducible Markov kernel $K(x, y)$, which is reversible with respect to a probability measure π on \mathcal{S} (i.e., $\pi(x)K(x, y) = \pi(y)K(y, x)$ for all $x, y \in \mathcal{S}$). Define an inner product on complex-valued functions on \mathcal{S} by $\langle f, g \rangle = \sum_{s \in \mathcal{S}} f(s)g(s)\pi(s)$. The Dirichlet form associated with (K, π) is then given by the formula

$$\mathcal{E}(f, g) = \mathcal{R} \langle (I - K)f, g \rangle,$$

*Corresponding author.

E-mail address: sheu@math.nctu.edu.tw (Y.-C. Sheu).
where I is the identity matrix, f and g are two complex-valued functions, and $\Re z$ is the real part of a complex number z. Set

$$E_\pi f = \sum_{s \in \mathcal{S}} f(s) \pi(s)$$

and

$$\text{Var}_\pi (f) = \|f - E_\pi f\|_2^2.$$

Here $\| \cdot \|_2$ is the usual l^2-norm with respect to the measure π. The spectral gap λ of (K, π) is defined by

$$\lambda = \min \left\{ \frac{\mathcal{E}(f, f)}{\text{Var}_\pi (f)} : \text{Var}_\pi (f) \neq 0 \right\}. \quad (1.1)$$

Since (K, π) is reversible, it is easy to show that the spectral gap λ is the smallest non-zero eigenvalue of $I - K$.

For every function f on \mathcal{S}, consider the entropy-like quantity

$$\mathcal{L}(f) = \sum_{s \in \mathcal{S}} \left| f(s) \right|^2 \left(\log \frac{|f(s)|^2}{\|f\|_2^2} \right) \pi(s). \quad (1.2)$$

(Clearly we have $\mathcal{L}(f) \geq 0$ and $\mathcal{L}(f) = 0$ only if f is a constant function.) A log-Sobolev inequality is an inequality of the type

$$\mathcal{L}(f) \leq C \mathcal{E}(f, f) \quad (1.3)$$

holding for all functions f. We say that α is the log-Sobolev constant of K if $\frac{1}{\alpha}$ is the smallest constant C such that inequality (1.3) holds. In other words,

$$\alpha = \inf \left\{ \frac{\mathcal{E}(f, f)}{\mathcal{L}(f)} : \mathcal{L}(f) \neq 0 \right\}. \quad (1.4)$$

(cf. (1.1)). Notice that $\mathcal{L}(f) = \mathcal{L}(|f|)$ and

$$\mathcal{E}(f, f) = \|f\|_2^2 - \Re(\langle Kf, f \rangle)$$

$$= \frac{1}{2} \sum_{x,y} \left(|f(x)|^2 - 2\Re(f(x)f(y)) + |f(y)|^2 \right) K(x,y) \pi(x)$$

$$= \frac{1}{2} \sum_{x,y} |f(x) - f(y)|^2 K(x,y) \pi(x)$$

$$\geq \frac{1}{2} \sum_{x,y} \|f(x)| - |f(y)||^2 K(x,y) \pi(x)$$

$$= \mathcal{E}(|f|, |f|).$$
Hence in the definition of the log-Sobolev constant α one can restrict f to be real non-negative function. The following well-known result compares the log-Sobolev constant to the spectral gap. It is a special case of a result proved first by Simon and later independently by Rothaus by a different argument (see a survey paper of Gross [4] or [2]).

Theorem 1. For any K the log-Sobolev constant α and the spectral gap λ satisfy $2\alpha \leq \lambda$.

The following theorem is a translation of a previous result of Rothaus [6,7]. For a simple proof in our setting, see [8, Theorem 2.2.3].

Theorem 2. Let K be irreducible and π be its stationary distribution. Then either $2\alpha = \lambda$ or there exists a positive non-constant function f which is a solution of

$$2f \log f - 2f \log \|f\|_2 - \frac{1}{\alpha}(I - K)f = 0, \quad (1.5)$$

and such that $\alpha = \mathcal{E}(f, f)/\mathcal{L}(f)$.

Inequalities of Poincaré, Cheeger, Sobolev, Nash and log-Sobolev, are advanced techniques for bounded mixing times of finite irreducible reversible Markov chains. However, computing the log-Sobolev constant α exactly is difficult and it has been done only for a handful of examples. Diaconis and Saloff-Coste [2] gave the exact value of the log-Sobolev constant of the chain on a finite space with all rows of K equal to π. (This includes all chains on a two-point space.) We refer to [1,2] for more examples.

In this paper we compute the exact value of the log-Sobolev constant for the simple random walk on the n-cycle. (The exact value of the log-Sobolev constant is well-known for $n \leq 4$ (see [2,3])). In Section 3 we prove that if n is even and $n \geq 4$, then the log-Sobolev constant α and the spectral gap λ satisfy $2\alpha = \lambda$ (see Theorem 3 below). This implies that $\alpha = \frac{1}{2}(1 - \cos \frac{2\pi}{n})$. Our main result (Theorem 3) follows from Theorems 1 and 2 by showing that if $2\alpha < \lambda$, then there is no positive non-constant function f satisfying (1.5) and such that $\alpha = \mathcal{E}(f, f)/\mathcal{L}(f)$ (this approach was also used earlier in a different context by Mueller and Weissler [5]).

2. **The log-Sobolev constant for n-cycle**

Consider a simple random walk on the n-cycle \mathbb{Z}_n and write $\mathbb{Z}_n = \{1, 2, \ldots, n\}$. Clearly the corresponding Markov kernel K is given by $K(x, x \pm 1) = \frac{1}{2}$ and the uniform distribution on \mathbb{Z}_n is its unique stationary distribution. (For $n = 2$, we have $K(1, 2) = K(1, 1) = K(2, 1) = K(2, 2) = \frac{1}{2}$. It is easy to check that the spectral gap of K is 1. Also it follows from a result of Gross [3] that $\alpha = \frac{1}{2}$. Therefore we obtain that $\alpha = \frac{1}{2} = \frac{1}{2}$ in the case $n = 2$.) Throughout this paper we assume that $n \geq 3$.
For every $l = 1, 2, \ldots, n - 1$, let

$$\theta_l = \frac{2\pi l}{n}$$

and

$$u_l = \begin{pmatrix} \sin \theta_l \\ \sin 2\theta_l \\ \vdots \\ \sin n\theta_l \end{pmatrix}.$$

Then $u_l \neq 0$ and direct computations imply that $Ku_l = (\cos \theta_l)u_l$ for $l = 1, 2, \ldots, n - 1$. Therefore the spectrum of $I - K$ is given by the set

$$\sigma(I - K) = \left\{ 1 - \cos \frac{2\pi l}{n} \mid l = 1, 2, \ldots, n \right\}.$$

Since K is reversible, we observe that the spectral gap λ of K is $1 - \cos \frac{2\pi}{n}$.

Denote by α the log-Sobolev constant for the simple random walk on the n-cycle. Note that the log-Sobolev constant for the simple random walk on \mathbb{Z}_3 is $\frac{1}{2 \log 2}$ (see, e.g., [2]). Thus in this case we have $\alpha = \frac{1}{2 \log 2} \leq \frac{1}{2} = \frac{1}{2} (1 - \cos \frac{2\pi}{3}) = 0.75$. For $n = 4$, we obtain $\alpha = \frac{1}{2}$ from $n = 2$ by tensorization. For $n \geq 4$, Diaconis and Saloff-Coste [2] showed that α is of the same order as λ. In particular they proved that

$$\frac{8}{25} \frac{\pi^2}{n^2} \leq \alpha \leq \frac{2\pi^2}{n^2}.$$

By refining their arguments, we obtain

$$\frac{2}{5} \frac{\pi^2}{n^2} \leq \alpha \leq \frac{\pi^2}{n^2}.$$

The main result of this paper is as follows.

Theorem 3. Assume that n is even. Then the log-Sobolev constant for the simple random walk on the n-cycle is just one half of its spectral gap: $\alpha = \frac{1}{2}$ (we will prove Theorem 3 in Section 3).

To compute the exact value of α, we write functions f on \mathbb{Z}_n as vectors $(f(1), f(2), \ldots, f(n))$ in \mathbb{R}^n. For every function $f = (x_1, x_2, \ldots, x_n)$, we have

$$\mathcal{L}(f) = \frac{1}{n} \sum_{i=1}^{n} x_i^2 \log \frac{x_i^2}{\|f\|_2^2}$$

(2.1)
and

$$\mathcal{E}(f, f) = \frac{1}{2^n} (|x_1 - x_2|^2 + |x_2 - x_3|^2 + \cdots + |x_{n-1} - x_n|^2 + |x_n - x_1|^2). \quad (2.2)$$

Clearly function \mathcal{E} is invariant if we permute the components of f, while function \mathcal{L} is not. For a fixed function f, we investigate the extreme value of \mathcal{E} over all permutations on the components of f.

Consider the function

$$F(x) = |x_1 - x_2|^2 + |x_2 - x_3|^2 + \cdots + |x_{n-1} - x_n|^2 + |x_n - x_1|^2, \quad (2.3)$$

where $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$. Moreover to every $x = (x_1, x_2, \ldots, x_n)$ with $0 \leq x_1 \leq x_2 \leq \cdots \leq x_n$, there corresponds an element $\tilde{x} \in \mathbb{R}^n$ given by the formula

$$\tilde{x} = \begin{cases} (x_1, x_3, x_5, \ldots, x_{2k+1}, x_{2k}, \ldots, x_2, x_4, x_2) & \text{if } n = 2k + 1, \\ (x_1, x_3, x_5, \ldots, x_{2k-1}, x_{2k}, \ldots, x_2, x_4, x_2) & \text{if } n = 2k. \end{cases} \quad (2.4)$$

Denote by S_n the set of all permutations on $\{1, 2, \ldots, n\}$ and write $\theta x = (x_{\theta(1)}, x_{\theta(2)}, \ldots, x_{\theta(n)})$ for $\theta \in S_n$ and $x \in \mathbb{R}^n$.

Proposition 1. For every $x = (x_1, x_2, \ldots, x_n)$ with $0 \leq x_1 \leq x_2 \leq \cdots \leq x_n$, we have $F(\theta x) \geq F(\tilde{x})$ for all $\theta \in S_n$.

Proof. We prove this by induction on n. Clearly there is nothing to prove in the case $n = 2$. Assume that it is also true for $n = k$. We consider the case $n = k + 1$ and fix $x = (x_1, x_2, \ldots, x_{k+1})$ where $0 \leq x_1 \leq x_2 \leq \cdots \leq x_{k+1}$.

Step 1: Set $y = (x_1, x_2, \ldots, x_k)$ and consider the corresponding \tilde{y} given by (2.4). For every $i = 1, 2, \ldots, k - 2$, set

$$\tilde{y}_{i,i+2} = \begin{cases} (x_1, x_3, \ldots, x_i, x_{i+1}, x_{i+2}, \ldots, x_4, x_2) & \text{if } i \text{ is odd}, \\ (x_1, x_3, \ldots, x_{i+2}, x_{i+1}, x_i, \ldots, x_2, x_4, x_2) & \text{if } i \text{ is even}. \end{cases} \quad (2.5)$$

Thus $\tilde{y}_{i,i+2}$ is obtained by inserting x_{k+1} in \tilde{y} between x_i and x_{i+2}. Also set $\tilde{y}_{1,2} = (x_1, x_3, \ldots, x_4, x_2, x_{k+1})$ and

$$\tilde{y}_{k-1,k} = \begin{cases} (x_1, x_3, \ldots, x_k, x_{k+1}, x_{k-1}, \ldots, x_4, x_2) & \text{if } k \text{ is odd}, \\ (x_1, x_3, \ldots, x_{k-1}, x_{k+1}, x_k, \ldots, x_4, x_2) & \text{if } k \text{ is even}. \end{cases} \quad (2.6)$$

We claim that

$$F(\tilde{y}_{1,2}) \geq F(\tilde{y}_{k-1,k}) \quad (2.7)$$

and

$$F(\tilde{y}_{i,i+2}) \geq F(\tilde{y}_{k-1,k}) \quad \text{for all } i = 1, 2, \ldots, k - 2. \quad (2.8)$$
Note that for every \(1 \leq i \leq k - 2 \), we have
\[
F(\tilde{y}_{i+2}) = F(\tilde{y}) + (x_i - x_{k+1})^2 + (x_{k+1} - x_{i+2})^2 - (x_i - x_{i+2})^2. \quad (2.9)
\]
Therefore for \(1 \leq i \leq k - 4 \), we have
\[
F(\tilde{y}_{i+2}) - F(\tilde{y}_{i+2,i+4}) = [(x_i - x_{k+1})^2 + (x_{k+1} - x_{i+2})^2 - (x_i - x_{i+2})^2]
- [(x_{i+2} - x_{k+1})^2 + (x_{k+1} - x_{i+4})^2 - (x_{i+2} - x_{i+4})^2]
= 2(x_{k+1} - x_{i+2})(x_{i+4} - x_i) \geq 0. \quad (2.10)
\]
Also we have
\[
F(\tilde{y}_{k-2,k}) - F(\tilde{y}_{k-1,k}) = [(x_{k+1} - x_{k-2})^2 + (x_{k+1} - x_{k})^2 - (x_{k-2} - x_{k})^2]
- [(x_{k+1} - x_{k-1})^2 + (x_{k+1} - x_{k})^2 - (x_{k-1} - x_{k})^2]
= 2(x_{k+1} - x_k)(x_{k-1} - x_{k-2}) \geq 0 \quad (2.11)
\]
and
\[
F(\tilde{y}_{k-3,k-1}) - F(\tilde{y}_{k-1,k}) = 2(x_{k+1} - x_{k-1})(x_k - x_{k-3}) \geq 0. \quad (2.12)
\]
Combining (2.10)–(2.12) gives (2.8). To prove (2.7), it suffices to show that \(F(\tilde{y}_{1,2}) \geq F(\tilde{y}_{1,3}) \). This follows easily from the fact that
\[
F(\tilde{y}_{1,2}) - F(\tilde{y}_{1,3}) = [(x_1 - x_{k+1})^2 + (x_{k+1} - x_2)^2 - (x_1 - x_2)^2]
- [(x_1 - x_{k+1})^2 + (x_{k+1} - x_3)^2 - (x_1 - x_3)^2]
= 2(x_{k+1} - x_1)(x_3 - x_2) \geq 0.
\]

Step 2: We prove that for every \(\theta \in S_{n+1} \), we have
\[
F(\theta x) \geq F(\tilde{y}_{k-1,k}) = F(\tilde{x}). \quad (13)
\]
Fix \(\theta \in S_{n+1} \) and set \(c = \theta x \). Write \(c = (\ldots, x_i, x_{k+1}, x_j, \ldots) \) for some \(i < j \) and let \(z = (\ldots, x_i, x_j, \ldots) \in \mathbb{R}^d \) be obtained by removing the component \(x_{k+1} \) from the vector \(c \). If \(1 \leq j \leq k - 2 \), we have
\[
F(c) - F(\tilde{y}_{j,j+2}) = [F(z) + (x_i - x_{k+1})^2 + (x_j - x_{k+1})^2 - (x_i - x_j)^2]
- [F(\tilde{y}) + (x_j - x_{k+1})^2 + (x_{k+1} - x_{j+2})^2 - (x_j - x_{j+2})^2]
= F(z) - F(\tilde{y}) + 2(x_{k+1} - x_j)(x_{j+2} - x_i) \geq 0. \quad (2.14)
\]
(In the last inequality, we use the assumption that $F(z) \geq F(\tilde{y})$.) If $j = k - 1$, we have
\[
F(c) - F(\tilde{y}_{k-1,k}) = [F(z) + (x_i - x_{k+1})^2 + (x_{k-1} - x_{k+1})^2 - (x_i - x_{k-1})^2]

- [F(\tilde{y}) + (x_k - x_{k+1})^2 + (x_{k+1} - x_{k-1})^2 - (x_k - x_{k-1})^2]

= F(z) - F(\tilde{y}) + 2(x_k - x_i)(x_{k+1} - x_{k-1}) \geq 0. \tag{2.15}
\]
If $j = k$, we have
\[
F(c) - F(\tilde{y}_{k-1,k}) = [F(z) + (x_k - x_{k+1})^2 + (x_i - x_{k+1})^2 - (x_k - x_{k-1})^2]

- [F(\tilde{y}) + (x_k - x_{k+1})^2 + (x_{k+1} - x_{k-1})^2 - (x_k - x_{k-1})^2]

= F(z) - F(\tilde{y}) + 2(x_{k-1} - x_i)(x_{k+1} - x_k) \geq 0. \tag{2.16}
\]
Therefore (2.13) follows (2.14), (2.15), (2.16) and (2.8). \qed

Remark 1. Assume that the minimum α in (1.4) is attained at some positive non-constant function f. By the definition of the log-Sobolev constant and Proposition 1, there exists a minimizer of the form $f = (x_1, x_3, \ldots, x_4, x_2)$ while $0 \leq x_1 \leq x_2 \leq \cdots \leq x_n$. Moreover it is not hard to show that any minimizer of $E(f, f)$ must satisfy the non-linear equation (1.5).

3. Proof of the main result

Throughout this section we assume that n is even and $n \geq 4$. We will argue by contradiction to verify that if $\alpha < \frac{\pi}{2}$, there is no positive non-constant function f satisfying the non-linear equation (1.5) and such that $\alpha = \frac{\beta(f, f)}{\beta(f)}$. Then our main result (Theorem 3) follows from Theorems 1 and 2. Before proving the main result, we derive a series of lemmas by some combinatorial arguments.

Define the shift operator σ by
\[
\sigma(x_1, x_2, \ldots, x_n) = (x_n, x_1, x_2, \ldots, x_{n-1}),
\]
where $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$. Set $\sigma^j(x) = \sigma(\sigma^{j-1}(x))$ for $j \geq 2$ and write σ^{-j} for the inverse of σ^j.

Lemma 1. Consider a vector of the form
\[
u = (x_1, x_3, \ldots, x_{2k-1}, x_{2k}, \ldots, x_4, x_2)
\]
where \(x_1 \leq x_2 \leq \cdots \leq x_{2k} \) and write \(\sigma^j(u) = ((\sigma^j(u))_1, (\sigma^j(u))_2, \ldots, (\sigma^j(u))_{2k}) \). Then for every \(1 \leq j \leq k - 1 \), we have
\[
(\sigma^j(u))_i \leq (\sigma^j(u))_{2k-i+1} \quad \text{for } i = 1, \ldots, k
\] (3.1)
and
\[
(\sigma^{-j}(u))_i \geq (\sigma^{-j}(u))_{2k-i+1} \quad \text{for } i = 1, \ldots, k.
\] (3.2)

Proof. Assume \(1 \leq j \leq k - 1 \). Then we have
\[
(\sigma^j(u))_i = \begin{cases}
 x_{2(j-i+1)} & \text{if } 1 \leq i \leq j, \\
 x_{2(i-j)-1} & \text{if } j + 1 \leq i \leq j + k, \\
 x_{2k-2j-(j+k+1)} & \text{if } j + k + 1 \leq i \leq 2k.
\end{cases}
\]

(Case \(1 \leq i \leq j \wedge (k-j) \)) Since \(i \leq (k-j) \) we get \(2k - i + 1 \geq k + j + 1 \) and \((\sigma^j(u))_{2k-i+1} = x_{2(i+j)} \). Therefore we observe
\[
(\sigma^j(u))_i = x_{2(j-i+1)} \leq x_{2(i+j)} = (\sigma^j(u))_{2k-i+1}.
\]

(Case \(j \vee (k-j) < i \leq k \).) Note that \((k-j) < i \leq k \) implies \(k + 1 \leq (2k - i + 1) \leq (k + j) \). We have
\[
(\sigma^j(u))_i = x_{2(i-j)-1}
\]
and
\[
(\sigma^j(u))_{2k-i+1} = x_{2(2k-i-j)+1}.
\]

Since \(2(2k - i - j) + 1 \geq 2(i - j) - 1 \), we get \((\sigma^j(u))_i \leq (\sigma^j(u))_{2k-i+1} \).

(Case \(j \wedge (k-j) < i \leq j \vee (k-j). \)) It is obvious that we only need to consider the situation that \(j \neq k-j \). We first consider the case that \(j < k-j \). Then we have \(j < i \leq (k-j) \) and \(2k - i + 1 \geq j - k + 2k + 1 = k + j + 1 \). Therefore
\[
(\sigma^j(u))_i = x_{2(i-j)-1} \leq x_{2(i+j)} = (\sigma^j(u))_{2k-i+1}.
\]

On the other hand, if \(k - j < j \), then we have \(k - j < i \leq j \). This implies that
\[
(\sigma^j(u))_i = x_{2(j-i+1)} \leq x_{2(2k-i-j)+1} = (\sigma^j(u))_{2k-i+1}.
\]

This completes the proof of (3.1). The proof of (3.2) can be done by similar arguments. Here we omit it. \(\square \)

Lemma 2. Let \(u = (u_1, u_2, \ldots, u_{2k-1}, u_{2k}) \) be a vector with \(u_i > 0 \) for all \(1 \leq i \leq 2k \). Assume further that there exist two positive constants, \(c \) and \(d \),
such that
\[2u_i - (u_{i-1} + u_{i+1}) = cu_i \log du_i^2 \]
for all \(i = 1, \ldots, 2k \) (here we write \(u_0 = u_{2k} \) and \(u_{2k+1} = u_1 \)).

(a) If \(u_i \leq u_{2k-i+1} \) for all \(1 \leq i \leq k \), then we have
\[u_1^2 - u_{2k}^2 + u_k^2 - u_{k+1}^2 \geq c[(u_1^2 + \cdots + u_k^2) - (u_{k+1}^2 + \cdots + u_{2k}^2)]. \]

(b) If \(u_i \geq u_{2k-i+1} \) for all \(1 \leq i \leq k \), then we have
\[u_{2k}^2 - u_k^2 + u_{k+1}^2 - u_1^2 \geq c[(u_{k+1}^2 + \cdots + u_{2k}^2) - (u_1^2 + \cdots + u_k^2)]. \]

Proof. (a) Assume that \(u_i \leq u_{2k-i+1} \) for all \(1 \leq i \leq k \). For every \(1 \leq i \leq k \), rewrite Eq. (3.3) as
\[2 - \frac{u_{i-1} + u_{i+1}}{u_i} = c \log du_i^2. \]

Then we observe that
\[
\frac{u_{2k-i} + u_{2k-i+2}}{u_{2k-i+1}} \frac{u_{i-1} + u_{i+1}}{u_i} = \frac{u_i(u_{2k-i} + u_{2k-i+2})}{u_{2k-i+1}} u_{i-1} + u_{i+1} \\
= c \left(2 \log \frac{u_i}{u_{2k-i+1}} \right) \geq c \left(\frac{u_i}{u_{2k-i+1}} - \frac{u_{2k-i+1}}{u_i} \right). \tag{3.4}
\]

(In the last inequality we use the fact that \(2 \log t \geq t - \frac{1}{t} \) for every \(0 < t \leq 1 \).) Inequality (3.4) implies that
\[(u_i u_{2k-i+2} - u_i u_{2k-i+1}) + (u_i u_{2k-i} - u_i u_{2k-i+1}) \geq c(u_i^2 - u_{2k-i+1}^2) \]
for all \(i = 1, \ldots, k \). Our result follows by summing up the above \(k \) inequalities.

(b) Assume that \(u_i \geq u_{2k-i+1} \) for all \(1 \leq i \leq k \). For every \(i \), set \(v_i = u_{2k-i+1} \). Then our result follows by applying (a) to the vector \(v = (v_1, v_2, \ldots, v_{2k}) \). □

Lemma 3. Consider the following \(k \times k \) matrices:

\[
A = \begin{bmatrix}
2 & 1 & 0 & \cdots & \cdots & 0 \\
1 & 2 & 1 & \ddots & \vdots & \vdots \\
0 & 1 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & 2 & 1 & 0 & \vdots \\
\vdots & \ddots & 1 & 2 & 1 & \vdots \\
0 & \cdots & \cdots & \cdots & 2 & 2
\end{bmatrix}
\]
and

\[
B = \begin{bmatrix}
2 & 1 & 0 & \cdots & \cdots & 0 \\
1 & 2 & 1 & \ddots & \ddots & \vdots \\
0 & 1 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & 2 & 1 & 0 & \vdots \\
\vdots & \ddots & 1 & 2 & 1 & \vdots \\
0 & \cdots & \cdots & 0 & 1 & 1
\end{bmatrix}.
\]

(a) If \(t < 2(1 - \cos \frac{\pi}{2k}) \), then \(P_A(t) = \det(A - tI) > 0 \).
(b) If \(t < 2(1 - \cos \frac{\pi}{2k + 1}) \), then \(P_B(t) = \det(B - tI) > 0 \).

Proof. (a) For every \(1 \leq l \leq k \), let \(\theta_l = \frac{(2l-1)\pi}{2k} \) and

\[
v_l = \begin{bmatrix}
\sin \theta_l \\
\sin 2\theta_l \\
\vdots \\
\sin k\theta_l
\end{bmatrix}.
\]

Routine calculation shows that \(Av_l = 2(1 + \cos \theta_l)v_l \) for \(1 \leq l \leq k \). Therefore \(\{2(1 + \cos \theta_l)|1 \leq l \leq k\} \) is the set of all real roots of the characteristic polynomial \(P_A(t) \). Note that \((-t)^k\) is the highest order term of \(P_A(t) \). This implies that \(\lim_{t \to -\infty} P_A(t) = \infty \). Since \(2(1 - \cos \frac{\pi}{2k}) \) is the smallest real root of \(P_A(t) \), we observe that \(P_A(t) > 0 \) for all \(t < 2(1 - \cos \frac{\pi}{2k}) \).

(b) The proof of (b) is the same as that of (a) where value of \(\theta_l \) is replaced by \(\frac{2\pi l}{2k+1} \). \(\square \)

Lemma 4. (a) Consider the following system of inequalities:

\[
\begin{cases}
A_j - A_{j+1} \geq 4t(A_1 + \cdots + A_j), & j = 1, \ldots, k - 1, \\
A_k \geq 2t(A_1 + \cdots + A_k).
\end{cases}
\] \hspace{1cm} (3.5)

If \(t < \frac{1}{2}(1 - \cos \frac{\pi}{2k}) \), then system (3.5) has no solution \((A_1, A_2, \ldots, A_k) \) with \(A_1 < 0 \).

(b) Consider the following system of inequalities:

\[
\begin{cases}
A_j - A_{j+1} \geq 4t(A_1 + \cdots + A_j), & j = 1, \ldots, k - 1, \\
A_k \geq 4t(A_1 + \cdots + A_k).
\end{cases}
\] \hspace{1cm} (3.6)

If \(t < \frac{1}{2}(1 - \cos \frac{\pi}{2k+1}) \), then the system (3.6) has no solution \((A_1, A_2, \ldots, A_k) \) with \(A_1 < 0 \).
Proof. (a) Let \(f_1(t) = 2 - 4t \) and \(g_1(t) = 4t \). For every \(1 \leq l \leq k - 1 \), put
\[
f_{l+1}(t) = (1 - 4t)f_l(t) - g_l(t)
\]
and
\[
g_{l+1}(t) = 4tf_l(t) + g_l(t).
\]
Clearly (3.7)–(3.8) imply
\[
g_{l+1}(t) - g_l(t) = 4tf_l(t) = f_l(t) - g_l(t) - f_{i+1}(t).
\]
Hence we have \(f_l(t) = g_{l+1}(t) + f_{i+1}(t) \) for \(1 \leq l \leq k - 1 \). Moreover for \(2 \leq l \leq k - 1 \), we obtain
\[
f_{l+1}(t) = (2 - 4t)f_l(t) - (f_l(t) + g_l(t)) = (2 - 4t)f_l(t) - f_{l-1}(t).
\]
Note that \(f_1(t) = 2 - 4t, \ f_2(t) = (1 - 4t)f_1(t) - g_1(t) = (2 - 4t)^2 - 2 \). Therefore we observe
\[
f_l(t) = \det(M_l - 4tI_l), \quad 1 \leq l \leq k,
\]
where \(I_l \) is the \(l \times l \) identity matrix and \(M_l \) is the \(l \times l \) matrix of the same form as that in Lemma 3(a).

Assume that \(t < \frac{1}{4}(1 - \cos \frac{\pi}{k}) \) and \((A_1, A_2, \ldots, A_k)\) satisfies the system of inequalities (3.5). Since \(t < \frac{1}{4}(1 - \cos \frac{\pi}{k}) \) for \(1 \leq l \leq k \), Lemma 3(a) and (3.9) imply that \(f_l(t) > 0 \) for all \(l = 1, 2, \ldots, k \).

For every \(1 \leq i \leq k - 1 \), we have, by (3.5),
\[
A_{k-i} - A_{k-i+1} \geq 4t(A_1 + \cdots + A_{k-i}).
\]

For \(1 \leq j \leq k \), we claim that
\[
f_j(t)A_{k-j+1} \geq g_j(t)(A_1 + \cdots + A_{k-j}).
\]
Clearly (3.10) holds for \(j = 1 \). Assume it also holds for some \(i \) with \(1 \leq i \leq k - 1 \). Since \(f_i(t) > 0 \), we get
\[
f_i(t)A_{k-i} = f_i(t)(A_{k-i} - A_{k-i+1}) + f_{i+1}(t)A_{k-i+1} \geq (4tf_i(t) + g_i(t))(A_1 + \cdots + A_{k-i})
\]
\[
= g_{i+1}(t)(A_1 + \cdots + A_{k-i-1}) + (4tf_i(t) + g_i(t))A_{k-i}.
\]
The above inequality implies that (3.10) also holds for \(j = i + 1 \). Hence (3.10) is true for \(1 \leq j \leq k \). Plugging \(j = k \) into (3.10) gives \(f_k(t)A_1 \geq 0 \). Since \(f_k(t) > 0 \), we observe that \(A_1 \geq 0 \). This completes the proof of (a).

(b) The proof of (b) follows word by word that of (a) while replacing \(f_i(t) \) by \(1 - 4t \). \(\square \)

Proof of Theorem 3. By Theorems 1 and 2, it suffices to show that if \(\alpha < \frac{4}{\pi} \), then there is no positive non-constant function \(f \) satisfying the non-linear equation (1.5) and such that \(\alpha = \frac{\epsilon(f,f)}{2f(f)} \). We argue by contradiction. Suppose that \(\alpha < \frac{4}{\pi} = \frac{1}{2}(1 - \cos \frac{2\pi}{n}) \) and there exists a positive non-constant unit function \(f \) satisfying the non-linear equation (1.5) and such that \(\alpha = \frac{\epsilon(f,f)}{2f(f)} \). By Remark 1, we can assume further that

\[
 f = (x_1, x_2, \ldots, x_{n-1}, x_n, \ldots, x_4, x_2),
\]

where \(0 < x_1 \leq x_2 \leq \cdots \leq x_n \) and \(x_1 < x_n \). Moreover the function \(f \) satisfies the equations:

\[
 2x_i - (x_i^{(1)} + x_i^{(2)}) = 2xx_i \log nx_i^2, \quad 1 \leq i \leq n,
\]

where \(x_i^{(1)} \) and \(x_i^{(2)} \) are the two nearest neighbors of \(x_i \).

Recall that \(\sigma \) is the shift operator and \(\sigma^j = \sigma^{(j-1)} \) for \(j \geq 2 \). Write \(n = 4k \) or \(n = 4k + 2 \). For \(j = 1, \ldots, k \), we have

\[
 \sigma^j(f) = (x_{2j}, \ldots, x_2, x_1, \ldots, x_{n-2j-1}, x_n-x_{2j+1}, \ldots, x_{n-1}, x_n, \ldots, x_{2j+2})
\]

and

\[
 \sigma^{-j}(f) = (x_{2j+1}, \ldots, x_n-x_1, x_n, \ldots, x_{n-2j+2}, x_{n-2j}, \ldots, x_2, x_1, \ldots, x_{2j-1}).
\]

By Lemmas 1 and 2(a), we get

\[
 (x_{2j}^2 - x_{2j+2}^2 + x_{n-2j-1}^2 - x_{n-2j+1}^2) \\
 \geq 2\alpha[(x_1^2 + x_2^2 + \cdots + x_{2j-1}^2 + x_1^2 + x_3^2 + \cdots + x_{n-2j-1}^2) \\
 - (x_{n-2j+1}^2 + x_{n-2j+3}^2 + \cdots + x_{n-1}^2 + x_{2j+2}^2 + x_{2j+4}^2 + \cdots + x_n^2)].
\]

Similarly Lemmas 1 and 2(b) imply that

\[
 (x_{2j-1}^2 - x_{2j+1}^2 + x_{n-2j}^2 - x_{n-2j+2}^2) \\
 \geq 2\alpha[(x_1^2 + x_2^2 + \cdots + x_{2j-1}^2 + x_2^2 + x_4^2 + \cdots + x_{n-2j}^2) \\
 - (x_{2j+1}^2 + x_{2j+3}^2 + \cdots + x_{n-1}^2 + x_{n-2j+2}^2 + x_{n-2j+4}^2 + \cdots + x_n^2)].
\]
Note that \(n - 2j - 1 \geq 2j + 1 \) and \(n - 2j \geq 2j + 2 \) for \(1 \leq j \leq k \). Summing up the above two inequalities gives

\[
(x_{2j-1}^2 + x_{2j}^2 - x_{2j+1}^2 - x_{2j+2}^2) + (x_{n-2j-1}^2 + x_{n-2j}^2 - x_{n-2j+1}^2 - x_{n-2j+2}^2)
\geq 4\alpha [(x_1^2 + x_2^2 + \cdots + x_{2j}) - (x_{n-2j+1}^2 + x_{n-2j+2}^2 + \cdots + x_n^2)].
\]

Let \(A_i = x_{2i-1}^2 + x_{2i}^2 - x_{n-2i+1}^2 - x_{n-2i+2}^2 \) for \(1 \leq i \leq k \). If \(n = 4k \), then we have

\[
\begin{cases}
A_j - A_{j+1} \geq 4\alpha (A_1 + A_2 + \cdots + A_j), & j = 1, \ldots, k - 1, \\
A_k \geq 2\alpha (A_1 + A_2 + \cdots + A_k).
\end{cases}
\]

If \(n = 4k + 2 \), then we observe that

\[
\begin{cases}
A_j - A_{j+1} \geq 4\alpha (A_1 + A_2 + \cdots + A_j), & j = 1, \ldots, k - 1, \\
A_k \geq 4\alpha (A_1 + A_2 + \cdots + A_k).
\end{cases}
\]

Note that \(\alpha < \frac{1}{2}(1 - \cos \frac{2\pi}{n}) \) and \(A_1 = x_1^2 + x_2^2 - x_{n-1}^2 - x_n^2 \leq x_1^2 - x_n^2 < 0 \). By Lemma 4, we get a contradiction. This completes the proof. \(\square \)

Acknowledgments

We thank Tzog-Yow Lee and Shuenn-Jyi Sheu for useful discussions. We also thank Professor Laurent Saloff-Coste for providing useful information and an anonymous referee for pointing out important references and comments. Partially supported by National Science Council Grant NSC 90-2115-M-009-015.

References