DELETERIOUS EFFECTS OF ARSENIC, BENOMYL AND CARBENDAZIM ON HUMAN ENDOMETRIAL CELL PROLIFERATION IN VITRO

Chi-Chen Chang¹,²,³, Yao-Yuan Hsieh²¹, Kung-Hao Hsu²¹, Horng-Der Tsai³, Wen-Hsin Lin⁴, Chih-Sheng Lin¹*

¹Department of Biological Science and Technology, National Chiao Tung University, Hsinchu,
²Division of Infertility Clinic, Hsieh Yao-Yuan Women's Hospital, Taichung, ³Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, ⁴School of Pharmacy Undergraduate Program Department of Medicine, China Medical University, Taichung, Taiwan.

SUMMARY

Objective: We aimed to investigate the effects of arsenic (As), benomyl (Ben), and carbendazim (Carb) on endometrial cells.

Materials and Methods: Human endometrial cells were obtained during diagnostic curettage. All cultured endometrial cells were divided into four groups: (1) 0 M (controls), (2) 10⁻⁶ M, (3) 10⁻⁵ M, (4) 10⁻⁴ M for As, Ben and Carb. After 24 and 48 hours in culture, endometrial cell proliferations were assessed by diphenyltetrazolium bromide assay. The influences of different concentrations of As, Ben and Carb upon the endometrium were compared.

Results: During the first 24 hours, As, Ben and Carb appeared to have insignificant influences upon endometrial growth. After 48 hours in culture, all three agents significantly inhibited endometrial growth. In As groups, cell absorption after 48 hours culture were 100% (group 1), 82.1% (group 2), 43.6% (group 3) and 35.3% (group 4). In Ben groups, cell absorption was 100% (1), 75.9% (2), 66.4% (3) and 49.6% (4). In the Carb groups, cell absorption was 100% (1), 70.4% (2), 73.0% (3) and 76.7% (4).

Conclusion: The agents As, Ben and Carb appear to have inhibitory effects upon endometrial cells after 48 hours in culture. [Taiwan J Obstet Gynecol 2010;49(4):449–454]

Key Words: arsenic, benomyl, carbendazim, endometrium

Introduction

Adequate endometrial development is a determinant for embryo implantation and early pregnancy. Endometrial growth depends on numerous factors, including hormones, lifestyle, uterine artery blood flow and posture. Endometrial proliferation or regeneration during the menstrual cycle is regulated by sexual hormones. A change in endometrial pattern and a decrease in endometrial and subendometrial blood flows are critical for the subsequent implantation of embryos. During the menstrual cycle, the endometrium undergoes cyclic proliferative and secretory changes in preparation for implantation. If this preparation is not sufficient, the implantation will fail. Numerous hormones influence the endometrial proliferation and cycle changes. Follicle stimulating hormones have been known to directly act on the endometrium, which results in the decidualization of endometrial cells [1]. However, the effect of some regents or toxicants, such as arsenic (As), benomyl...
(Ben), and carbendazim (Carb), upon endometrial cell growth remains obscure.

Arsenic is a ubiquitous trace element, well-established human carcinogen, and an important environmental carcinogen that affects millions of people worldwide through contaminated water supplies. Arsenic is a natural environmental carcinogen and is also genotoxic. Contamination of drinking water by inorganic As remains a major public health problem, as its metabolites are known inhibitors of cell proliferation. These metabolites have also been used in the treatment of certain malignancies [2]. In our previous reports, we also observed the differential effects of As upon cytotoxicity, viability, and cell cycle of aorta endothelial cells [3].

Benomyl, an aneuploidogen and anti-mitotic antifungal agent, is used throughout the world against a wide range of agricultural fungal diseases. It can inhibit cell proliferation and block mitotic spindle function by perturbing microtubule and chromosome organization [4]. Benomyl possesses anti-decidualogenic and antimitotic properties, which could inhibit endometrial growth during decidualization [5]. Carb, a systemic fungicide, belongs to the Ben family and has anti-tumor activity against a broad spectrum of tumors, such as pancreas, prostate, colon and breast [6]. Carb also plays a role in the downregulation of humoral immunity [7]. Both Ben and Carb have been used as antimicrotubular drugs, which interfere with the microtubule biogenesis, impaired microtubule assembly and synthesis of tubulin subunits during the cell cycle [8]. Environmental pollution is ubiquitous and can have a significant influence on human physiology. Long-term exposure to pollution has been implicated as a risk factor for numerous disorders, including respiratory disease and cardiovascular disorders. Therefore, it is logical to suspect detrimental effects due to As, Ben or Carb, upon endometrial growth or biophysiology. A review of the MEDLINE database revealed very few studies regarding the influence of pollutants or toxicants upon cytotoxicity, viability and cell cycle of endometrial cells. Few investigators have demonstrated the influence of As, Ben and Carb upon endometrial proliferation. To elucidate the impact of these common contaminants upon proliferation or cell cycle changes of endometrial cells, we aimed to investigate the effects of these common pollutants or toxicants upon the proliferation of human endometrial cells.

Materials and Methods

A 33-year-old woman who suffered from dysfunction uterine bleeding and menorrhagia was recruited for this study and informed consent was obtained prior to surgery. The endometrial specimen was obtained by diagnostic endometrial curettage during the proliferative phase. There were no hormonal treatments 6 months before curettage. The specimen was divided for pathological examination and cell culture.

The cells were maintained routinely and passaged in culture medium (1:1 Dulbecco’s modified Eagle’s medium: Ham’s F12 containing 1.2 g/L sodium bicarbonate and 15 mM HEPES; Gibco BRL, Gaithersburg, MD, USA) containing 10% (v/v) heat-inactivated fetal bovine serum (HyClone, Logan, UT, USA) at 37°C/5% CO2. The culture medium was changed every 2-3 days until the cells reached 80% confluence. Cell growth was evaluated microscopically with an inverted-phase microscope. Endometrial cells were isolated following digestion with collagenase and cultured for about 4 days until confluency was 80%, prior to the gene transduction experiments. Human endometrium cells were maintained in Dulbecco’s modified Eagle’s medium: Ham’s F12 containing 1.2 g/L sodium bicarbonate, 5 μg/mL bovine insulin, 15 mM HEPES (Gibco BRL) and supplemented with 10% heat-inactivated fetal bovine serum.

The addition of reagents was performed as per previous reports [9]. Human endometrial cells were cultured in serum-containing media in the presence or absence of As, Ben and Carb for 48 hours. Cell growth was evaluated microscopically with an inverted-phase microscope and counted with a hemocytometer, then seeded onto 96-well plates (Corning, NY, USA) at a density of 1 × 10^4 cells/well. Following overnight culture, media was replaced with fresh medium containing various concentrations of As2O3 (as supplied by Asia University, Taipei, Taiwan), Carb and Ben. According to the toxicant concentrations, all cultured endometrial cells were divided into four groups: 0 M (controls); 10⁻⁶ M; 10⁻⁵ M; and 10⁻⁴ M. The culture plates were then incubated at 37°C/5% CO2 for 24 and 48 hours.

A Cell Proliferation Kit I assay (Roche, Germany) was used to assess the influence of As, Ben and Carb upon cell growth. After 24 hours in culture, endometrial cell proliferations were assessed overnight by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. The MTT was added to the culture wells for 4 hours, after which cells were solubilized overnight at 37°C; the absorbance at 595 nm was recorded using an enzyme-linked immunosorbet assay plate reader (BIO-RAD, Hercules, CA, USA). The influence of different agents and dosages upon endometrial cell proliferation in each group were evaluated and compared. All experiments were done in triplicate using eight wells for each treatment. Optical densities were compared between treatment groups and controls.
incubated with medium alone. The intra-and interassay coefficients of variation were less than 5% and 6%, respectively.

Cell proliferation data were expressed as the ratio of cell proliferation in treatment culture to control culture proliferation. All results were normalized to cellular protein content and the data were examined for equal variance and normal distribution prior to statistical analysis. Mean values were compared by analysis of variance with Fisher’s least significant difference method for comparing groups. Standard errors were within 10% of the mean of replicate wells. A p value of less than 0.05 was considered statistically significant.

Results

During the first 24 hours, As, Ben and Carb appeared to have an insignificant influence upon endometrial growth (p > 0.05). However, after 48 hours in culture, the higher dosage of As, Ben and Carb appeared to have significant inhibition upon endometrial growth (p < 0.05). In the As groups, the cell absorption percentage of the four subgroups after 24 and 48 hours in culture were: 100 ± 13.2/100 ± 5.4% (group 1); 104.8 ± 13.6/82.1 ± 21.3% (group 2); 110.7 ± 13.5/43.6 ± 19.7% (group 3); and 108.8 ± 13.3/35.3 ± 21.4% (group 4), respectively (Figure 1). In the Ben groups, the cell absorption percentage for the four subgroups after 24 and 48 hours in culture were: 100 ± 9/100 ± 8.9% (1); 97.5 ± 5/75.9 ± 5% (2); 95.4 ± 4.7/66.4 ± 3.6% (3); and 101.2 ± 3.7/49.6 ± 5.1% (4), respectively (Figure 2). In the Carb subgroups, the cell absorption percentage for the four groups were: 100 ± 4/100 ± 4 (1); 131.3 ± 4.5/70.4 ± 5.9 (2); 103.1 ± 5.2/73 ± 4.9 (3); and 82.7 ± 3.9/76.7 ± 8.6 (4), respectively (Figure 3).

We also observed that As and Ben but not Carb appeared to inhibit endometrial growth with a dose-dependent effect. The 48 hour cultures of endometrial cells with As and Ben between each group was significantly different (p < 0.05; Figures 1B and 2B). Endometrial cell proliferation was negatively associated with As and Ben concentrations after 48 hours in culture. Higher doses of As or Ben appeared to significantly inhibit endometrial cell proliferation compared with lower doses of As or Ben. Carb appeared to similarly inhibit endometrial cell proliferation (p > 0.05) when compared with controls (Figure 3B), and these findings suggest toxicity of low doses of Carb upon endometrial growth. During the first 24 hours of culture, we observed initial stimulation due to a low concentration of Carb (1 × 10⁻⁶ M) upon endometrial growth.

Figure 1. Effects of arsenic upon human endometrial cells at different concentrations after 24 and 48 hours in culture.

Figure 2. Effects of benomyl upon human endometrial cells at different concentrations after 24 and 48 hours in culture.
Discussion

Adequate proliferation and cycle changes in the endometrium are essential for fertility. Evaluation of endometrial thickness and patterns might be beneficial to distinguish between fertile and infertile cycles. A thinner endometrium is often associated with embryo implantation failure and abortion [10]. A minimum thickness of 10 mm during in vitro fertilization was found to produce a higher pregnancy rate [10]. The importance of endometrial development for in vitro fertilization outcome has been previously reported. A thicker endometrium might improve pregnancy rates [11]. Certain endometrial abnormalities, such as Asherman’s syndrome, may prevent normal cyclic changes in the endometrium, which compromises implantation rates and increases abortion rates [12]. Therefore, during ovarian stimulation, clinicians should pay close attention to endometrial development as well as the roles of individual medications upon endometrial growth.

Administration of numerous medications might influence endometrial proliferation and pattern. Clomiphene administration during controlled ovarian hyperstimulation is known to be associated with a thinner endometrium [13]. A thicker endometrium was identified among women treated with gonadotropin when compared with those treated with clomiphene [14]. Estrogen supplementation during stimulation with clomiphene has been shown to improve endometrial development and to result in thicker endometria and improved morphology [15,16]. Administration of ethinyl estradiol might reverse the deleterious effects of clomiphene on endometrial development during the follicular phase [17]. Obesity and hypertension have been found to increase endometrial thickness independently [18].

Epidemiological studies indicate a significant linkage between exposure to environmental air pollution and development of diseases. Some specific pollutants might induce cytotoxic and systemic inflammatory responses in human cells, which compromises human health and contributes to individual disorders [19]. Specific pollution represents an important environmental problem due to toxic effects and accumulation through the food chain. The toxicity of complex pollutants might also compromise the physiological conditions of human reproductive organs as well as fertility.

Arsenic is a major environmental contaminant associated with an increased risk of human skin cancer. Long-term ingestion of As-contaminated water could induce skin lesions and urinary bladder cancer. It has been reported to induce apoptosis and inhibit the proliferation of various human cancer cells [20]. Arsenic has a specific cell death pathway and potent anti-tumor effects on human cervical cancer cells in vitro and in vivo [20]. In a previous report, we demonstrated the inhibitory effects of As upon muscle cell growth [3, 9]. Arsenic is not directly mutagenic and the mechanism by which As brings about oncogenic transformation is poorly understood. Arsenic may delay the growth of gastric tumors by inhibiting the paracrine and autocrine pathways of vascular endothelial growth factor/vascular endothelial growth factor receptors [21], and could exacerbate folate deficiency, as well as disrupting the balance of cell proliferation and differentiation [22]. It may also induce apoptosis of tumor cells through multiple mechanisms, including inhibition of DNA binding by nuclear factors [23].

Benomyl (Ben, methyl-1-[butylcarbamoyl]-2-benzimidazole carbamate), a benzimidazole derivative fungicide and microtubule-destabilizing drug, has been shown to induce sister chromatid exchanges and micronuclei but not chromosome aberrations [24]. Benomyl may be associated with increased chromosome loss, karyogamy defects, impaired spindle pole body separation, and defective nuclear migration [25]. It also causes rapid disassembly of microtubules and inhibits microtubule polymerization and dynamics, and cancer cell proliferation at mitosis [4,26]. Treatment with Ben
Our findings highlight the metrial proliferation, receptivity and biophysiology. Environmental pollutants possibly interfere with endometrial growth. All these common toxicants upon the endometrium might be instead quantity-pattern inhibition. The different effects of As, Ben and Carb upon the endometrium might be the result of their varied molecular structures, presentation of toxicant structures, affiliation, formulations, potencies, pH, overall toxicant accumulation, receptor binding affinity and toxicant half-life.

In conclusion, our preliminary results highlight the possible detrimental effects of As, Ben and Carb upon endometrial growth. The influence of these toxicants appeared to insignificantly inhibit endometrial cell proliferation during the first 24 hours of cultures. After 48 hours in culture, As, Ben and Carb, especially at higher doses, appear to have inhibitory effects upon the proliferation of endometrial cells. Administration of high doses of Ben and Carb inhibits endometrial cell proliferation in vitro, suggesting its inhibitory role upon endometrial growth during controlled ovarian hyperstimulation. This study provides a preliminary database for future surveys regarding the roles of numerous toxicants upon the endometrium during the menstrual cycle and controlled ovarian hyperstimulation. Our investigation provides evidence that some pollutants might directly or indirectly influence endometrial growth as well as uterine receptivity. This study also highlights the necessity of preventing the ingestion of contaminated food and water prior to and during assisted reproductive technology protocols, especially for individuals with a thinner endometrium.

References