Electroless Deposition of Ru Films Via an Oxidative-Reductive Mechanism

Jing-Yu Chen, * Yu-Chi Hsieh, * Li-Yeh Wang, and Pu-Wei Wu **,*

Department of Materials Science and Engineering, National Chiao Tung University Hsin-chu 300, Taiwan

An electroless Ru plating bath is prepared by mixing Ru precursor (K₂RuCl₃·H₂O), oxidizer (NaClO), stabilizer (NaOH), and reducing agent (NaNO₂) simultaneously in deionized water at a molar ratio of 1:1:20:10. Instead of conventional direct reduction route, the RuCl₅²⁻ experiences an oxidative-reductive sequence to form metallic Ru on an activated Si substrate. Spectra from ultraviolet-visible and X-ray absorption spectroscopy indicate that the RuCl₅²⁻ is oxidized to form RuO₄, followed by a slight reduction becoming RuO₂. The RuO₂ solution is relatively stable and is able to undergo further reduction to render metallic Ru via heterogeneous nucleation and growth. Images from scanning electron microscope demonstrate a solid film of 100 nm with scattered protrusions and cavities after 120 min plating time. Analysis from atomic force microscope determines its surface roughness of 7.8 nm. From X-ray diffraction patterns, the as-deposited film reveals an amorphous structure but turns crystalline after Ar annealing at 400 °C for 2 h. Curve-fitting of Ru 3pₓ/₂ signal from X-ray photoelectron spectroscopy suggests a film composition of 92.49 atom % Ru and 7.51 atom % RuO₂. The electroless Ru plating bath exhibits impressive life time (137 h) and negligible homogeneous precipitation without involving surfactants and unnecessary chemical additives.

* Electrochemical Society Student Member.
** Electrochemical Society Active Member.
* E-mail: ppwu@mail.nctu.edu.tw

Ruthenium (Ru) is a member of platinum group metals that is often employed in applications such as electrocatalysis for fuel cells, pseudocapacitors for energy storage, and barrier/seed layer for semiconductor devices. So far, a variety of fabrication schemes has been explored to prepare the Ru and its oxides in thin solid films. For example, vacuum-based techniques including atomic layer deposition (ALD), physical vapor deposition (PVD), and chemical vapor deposition (CVD), as well as solution-based approaches like electroplating and electroless deposition have been demonstrated with impressive results. In general, the vacuum-based techniques involve complicated equipment, costly precursors, slow processing time, and unnecessary material waste. In contrast, the electrochemical alternative provides attractive attributes in simple setups, facile processing, and adjustable growth rate. In electroplating, an external driving force of current or voltage is imposed to reduce relevant precursors in an electrolyte to the metallic form. Hence, to obtain desirable deposit, the substrate requires sufficient electrical conductivity and planar contour for uniform distribution of electrical field. In contrast, the electroless deposition is performed via a chemical reducing agent that enables more freedoms in substrate selections and morphologies.

To date, electroless depositions of Ni, Cu, Ag, Au, Pd, and Pt have been widely studied for their excellent properties such as electrical conductivity and planar contour for uniform distribution of electrical field. Images from scanning electron microscope demonstrate a solid film of 100 nm with scattered protrusions and cavities after 120 min plating time. Analysis from atomic force microscope determines its surface roughness of 7.8 nm. From X-ray diffraction patterns, the as-deposited film reveals an amorphous structure but turns crystalline after Ar annealing at 400 °C for 2 h. Curve-fitting of Ru 3pₓ/₂ signal from X-ray photoelectron spectroscopy suggests a film composition of 92.49 atom % Ru and 7.51 atom % RuO₂. The electroless Ru plating bath exhibits impressive life time (137 h) and negligible homogeneous precipitation without involving surfactants and unnecessary chemical additives.

Experimental

The electroless Ru deposition proceeded via an oxidative-reductive route in which the Ru precursor underwent an oxidation reaction first becoming intermediates with higher oxidized states followed by reacting with a reducing agent to convert to the metallic form. The electroless plating bath included 0.0186 g K₂RuCl₃·H₂O (Alfa Aesar), 1.8558 g NaClO (SHOWA), 0.04 g NaOH (Mallinckrodt), and 0.035 g NaNO₂ (SHOWA) in 30 ml deionized water. They were used as the Ru precursor, oxidizer, stabilizer, and reducing agent, and their molarities were 1.64 × 10⁻³, 1.66 × 10⁻³, 3.33 × 10⁻², and 1.7 × 10⁻² M, respectively. In preparing the plating bath, the NaNO₂ and NaOH were dissolved separately in deionized water followed by mixing with the NaClO solution. At this stage, both reducing agent and oxidizer were present. Subsequently, the mixture was added to an aqueous solution of K₂RuCl₃·H₂O forming a homogeneous solution ready for Ru deposition. Since the NaClO was prone to decomposition, the NaOH was added to stabilize the bath. As a result, the pH value for the plating bath was between 11 and 12. For comparison purpose, we also prepared a reference bath by dissolving the NaOH in deionized water followed by...
mixing with the NaClO solution. Subsequently, the mixture was added to an aqueous solution of $K_2RuCl_5 \cdot xH_2O$ allowing complete oxidation of the Ru precursor. Afterward, the NaNO$_2$ solution was added to the oxidized precursor to render a homogenous solution. All the preparation steps were conducted at 25°C using as-received chemicals without further purification. A flow chart for the processing steps involved is depicted in Fig. 1.

Electroless Ru deposition was performed at 40°C on a Si substrate with surface coating of SiO$_2$ (500 nm), TaN (20 nm), and Cu (100 nm). This Cu/TaN/SiO$_2$/Si arrangement is often adopted for semiconductor processing purpose. The Si substrate was broken into small pieces in 2×2 cm2 and cleaned thoroughly by acetone and water. Prior to the electroless Ru deposition, the Si substrate was subjected to an activation step at 40°C by immersing in a solution containing 0.1 wt % PdCl$_2$ (Aldrich) and 1 wt % HCl (SHOWA) for 10 s. During electroless Ru deposition, the plating bath was raised to 40°C to allow a faster deposition rate. To improve the crystallinity of the as-deposited Ru film, an Ar annealing treatment was imposed at 400°C for 2 h.

Since the Ru precursors in different oxidized forms revealed distinct colors, measurements of the UV-Vis spectra during plating bath preparation enabled the determination of their identities and relative quantities. An UV-Vis spectrometer (JASCO V-670) was used to record the absorption curves at 25 and 40°C, respectively. X-ray absorption spectroscopy (XAS) of Ru K-edge was also adopted to confirm the chemical nature of Ru precursors prior to the electroless deposition. The XAS spectra were obtained from BL17C1 beam line at the National Synchrotron Radiation Research Center at Hsinchu, Taiwan. The photon energy was calibrated by the K-edge of metallic Ru sheet and the XAS data were recorded in a fluorescence mode at 25°C in air. The resulting spectra were processed by a program (Athena, version 0.8.056) in which the Ru K-edge absorption steps were normalized to unity with removal of background signals. Detailed XAS measurement procedures and data process protocols can be found elsewhere.

A field-emission scanning electron microscope (FE-SEM; JOEL JSM-6500) was used to observe the morphology of the as-deposited Ru film and its surface roughness was determined by an atomic force microscope (AFM; Vecco Dimension 5000 Scanning Probe Microscopy). A high-resolution X-ray diffractometer (XRD; Bruker D8 Discover) was employed to identify the crystallinity and phase for the as-deposited and Ar-annealed Ru films. An X-ray photoelectron spectrometer (XPS; Thermo Microlab 350) was adopted to analyze the amount of Ru and RuO$_2$ in the as-deposited film. Prior to the XPS measurements, additional Pt was sputtered on the sample and used as the calibration at 71.3 eV ($4f_{7/2}$). During the XPS measurements, the sample was bombarded by Ar ions for 30 s to clean its surface. The XPS background was added with the Shirley method by a program (Thermo Avantage, version 3.20). All curve fittings were carried out at fixed binding energy for Ru and RuO$_2$ with identical full width at half maximum (FWHM).

Results and Discussion

The Ru precursors are known to reveal distinct colors contingent on their oxidation states and complexing ligands. This characteristic is rather useful especially when the aqueous solutions of NaClO, NaOH, and NaNO$_2$ are transparent. The $K_2RuCl_5 \cdot xH_2O$ solution appeared in dark blue and once it was added to the mixture of NaClO, NaOH, and NaNO$_2$, the solution became yellow shortly and its color turned orange for a few minutes. A similar yellow-to-orange transition was observed for the reference bath. As the $K_2RuCl_5 \cdot xH_2O$ solution was mixed with NaClO and NaOH, its color was converted and stabilized in yellow. Upon the addition of NaNO$_2$, the yellow solution changed to orange gradually. Since the NaClO and NaNO$_2$ functioned as the oxidizer and reducing agent respectively, we rationalized that the yellow color was indicative of Ru precursor in a higher oxidized state while the orange one inferred the Ru precursor in a slightly lower oxidized state. Figure 2 provides the UV-Vis absorption spectra for the plating bath during bath preparation at 25°C. The absorption peaks at 313 and 382 nm were identified and their intensities were decreasing gradually with time. According to literature, both RuO$_2$ and RuO$_{4}^{2-}$ display characteristic absorption peaks at these wavelengths but their relative intensities differ greatly. Therefore, we realized that RuO$_2$ and RuO$_{4}^{2-}$ were present simultaneously at this stage and the predominant constituent was RuO$_2$. After 7 min, there appeared additional absorption peaks at 373 and 468 nm, and their intensities were increasing steadily with time. These absorption peaks were consistent with typical responses associated with RuO$_{4}^{2-}$. Hence, the UV-Vis spectra suggested that the RuCl$_5^{2-}$ in the plating bath was oxidized first to RuO$_2$ (see Eq. 1 below) followed by a moderate reduction to RuO$_{4}^{2-}$ at a later stage (see Eq. 2 below). It is noted that according to literature, the color for RuO$_2$, RuO$_{4}^{2-}$, and RuO$_{4}^{2-}$ aqueous solutions are yellow, green, and orange. The absence of green color in our plating bath inferred that the presence of RuO$_2$ was transient and the stabilized forms were RuO$_2$ and RuO$_{4}^{2-}$, respectively. In our experiences, once the RuCl$_5^{2-}$ was transformed to the RuO$_{4}^{2-}$, it was able to react slowly with the NaNO$_2$ nearby for further reduction (see Eq. 5 below). To explore the operation life time for the plating bath, we carried out additional UV-Vis measurements at 40°C and the resulting absorption curves are exhibited in Fig. 3. Consistent with what we observed in Fig. 2, the absorption peaks at

Figure 1. (Color online) A experimental flow chart for the processing steps and characterization tools involved in the electroless Ru deposition.

Figure 2. (Color online) UV-Visible spectra for the electroless Ru bath during preparation process at 25°C.
place for the RuCl₅⁻ ion. The life time for the plating bath is reasonably estimated at 137 h. In conjunction with the loss of RuO₄⁻, we noticed the formation of dark precipitates scattered on the side walls and at the bottom of the container (see Eqs. 3–5 below). Nevertheless, we did not observe any suspended precipitates in the plating bath. This suggested that the undesirable homogeneous nucleation and growth of Ru from the RuO₄²⁻ was not occurring at a noticeable rate, and the prevailing process was the heterogeneous nucleation and growth on the foreign surface. This behavior is rather encouraging as we expect the heterogeneous nucleation and growth becomes accelerated once the activated Si substrate is encountered with the RuO₄²⁻. From Fig. 3, the life time for the plating bath is reasonably estimated at 137 h.

To validate sequential oxidative and reductive steps were taking place for the RuCl₅⁻, we conducted the XAS measurements on the plating and reference baths separately to record the Ru K-edge absorption energy. In general, the XAS spectra consist of X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). In XANES, the oxidation state for the absorbing ions can be determined accurately by comparing their absorption energy with known samples. It is because the oxidized species are recognized to render a shift of the absorption peak to higher photon energy and the extent for the energy shift is proportional to the oxidized state of the absorbing ions. For EXAFS, relevant information including bond distance, coordination number of nearest neighboring elements, and atomic species around the absorbing ions can be obtained. Figure 4 presents the XANES spectra of Ru K-edge for Ru metal, aqueous solution of K₂RuCl₅·xH₂O, RuO₄, and RuO₄²⁻ from plating bath and reference bath. During plating bath preparation was not applicable because each XAS measurement in our work required 120 min for data collection.

As the RuCl₅⁻ converted to RuO₄²⁻, the heterogeneous nucleation and growth was able to take place once the activated Si substrate was immersed in the plating bath. Figures 5a–5b demonstrate the planar and cross-sectional SEM images for the as-deposited Ru film after 120 min plating time. As shown in Fig. 5a, the surface morphology for the as-deposited Ru film was relatively uniform with scattered protrusions and cavities. The root-mean-square roughness from the AFM measurement was 7.8 nm. Figure 5b exhibits the cross-sectional view in which individual layers of TaN, Cu, and Ru were clearly visible. Apparently, the as-deposited Ru film displayed impressive integrity and the surface cavities in Fig. 5a were not penetrating to the underlying Cu layer. From the SEM image, the thickness for the as-deposited Ru film was approximately 100 nm. Shown in Figs. 5c and 5d are the SEM images in planar and cross-sectional views for the Ru film after Ar annealing. It can be seen from these images that the integrity of the Ru film was reasonably maintained and the surface morphology became

![Figure 3](image-url) (Color online) UV-Visible spectra for the electroless Ru bath during deposition process at 40°C.

![Figure 4](image-url) (Color online) Ru K-edge XANES spectra of metallic Ru and aqueous solutions of K₂RuCl₅·xH₂O, RuO₄, and RuO₄²⁻ from plating bath and reference bath.

![Figure 5](image-url) SEM images for the as-deposited film in (a) planar and (b) cross-sectional views, as well as Ar-annealed film in (c) planar and (d) cross-sectional view.
rather rough suggesting crystallinity alteration during the annealing process.

Figure 6 provides the XRD patterns for the as-deposited and Ar annealed Ru films, respectively. As shown in Fig. 6a, the as-deposited Ru film exhibited an amorphous characteristic without discernible diffraction peaks. We understood that the noises between 33 and 37° were attributed to the Si substrate because a Si wafer before electroless plating demonstrated a similar pattern. This amorphous nature was not unexpected as earlier reports of electroless-derived Ru often revealed an amorphous structure.13,14 Figure 6b presents the XRD pattern for the Ru film after Ar annealing. Notably, there appeared clear diffraction peaks associated with crystalline phases of Ru and Cu\textsubscript{2}O. For example, diffraction signals of Ru at 38.5° (110), 42.3° (002), and 44.1° (101) were visible and their relative intensities agreed reasonably with those from JCPDS 060663. The grain size calculated with Scheerer’s formula at 44.1° is 20.04 nm. In addition, diffraction peaks from the Cu\textsubscript{2}O at 36.5° (111), 42.3° (200), and 61.4° (220) were observed. It is understood that the Cu diffuses rapidly at elevated temperature and it is possible that the Cu diffused to the external surface during Ar annealing. However, we believed that the formation of Cu\textsubscript{2}O in our case was not caused by the out-diffusion of Cu atoms. To substantiate our claim, we carried out XRD analysis on a blanket Cu substrate before and after Ar annealing, and the resulting diffraction patterns exhibited a characteristic diffraction peak at 74° (220) for fcc Cu. Since the diffraction peaks of CuO and Cu\textsubscript{2}O were obviously absent, we concluded that the Ar annealing process was conducted properly without undesirable oxygen interference. Hence, the presence of crystalline Cu\textsubscript{2}O in our sample was attributed to the crystallization of amorphous Cu\textsubscript{2}O which was formed when the Cu was immersed in the electroless bath. Because the pH value for the Ru electroless bath was between 11 and 12, according to the Pourbaix diagram, the thermodynamically stable state for the Cu was Cu\textsubscript{2}O or CuO. Indeed, the Cu substrate immersed in an alkaline solution (NaNO\textsubscript{2}(aq) + NaOH(aq) + NaClO(aq), pH = 12.2) for 120 min at 40°C revealed a diffraction pattern associated with amorphous CuO. After Ar annealing, both Cu and Cu\textsubscript{2}O diffraction peaks became apparent. Therefore, we surmised that the formation of Cu\textsubscript{2}O was caused by the corrosion reaction of Cu when the activated Si substrate was immersed in the alkaline plating bath. This Cu\textsubscript{2}O was likely formed in the amorphous state initially but transformed to the crystalline structure after Ar annealing.

Figure 7 displays the XPS profiles of Ru 3d and Ru 3p for the as-deposited films along with curve fitting results of Ru 3p\textsubscript{3/2}. In general, the position of Ru 3d and Ru 3p lines are sensitive to the oxidative states of the Ru in the as-deposited film. In addition, their relative amount can be obtained via deliberate curve fitting of the XPS profiles using binding energy of known Ru constituents. To achieve this objective, the Pt was sputtered on the as-deposited sample prior to the XPS analysis. In this way, we were able to use the Pt binding energy as a calibration. During the XPS measurements, the sample was cleaned by Ar bombardments and the recorded binding energy of Pt 4f was 71.3 and 74.6 eV, respectively.
RuO₂. In Eq. 1, with NaOH in the solution, the NaClO is able to oxidize the RuCl₅²⁻ forming a yellow RuO₂ colloidal suspension. Since the RuO₂ is unstable chemically, it rapidly reacts with the NaNO₂ to convert to the RuO₄²⁻, which appears in orange (Eq. 2). Afterward, two distinct routes are possible for the RuO₄²⁻. First, a disproportionation reaction is likely to occur for the RuO₄²⁻, which results in the formation of RuO₂ and RuO₄ (Eq. 3). Subsequently, the RuO₄ quickly reacts with the NaNO₂ to produce the metallic Ru (Eq. 4). Alternatively, the RuO₄²⁻ adopts a straightforward reduction process in reacting with the NaNO₂ to produce the metallic Ru (Eq. 5). These reaction steps (Eqs. 1–5) are able to explain most of our experimental results except the transient presence of RuO₂ during bath preparation shown in Fig. 2. Therefore, we surmise a secondary reaction path is likely to proceed via Eqs. 1, 4, and 6. In this route, the RuO₂ is reduced to the RuO₄ initially which is reduced further to the metallic Ru.

It is noted that the electroless deposition of Ru thin film reported in this work is demonstrated on a Cu surface but the formula can in principle be applicable to other substrates including Si and ITO glass. However, in our experiences, additional surface pretreatments are necessary for Si and ITO glass to obtain a desirable Ru thin film and these results will be furnished and reported in the near future.

Conclusions

We developed an electroless Ru plating bath that enabled the deposition of Ru film on an activated Si substrate. Chemicals in the plating bath included Ru precursor (K₂RuCl₅·H₂O), oxidizer (NaClO), stabilizer (NaOH), and reducing agent (NaNO₂). They were added simultaneously during bath preparation at 25°C to render a homogeneous solution for Ru deposition. Spectra from UV-Vis and XAS indicated that the RuCl₅²⁻ was oxidized initially becoming RuO₄, followed by a slight reduction to RuO₄²⁻. At this stage, the plating bath was ready for further reduction to the metallic form via a heterogeneous nucleation and growth. SEM images on the deposit revealed an integral film with scattered protrusions and cavities. Diffraction patterns from XRD indicated an amorphous nature for the as-deposited film, which was transformed to a crystalline phase after Ar annealing at 400°C for 2 h. Signals from XPS determined the film composition to be 92.49 atom % Ru and 7.51 atom % RuO₂.

Acknowledgment

Financial support from the National Science Council of Taiwan (98-2221-E-009-040-MY2) is noted. Discussion and assistance from Dr. J. F. Lee of National Synchrotron Radiation Research Center of Taiwan over XAS measurements and data analysis are greatly appreciated.

References

Table I. Binding energy for Pt and Ru from XPS results and reference.

<table>
<thead>
<tr>
<th>Element</th>
<th>Signal</th>
<th>Binding energy(eV)</th>
<th>Reference binding energy(eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt</td>
<td>4f⁷/₂</td>
<td>71.3</td>
<td>71.2</td>
</tr>
<tr>
<td></td>
<td>4f⁵/₂</td>
<td>74.6</td>
<td>74.53</td>
</tr>
<tr>
<td>Ru</td>
<td>3d⁵/₂</td>
<td>280.2</td>
<td>280.1</td>
</tr>
<tr>
<td></td>
<td>3d⁷/₂</td>
<td>284.4</td>
<td>284.27</td>
</tr>
<tr>
<td>Ru</td>
<td>3p⁰/₂</td>
<td>461.9</td>
<td>462</td>
</tr>
<tr>
<td></td>
<td>3p⁷/₂</td>
<td>484.23</td>
<td>484</td>
</tr>
</tbody>
</table>

These values were reasonably close to 71.2 and 74.53 eV reported from earlier work. As shown in Fig. 7a, the Ru 3d⁵/₂ and Ru 3d⁷/₂ signals were observed with binding energy of 280.2 and 284.4 eV. In addition, Fig. 7b exhibits the Ru 3p⁰/₂ and Ru 3p⁷/₂ signals with binding energy of 461.9 and 484.23 eV. Table I lists these values and the expected values of metallic Ru from literature. Apparently, the XPS profiles for the as-deposited film indicated that a large proportion of the Ru existed in the metallic state. Figure 7c provides the curve fitting of Ru 3p⁰/₂ using binding energy of 462.2 and 463.8 eV for Ru and RuO₂. According to the curve fitting, the composition for the as-deposited film was 92.49 atom % Ru and 7.51 atom % RuO₂. XPS analysis on the Ru film after Ar annealing was not conducted because the XRD results had confirmed the presence of Ru phase after the Ar annealing step.

So far, we have established the presence of RuO₄, RuO₄²⁻, and RuO₂²⁻ in the plating bath and the deposit contained mostly metallic Ru with residual RuO₂ nearby. As both NaClO (oxidizer) and NaNO₂ (reducing agent) are present simultaneously in the plating bath, the sequence of possible chemical reactions that leads to the Ru deposition on the activated Si substrate is proposed below.

\[
2\text{RuCl}_5^{2-} (aq) + 5\text{ClO}_3^- (aq) + 6\text{OH}^- (aq) \rightarrow 2\text{RuO}_4^{2-} (aq) + 15\text{Cl}^- (aq) + 3\text{H}_2\text{O} (l) \] \hfill [1]

\[
\text{RuO}_4^{2-} (aq) + \text{NO}_3^- (aq) + 2\text{OH}^- (aq) \rightarrow \text{RuO}_4^{2-} (aq) + \text{NO}_2^- (aq) + \text{H}_2\text{O} (l) \] \hfill [2]

\[
3\text{RuO}_4^{2-} (aq) + 2\text{H}_2\text{O} (l) \overset{\text{H}_2\text{O}}{\rightarrow} 2\text{RuO}_4^{2-} (aq) + \text{RuO}_2 (s) + 4\text{OH}^- (aq) \] \hfill [3]

\[
2\text{RuO}_4^{2-} (aq) + 7\text{NO}_2^- (aq) + \text{H}_2\text{O} (l) \rightarrow 2\text{Ru}^{3+} (aq) + 7\text{NO}_3^- (aq) + 2\text{OH}^- (aq) \] \hfill [4]

\[
\text{RuO}_4^{2-} (aq) + 3\text{NO}_3^- (aq) + 2\text{H}_2\text{O} (l) \rightarrow \text{Ru}^{3+} (aq) + 3\text{NO}_5^- (aq) + 2\text{OH}^- (aq) \] \hfill [5]

\[
2\text{RuO}_4^{2-} (aq) + 2\text{NO}_2^- (aq) + 2\text{OH}^- (aq) \rightarrow 2\text{RuO}_4^{2-} (aq) + \text{NO}_3^- (aq) + 3\text{H}_2\text{O} (l) \] \hfill [6]

To recapitulate the variation of the oxidized state for the Ru precursor in the electroless bath, a schematic for the complete reaction steps is illustrated in Fig. 8. As shown, the principal reaction route (Eqs. 1–5) is responsible for the deposition of metallic Ru and RuO₂. In Eq. 1, with NaOH in the solution, the NaClO is able to oxidize the RuCl₅²⁻ forming a yellow RuO₂ colloidal suspension.

