Sequencing and analysis of the large virulence plasmid pLVPK of *Klebsiella pneumoniae* CG43

Ying-Tsong Chen, Hwan-You Chang, Yi-Chyi Lai, Chao-Chi Pan, Shih-Feng Tsai, Hwei-Ling Peng

Abstract

We have determined the entire DNA sequence of pLVPK, which is a 219-kb virulence plasmid harbored in a bacteremic isolate of *Klebsiella pneumoniae*. A total of 251 open reading frames (ORFs) were annotated, of which 37% have homologous genes of known function, 31% match the hypothetical genes in the GenBank database, and the remaining 32% are novel sequences. The obvious virulence-associated genes carried by the plasmid are the capsular polysaccharide synthesis regulator *rmpA* and its homolog *rmpA2*, and multiple iron-acquisition systems, including *iucABCDiutA* and *iroBCDN* siderophore gene clusters, *Mesorhizobium loti fepBC* ABC-type transporter, and *Escherichia coli fecIRA*, which encodes a Fur-dependent regulatory system for iron uptake. In addition, several gene clusters homologous with copper, silver, lead, and tellurite resistance genes of other bacteria were also identified. Identification of a replication origin consisting of a *repA* gene lying in between two sets of iterons suggests that the replication of pLVPK is iteron-controlled and the iterons are the binding sites for the *repA* to initiate replication and maintain copy number of the plasmid. Genes homologous with *E. coli sopA/sopB* and *parA/parB* with nearby direct DNA repeats were also identified indicating the presence of an F plasmid-like partitioning system. Finally, the presence of 13 insertion sequences located mostly at the boundaries of the aforementioned gene clusters suggests that pLVPK was derived from a sequential assembly of various horizontally acquired DNA fragments.

Keywords: *rmpA*; Siderophore; Heavy-metal resistance; Tellurite resistance; Iteron

1. **Introduction**

Klebsiella pneumoniae is an important cause of community-acquired bacterial pneumonia, occurring particularly in chronic alcoholics and commonly results in a high fatality rate if untreated. Nevertheless, the vast majority of *K. pneumoniae* infections are associated with hospitalization. It has been estimated that *K. pneumoniae* causes up to 8% of all nosocomial bacterial infections in developed countries, and its colonization in hospitalized patients appears to be associated with the use of antibiotics (Schaberg et al., 1991). Recently, the prevalence of multiple-drug-resistant *K. pneumoniae* strains has significantly restricted the availability of antibiotics for effective treatment of the bacterial infections.

Despite its significance, our knowledge of the pathogenicity of the bacterium is rather limited. Clinically isolated *K. pneumoniae* usually produces large amounts of capsular polysaccharides (CPS) as reflected by the formation of glistening mucoid colonies. The CPS provides the bacterium an anti-phagocytic ability and prevents the bacteria from being killed by serum bactericidal factors (Simmons-Smit et al., 1986). Additional virulence-associated factors identified so far in *K. pneumoniae* include lipopolysaccharides, several adhesins, and iron-acquisition systems (Simmons-Smit et al., 1986; Nassif and Sansonetti, 1986). The small numbers of
known virulence-associated factors rather limit the possible
targets for drug development, thus making the intervention
of bacterial infection rather difficult.

Several strategies including in vivo expression techno-
logy, subtractive DNA hybridization, and signature-tagged
mutagenesis have been adopted to identify virulence-assoc-
iated genes in K. pneumoniae. These efforts have allowed
the identification of many novel genes that might be
important for the bacterium to infect humans. For instance,
by using the in vivo expression technology, we have
identified the presence of a plasmid-borne iron-acquisition
gene cluster in K. pneumoniae that is primarily expressed in
the hosts (Lai et al., 2001). Nevertheless, further investiga-
tion of the functional roles of these novel sequences has
been significantly hampered by the lack of the complete
genome sequence of K. pneumoniae.

Most of the blood isolates of K. pneumoniae harbor a
large plasmid of 200 kb in size (Peng et al., 1991). The
plasmid has been demonstrated to contain the aerobactin
siderophore biosynthesis genes and curing of the plasmid
would result in an avirulent phenotype (Nassif and Sanso-
netti, 1986). In our laboratory, we also found that the loss
of pLVPK, a plasmid of the similar size harbored in K.
pneumoniae CG43, a highly virulent clinical isolate of K2
serotype (Lai et al., 2003), resulted in a loss of colony
mucoidy, the ability to synthesize aerobactin, and a 1000-
fold decrease of virulence. It is conceivable that the
plasmid is likely to carry many additional virulence-asso-
ciated genes and complete sequencing of the plasmid
would hence be the most straightforward way for their
identification. We herein report the 219-kb sequence and
annotation of this large virulence plasmid from K. pneumo-
niae CG43.

2. Materials and methods

2.1. Sequencing of pLVPK

The DNA of pLVPK was isolated from K. pneumoniae
CG43 by using a Qiagen Plasmid Purification kit and
fragmented by sonication. The DNA fragments were then
resolved on a 0.7% low melting point agarose gel and DNA
of size ranging from 2.0 to 3.0 kb were recovered, blunt-
repaired by Bal31 nuclease, and subsequently cloned into
the pUC18 vector. A total of 2304 clones were sequenced
from both ends to achieve approximately 11-fold coverage
of the plasmid. Sequences were assembled initially using the
Phred/Phrap program (Ewing et al., 1998) with optimized
parameters and the quality score was set to >20. When all
the sequences assembled into 11 major contigs (>20 reads;
>2 kb), the Consed program (Gordon et al., 1998) was then
used for the final sequence closure (autofinishing). Finally,
several gaps among contigs were closed either by primer
walking on selected clones, which were identified by
analysis on the forward and the reverse links of each of
the contigs, or by sequencing the DNA amplicons generated
by PCR.

2.2. Gene prediction and annotation

GLIMMER 2.02 (Delcher et al., 1999), a program that
searches for protein coding regions, was used to identify
those ORFs possessing more than 30 codons. Overlapping
and closely clustered ORFs were manually inspected. The
predicted polypeptide sequences were used to search the
protein database with the BLAST (NCBI database), and
the clusters of orthologous groups (COGs) of proteins
database was used to identify families to which the
predicted proteins were related. Mobile elements and
repetitive sequences were identified using pairwise com-
parison with the known insertion sequences. The presence
of tRNA sequences was identified by the program tRNAs-
can-SE (Lowe and Todd, 1997). The G + C nucleotide
composition analysis was made by GCWin of the G-
Language package (Arakawa et al., 2003).

2.3. Drug susceptibility assay

Tellurite, copper, silver, and lead susceptibility for the
strains were determined essentially as described (Men-
haran et al., 2003). E. coli, K. pneumoniae CG43, and its
derivatives were propagated at 37 °C in Luria–Bertani (LB)
broth. The overnight-grown cells were spread onto LB
plates and the 3MM paper discs (5-mm diameter) impreg-
nated with aliquots of a serial dilution of K₂TeO₃, CuSO₄,
AgNO₃, and Pb(NO₃)₂ solutions were placed on top of each
of the plates. The plates were then incubated at 37 °C for
another 12 h and the inhibition zone was measured. Iron-
acquisition activity was assayed using iron-deprived M9
plates (with 200 μM 2,2′-dipyridyl) and the paper discs
were impregnated with a serial dilution of FeCl₃ solution.
After spreading the overnight-grown bacteria onto the
plates, the iron-loaded discs were then placed on top of
each of the plates. The plates were incubated at 37 °C for 12
h, and the growth zones around the paper discs were
measured.

2.4. Nucleotide sequence accession number

The nucleotide sequences reported in this paper have
been submitted to GenBank under the accession no.
AY378100.

3. Results and discussion

3.1. General overview

The entire DNA sequence consists of 219,385 bp forming
a circular plasmid (Fig. 1). The size and the predicted
restriction enzyme cutting sites are consistent with the ex-
Experimental findings using pulse-field gel electrophoresis. The plasmid contains 251 ORFs, as determined by the Glimmer program. The possible functions of these ORFs were subsequently analyzed by comparing the sequence to the current nonredundant protein database of the National Center for Biotechnology Information using BLAST software through the Internet. Approximately 37% of the 251 ORFs have significant amino acid sequence similarity (>60%) with the genes of known function in GenBank or with protein domains or motifs in protein databases. Despite their lack of homology to the known genes, the deduced amino acid sequences of 31% of the ORFs matched the hypothetical genes in the database. The remaining 32% had lower or no significant sequence similarities (<20%) with those in the database and their functions could not be assigned.

The average G + C content of the plasmid is 50.35%, which is somewhat lower than that of the K. pneumoniae MGH78578 genome (G + C = ~ 55%). The G + C content plotted along the pLVPK sequence with a window size of 1000 bp is shown in Fig. 2. Four regions (Box 1–4) with a significant high G + C content in comparison with the average of the whole plasmid sequence were identified. The Box 1 consists of 9 ORFs showing 56–90% sequence similarity to an unknown gene cluster in Burkholderia fungorum genome. The second and third high G + C regions contain two iron-acquisition systems: iut and iro genes, respectively. The fourth box covered the lead-resistant pbr gene cluster and its nearby transposase gene. Two low G + C content regions are also marked in Fig. 2, which include the two mucoidy regulator encoding genes, rmpA (34.6%) and rmpA2 (31.9%). The values of G + C at the third codon are even lower with 29.2% for rmpA and 28% for rmpA2.

3.2. Virulence-associated genes

The BLAST search revealed an 18-kb region, which is highly similar to the SHI-2 pathogenicity island (PAI) of Shigella flexneri (Moss et al., 1999). The SHI-2-like region includes the iron-acquisition genes iucABCDiutA, vagCD, the unknown function ORF shiF, and rmpA2, a known virulence-associated gene in K. pneumoniae (Lai et al., 2003). Elsewhere the PAI-like region, a rmpA2 homolog, rmpA, and two additional gene clusters associated with iron metabolism were also found.

One interesting finding in pLVPK is the presence of rmpA and rmpA2, two genes encoding regulatory proteins for CPS synthesis in K. pneumoniae. CPS has been known to be a major virulence factor in K. pneumoniae that protects the bacterium from the bactericidal activity of serum complements and macrophages (Simmons-Smit et al., 1986). The gene rmpA was first identified in K. pneumoniae as a determinant controlling the CPS biosynthesis (Nassif et al.,...
The gene *rmpA2*, which was named because of its high similarity with *rmpA*, was identified later (Wacharotayankun et al., 1993). Since the major difference between these two gene products is that the RmpA2 has an extended N-terminal region, it has been generally thought that *rmpA* and *rmpA2* are the same gene, and the *rmpA* reported earlier by Nassif et al. was a truncated form of *rmpA2*. Our sequencing result shows that *rmpA* and *rmpA2*, which share 81% nucleotide sequence homology (78% identity in the 194 comparable amino acids), are actually two independent loci 29 kb apart (Fig. 3a). Southern hybridization analysis of the plasmid using an *rmpA2* probe also confirmed the presence of two copies of the gene (Fig. 3b). The finding not only clarified that *rmpA* is not a part of *rmpA2*, but also demonstrated that both the genes are plasmid-borne. Our laboratory has recently found that RmpA2 protein directly interacts with the promoters of the K2 CPS biosynthesis genes through its carboxyl terminal helix-turn-helix motif-containing portion (Lai et al., 2003). Thus, we believe that RmpA could also interact with the *cps* gene promoter, although how it activates the *cps* gene expression and the interplay between these two Rmp proteins remain to be investigated.

The *K. pneumoniae vagCD* products exhibit 94% and 84% amino acid sequence identities with that of the VagC and VagD on pR64 of *Salmonella enterica* serovar Dublin. Like the *vagCD* of pR64, the two genes are also overlapped by one nucleotide. It has been proposed that VagC and VagD might be involved in the coordination of plasmid replication and cell division, and disruption of the *vagC* locus would reduce the bacterial virulence (Pullinger and Lax, 1992). The high sequence similarity suggests that *vagCD* genes on the pLVPK also participate in the maintenance of the plasmid stability. Interestingly, the G+C content of the *vagCD* genes (~70%) is significantly higher than that of the *rmpA2* (31.9%), which is located only 1.1 kb away, implying that *rmpA2* and *vagCD* were recruited onto pLVPK independently.

3.3. Iron-acquisition systems

The capability of iron acquisition is generally a prerequisite for a pathogen to establish infection when entering the hosts. In pLVPK, two siderophore-mediated iron-acquisition systems, *iucABCDiutA* and *iroBCDN*, were identified. The *iucABCDiutA* operon, which was first reported on pCoIV-K30 in *E. coli* (Ambrozic et al., 1998), consists of five genes responsible for synthesis and transport of the hydroxamate siderophore aerobactin. The presence of the aerobactin synthesis and utilization genes has also been reported for *Salmonella* and *Shigella* spp., indicating that the genes are freely transferable within the Enterobacteriaceae. This notion is also consistent with the finding that the *iucABCDiutA* gene cluster is flanked by two transposable elements, IS630 and IS3, and 3′ sequences of *E. coli* K12 tRNA ¹⁵ and tRNA¹⁵, which have been proposed to play a role in the horizontal transfer of PAIs between bacterial pathogens (Hou, 1999).

The *iroBCDEN* gene cluster, first described in *S. enterica*, is known to participate in the uptake of catecholate-type...
siderophores. Recently, similar gene cluster contained in a PAI was also found either on the chromosome or a transmissible plasmid in the uropathogenic *E. coli* (Sorsa et al., 2003). It should be mentioned that the *iro* gene cluster in *pLVPK* lacks *iroE* gene. Nevertheless, the absence of *iroE* gene probably would not affect the utilization of catecholate siderophore by the bacterium since it has been demonstrated in *E. coli* that an *iroE* mutation does not hinder the siderophore utilization activity (Sorsa et al., 2003).

A two-gene operon that encodes an ABC-type transporter related to *M. loti* FepBC was noted on *pLVPK* at nucleotide positions 77,450–80,256. The identity between the *pLVPK* genes and FepBC is 38% and 44%, respectively. These genes also share significant homology with many ABC transporters mediating translocation of iron, siderophores, and heme (Koster, 2001). Although the contribution of this putative ABC transporter in the uptake of iron remains unclear, it is undoubtedly advantageous for the bacteria to have multiple iron-acquisition systems in order to obtain iron from the frequently changing environment.

Finally, a gene cluster similar to *E. coli* fecIRA, which is responsible for regulating the uptake of ferric citrate in a Fe^{2+}-Fur-dependent manner, was identified approximately 3 kb upstream of the *iroBCDN*. In *E. coli*, fecIR genes are within a large gene cluster with fecABCDE that are the structural genes for iron citrate uptake and are thought to be the target of FecIR regulatory system (Braun et al., 2003). However, there are no observable fecABCDE homologs in *pLVPK*. This phenomenon is not that unusual. As shown in Fig. 4, the homologs of fecIRA, but not fecBCDE, have been identified experimentally in *Bordetella* spp. as well as in several other bacterial species. It is not clear what the target genes are for these FecIRA-like regulatory systems in these bacteria (Braun et al., 2003). One possibility is that a fecABCDE gene cluster could be located on *K. pneumoniae* chromosome. Alternatively, the FepBC-like ABC-type iron transporter encoding genes on *pLVPK* could be the target gene of the FecIRA regulators.

It should be pointed out here that the *pLVPK* *fecR* open reading frame is disrupted by an in-frame termination codon. FecR is an inner membrane protein that senses whether FecA, the outer membrane ferric citrate receptor, is bound to the substrate and, in response, activates FecI, which is known as a transcription factor. Deletion analysis of the *fecR* in *E. coli* has shown that a minimum of 59 amino acids in length of the FecR N-terminal derivative is still able to activate the FecI and, subsequently, a constitutive expression of the downstream target genes (Ochs et al., 1995). Thus, despite the presence of an internal stop codon, the *fecR* of *pLVPK* may still be capable of encoding a truncated but functional product and may result in a constitutive iron-acquisition phenotype in *K. pneumoniae* CG43.
The hydroxamate bioassay with the aerobactin indicator strain *E. coli* LG1522 showed that the plasmid-cured strain, CG43-101, loses the aerobactin activity in comparison with its parental strain CG43. In addition, the iron-acquisition activity assay revealed that CG43-101 apparently has a smaller growth zone around the iron-loaded disc. These results indicated that the iron-acquisition capability of the bacteria could mostly be attributed to the plasmid pLVPK.

3.4. Genes related to metal resistance

Heavy metals at certain concentrations in the cell may form unspecific complex compounds leading to a toxic effect. Many genes for the maintenance of the heavy-metal ion homeostasis have been identified in bacteria. Three physically linked gene clusters, as shown in Fig. 5 (152,306–177,234 bp), were identified in the pLVPK that are related to metal resistance phenotype in *K. pneumoniae*. These gene clusters include homologs of the lead-resistance genes *pbrRSABC* of *Ralstonia metallidurans* CH34 (Borremans et al., 2001), the copper-resistance genes *pcoEABCDRS* of *E. coli* plasmid pRJ1004 (Brown et al., 1995), and the silver-resistance gene cluster *silC-BApSilRSE* of *S. enterica* serovar Typhimurium (Gupta et al., 1999). By using disk diffusion assay, we have found that the resistance against silver and copper ions between *K. pneumoniae* CG43 and a plasmid-cured strain, CG43-101, remains the same.

A putative lead-resistance gene cluster, *pbrRABC*, showed a 63–71% deduced amino acid sequence identity with that of the *R. metallidurans pbrTRABCD* genes. The *R. metallidurans* lead-resistance operon, carried on a large plasmid, pMOL30, contains *pbrT* for Pb$^{2+}$ uptake, *pbrA* for Pb$^{2+}$ efflux, *pbrB* for a putative integral membrane

Fig. 4. Comparison of the organization of *fecIRA* genes of pLVPK with similar iron transport and signaling systems. The arrows indicate the transcription orientation of the genes. The genes in the *fecIRA* gene cluster of the pLVPK are very similar to that of the *E. coli fec* operon, however, lacking the *febcDE* genes.

Fig. 5. The heavy-metal-resistant gene clusters. The silver-resistance *sil* gene cluster, in comparison with that of the *S. enterica* serovar Typhimurium pMG101 (Gupta et al., 1999), the copper-resistance *pco* gene cluster, in comparison with that of the *E. coli* pRJ1004 (Brown et al., 1995), and the lead-resistance *pbr* gene cluster, in comparison with that of the *R. metallidurans* pMOL30, are shown (Borremans et al., 2001). The homologous gene clusters are depicted in solid black and the transcriptional orientation of the individual ORFs are shown by arrows.
protein, pbrC for a putative prolipoprotein signal peptidase, pbrD that confers lead sequestration, and pbrR that regulates the transcription of pbrABCD (Borremans et al., 2001). Unlike that of the R. metallidurans, the pbr gene clusters of pLVPK contain only the efflux system (pbrABC) and regulator encoding genes (pbrR) (Fig. 5), which suggest a simple lead-efflux mechanism similar to that of the CadA ATPase of Staphylococcus aureus and the ZnA ATPase of E. coli (Rensing et al., 1998). In contrast to the indifferance of copper and silver ion resistance, the lead susceptibility increased in the disk diffusion assay after curing of the plasmid. The pbr genes in the pLVPK may contribute to the adaptation of K. pneumoniae in lead-polluted human inhabitants.

A gene cluster encoding E. coli terZABCDE homolog was also identified. The terZABCDE has been shown previously to be a part of a PAI, which also contains integrase, prophage, and urease genes in E. coli EDL933 (Taylor et al., 2002). This gene cluster also provides the resistance to bacteriophage infection as well as resistance to pore-forming colicins. Although terBCDE are sufficient for the tellurite resistance property, the functions of each of these genes are unknown. The 14.7-kb region (19,890–34,588 bp) containing terZABCDE genes and 12 putative ORFs of pLVPK are comparable to the ter genes-containing region in the E. coli O157 genome. The homology is interrupted downstream of the terZABCDE region by an E. coli pTE53 tellurite resistance terF homolog and IS903 gene (Fig. 6a). A recent study suggests that the Te³-containing pathogenicity island in enterohemorrhagic E. coli isolates was acquired from plasmid. With considerable degree of sequence homology (75–98% amino acid sequence similarity respectively with that of the E. coli O157 terZABCDE), the ter genes of the pLVPK are likely horizontally acquired. It has been speculated that the ter system most likely plays other functional roles such as protection against host defenses so as to be stably maintained in the bacterium (Taylor et al., 2002).

A chromosomally located ORF which showed 77% amino acid sequence identity with the E. coli tellurite-resistant gene tehB (Taylor et al., 2002) has also been recently isolated in our laboratory from K. pneumoniae CG43. Deletion of the tehB-like gene had no apparent effect on tellurite resistance of the bacteria (Fig. 6b), suggesting that the tellurite resistance of the bacteria is determined by the ter gene cluster of pLVPK rather than the tehB homolog.

3.5. Replication and plasmid maintenance

DNA sequence analysis also revealed a single plasmid replication region of 1756 bp (217,448–219,203 bp), which consists of repA and sequence elements with characteristics of plasmid replicons that employ an iteron-based

Fig. 6. The tellurite resistance genes in K. pneumoniae CG43. (a) The ter gene cluster of pLVPK similar to terZABCDE of E. coli O157:H7 EDL933 O-island #43, a region of the EDL933 chromosome not homologous to E. coli K-12 MG1655. The homologous regions are shown in hatched and solid arrow. (b) Effects of the tehB deletion and curing of pLVPK on the tellurite resistance of the bacteria. Tellurite resistance assays of K. pneumoniae CG43S3, the pLVPK-cured bacteria (CG-101), and the tehB mutant CG43S3T1 using the discs immersed, respectively, with 20 and 40 μg K₂TeO₃ are shown. The arrows indicate the margins of the inhibition zone.
replication initiation and control mechanism (Chattoraj, 2000). The repA product showed a high sequence similarity to a number of plasmid replication initiation proteins, including RepFIB of S. enterica serovar Typhi R27 plasmid (60% identity), RepFIB of E. coli O103:H2 (43% identity), RepA of Yersinia pestis KIM plasmid pMT-1 (42% identity), and RepA of S. enterica serovar Typhi plasmid pHCM2 (42% identity). As shown in the multiple sequence alignment in Fig. 7a, RepA appears to be an initiator for plasmid replication, which is able to bind the flanking repeated sequences through its DNA binding structures, a winged-helix domain, and a leucine-zipper motif (Chattoraj, 2000). We have also found two sets of iterons, 4 21-bp and 13 42-bp direct repeats, located, respectively, at the upstream and downstream of the repA locus (Fig. 7b). The sequences are most likely the specific binding sites for the RepA protein to initiate replication of the plasmid and also control the plasmid copy number (Chattoraj, 2000).

3.6. Segregation control machineries

A region (203,493–203,994 bp) consisting of 11 copies of a 43-bp repeat (5′-gggaccacgtcactgct...tcagcct-3′) is believed to be required for segregation control of the plasmid. Next to the 43-bp direct repeat pattern, positioned are the genes encoding sopA and sopB homologous. The organization is comparable to that of the sop operon, which governs the partition of the F plasmid (Yates et al., 1999). In addition to sopAB, genes showing sequence similarity with parAB of E. coli P1 phage were identified. It has been shown previously that the corresponding partitioning site in the P1 parAB system is composed of direct or inverted repeats (Davis and Austin, 1988). We also noted

![Fig. 7. The repA and the iteron sequences at the replication origin. (a) Sequence alignment of the repA from pLVPK (LVPK), R27 of S. enterica serovar Typhi (R27), pHMT-1 of Y. pestis (PMT1), and pHCM2 of S. enterica serovar Typhi (PHCM2). Leucine residues near the N-terminus are marked with asterisks, and the two-helix regions corresponding to the helix-turn-helix DNA-binding domain are shown. (b) The replication origin including the repA structural gene and two iteron sequences nearby of the pLVPK. The sequences of the two sets of iterons, iteron-1 (217,448–218,020 bp) and iteron-2 (219,102–219,203 bp), are shown with each row, respectively, representative for each of the adjacent repeat units.](image)
that a 66-bp direct repeat upstream of the parAB homologs is found, which indicates that they also contribute to the partitioning control of the plLVPK. It is reasonable that such a large plasmid has meticulous maintenance systems. Nevertheless, how these two partitioning systems contribute to the maintenance of plLVPK remains to be confirmed.

3.7. Heterogeneity

Pathogenic bacteria have obtained a significant proportion of their genetic diversity by acquisition of DNA from other organisms. Many of the gene clusters identified in plLVPK are homologous to the unknown gene clusters in other organisms. Although with unknown functions, the homologs of the gene clusters contained in the 9-kb region from nucleotide 2522 to 11,618 and the 5.9-kb region from nucleotide 13,997 to 19,886 were found, respectively, in the genome of B. jugorum and Y. pestis KIM. A gene cluster which encodes a putative ABC transporter system for which the deduced amino acid sequences are similar to those of the putative ABC transporter system of Streptomyces coelicolor A3. A region (46,979–51,336 bp) comparable to the phage infection inhibition pif region of E. coli F plasmid was also identified. The boundary sequences of these gene clusters, as well as that of the PAI-like region, are mobile elements including insertion sequences and short pieces of 3′-sequences of tRNA genes. With the involvement of the transposons and the tRNA sequences, horizontal gene transfers have made possible these gene clusters to be introduced into the plasmid and hence affect the ecological and pathological characteristics of bacteria.

4. Conclusions

- The 219-kb plasmid contains 251 ORFs, of which 37% have homologous genes of known function, 31% match the hypothetical genes in GenBank, and the remaining 32% are novel sequences.
- Virulence-associated genes identified include the CPS synthesis regulator gene rmpA2 and its homolog rmpA and multiple iron-acquisition system genes iucABC-DiutA, iroBCDN, fepBC, and fecIRA.
- Gene clusters homologous with copper silver, lead, and tellurite-resistant genes were identified. After curing of the plasmid, resistance of the bacteria to either lead or tellurite was found to decrease. However, no apparent effect was observed on the bacterial susceptibility to silver and copper.
- Identification of a repA gene lying in between two sets of iterons suggests that the replication of the plasmid is iteron-controlled. Furthermore, the presence of two regions similar to the sop and par genes indicates the presence of an F plasmid-like partitioning system.

Acknowledgements

This work was supported in part by National Science Council of the Republic of China (NSC92-2311-B009-001 to HLP and 92-2311-B009-001 to HYC). We are grateful to N. Venkatesan and J. Vatsyayan for critical reading of the manuscript.

References

