A regression-based approach for mining user movement patterns from random sample data

Chih-Chieh Hung, Wen-Chih Peng *

Department of Computer Science, National Chiao Tung University, Taiwan, ROC

ABSTRACT

Mobile computing systems usually express a user movement trajectory as a sequence of areas that capture the user movement trace. Given a set of user movement trajectories, user movement patterns refer to the sequences of areas through which a user frequently travels. In an attempt to obtain user movement patterns for mobile applications, prior studies explore the problem of mining user movement patterns from the movement logs of mobile users. These movement logs generate a data record whenever a mobile user crosses base station coverage areas. However, this type of movement log does not exist in the system and thus generates extra overheads. By exploiting an existing log, namely, call detail records, this article proposes a Regression-based approach for mining User Movement Patterns (abbreviated as RUMP). This approach views call detail records as random sample trajectory data, and thus, user movement patterns are represented as movement functions in this article. We propose algorithm LS (standing for Large Sequence) to extract the call detail records that capture frequent user movement behaviors. By exploring the spatio-temporal locality of continuous movements (i.e., a mobile user is likely to be in nearby areas if the time interval between consecutive calls is small), we develop algorithm TC (standing for Time Clustering) to cluster call detail records. Then, by utilizing regression analysis, we develop algorithm MF (standing for Movement Function) to derive movement functions. Experimental studies involving both synthetic and real datasets show that RUMP is able to derive user movement functions close to the frequent movement behaviors of mobile users.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Mobile services, such as navigation services, mobile search and location-aware services, are becoming very popular. These wireless communication systems enable users to access various kinds of information from anywhere at any time. A mobile computing system usually expresses a user movement trajectory as a sequence of areas in which the mobile user moves.¹ In this article, we aim at mining user movement patterns for a mobile user. Thus, given a user’s set of movement trajectories, user movement patterns refer to the sequences of areas that this user frequently travels. Analysis of user trajectory data could provide some understandings and management of moving objects [1,2]. User movement patterns can be used to improve system performance, such as designing personal paging area [3], and developing data allocation strategies [4–6], querying strategies [7], and navigation services [8,9].

To discover user movement patterns in a mobile computing system, the methods proposed in previous studies require movement logs to record the movements of mobile users. For example, in [4,5], when a mobile user moves from the coverage area

¹ This article defines a unit of a area as the coverage area of one base station. For ease of presentation, we simply use a base station identification to represent the corresponding coverage area.
of base station \(i\) to the coverage area of base station \(j\), a handoff procedure is performed to smoothly switch communication channels between base stations. Meanwhile, the movement log generates a movement pair \((i, j)\). However, the movement log is not an existing log of mobile systems and needs some overheads to generate during handoff procedures. Hence, generating movement logs for all mobile users leads to increased storage costs and decreases the performance of mobile computing systems. Therefore, prior works are not practical for mobile computing systems due to the overhead of generating movement logs. In fact, mobile computing systems generate call detail records (abbreviated as CDR) when a mobile user makes or receives phone calls [10]. Table 1 shows an example of call detail records, where Uid represents the identification of a user making or receiving calls, and Cellid represents the corresponding base station that serves that user. Time information (i.e., date and time) is recorded in the CDR. Table 1 shows that the CDRs of a mobile user contain both spatial (i.e., base station identification) and temporal information (i.e., date and time). Since CDRs reflect the movement behaviors of users, this article addresses the problem of mining user movement patterns from an existing log of CDRs, thereby reducing the overhead of generating a movement log.

Fig. 1 shows some trajectories of one user, where the dashed line represents one real trajectory of this user and the regions with mobile phones indicate that the user is receiving or making phone calls. This user's calling behavior is captured in the log of CDRs, Table 1.

<table>
<thead>
<tr>
<th>Uid</th>
<th>Date</th>
<th>Time</th>
<th>Cellid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Day 1</td>
<td>07:30</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>Day 1</td>
<td>09:32</td>
<td>D</td>
</tr>
<tr>
<td>1</td>
<td>Day 1</td>
<td>09:49</td>
<td>E</td>
</tr>
<tr>
<td>1</td>
<td>Day 1</td>
<td>13:50</td>
<td>H</td>
</tr>
<tr>
<td>1</td>
<td>Day 2</td>
<td>08:50</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>Day 2</td>
<td>09:50</td>
<td>E</td>
</tr>
<tr>
<td>1</td>
<td>Day 2</td>
<td>14:00</td>
<td>H</td>
</tr>
<tr>
<td>1</td>
<td>Day 3</td>
<td>07:15</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>Day 3</td>
<td>09:02</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>Day 3</td>
<td>09:30</td>
<td>D</td>
</tr>
<tr>
<td>1</td>
<td>Day 4</td>
<td>12:30</td>
<td>W</td>
</tr>
<tr>
<td>1</td>
<td>Day 4</td>
<td>12:52</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>Day 4</td>
<td>13:30</td>
<td>Y</td>
</tr>
</tbody>
</table>

2 The real call detail records analyzed in this study were provided by Taiwan mobile service providers, and we only extracted some useful attributes of call detail records to mine user movement patterns.
and Table 1 shows the CDR log. Fig. 1 shows that CDRs are data points that are randomly sampled from trajectories and the corresponding locations of these CDRs are scattered over the mobile computing environment. As a result, mining user movement behaviors from CDRs is a challenging task. Given these random sample data points, we aim to derive movement functions that are close to real user trajectories. We refer these movement functions as movement patterns due to that movement functions reflect the frequent movement behavior of users. Fig. 2 shows the movement function of a user for the example above.

This article proposes a novel approach, called RUMP (standing for Regression-based approach for User Movement Patterns), to mine user movement patterns from CDRs. Given a set of data points, the main objective of regression analysis is to derive a regression function that minimizes the sum of distances between the function derived and data points. In this approach, call detail records are viewed as data points, while the regression functions derived are regarded as movement functions. However, not all call detail records should be involved in mining user movement patterns. Without carefully selecting CDRs, user movement patterns cannot reflect the frequent movement behaviors of mobile users. On the other hand, CDRs should be fully utilized for mining user movement patterns since only limited information is available in the CDR logs. Thus, several issues remain to be addressed to efficiently utilize CDRs for mining user movement patterns.

1.1. Extracting frequent movement behaviors from CDRs

As mentioned before, user movement patterns refer to the frequent movement behaviors of mobile users. However, the CDR logs not only contain frequent user movement behaviors, but also include infrequent movement behaviors. For example, a user usually goes to his office and is back to his home every weekday (as Fig. 1(a), (b) and (c) shows), and occasionally takes a trip (as Fig. 1(d) shows). The frequent movement behavior is the trajectory from his home to his office, whereas a trip is an infrequent movement behavior. Since regression analysis is sensitive to these infrequent CDRs, they should be eliminated. In other words, the call detail records that capture the frequent movement behaviors of users should be extracted. To extract the frequent movement behaviors of mobile users, we develop algorithm LS (standing for Large Sequence) to extract base stations whose coverage areas are frequently visited by users.

1.2. Determining the number of regression functions

Once CDRs that capture the frequent movement behaviors have been extracted, it is necessary to determine how many regression functions are needed. If only one regression function is derived, it may not be very close to the frequent user movement behavior. Thus, given a set of call detail records of the frequent movement behavior, clustering techniques can be used to divide call detail records into several groups. The number of groups is viewed as the number of regression functions. The movement trajectories of mobile users generally follow spatio-temporal locality (i.e., if the time interval between two consecutive calls of a mobile user is small, the mobile user is likely to have moved nearby). Therefore, the feature of spatio-temporal locality in algorithm TC (standing for Time Clustering) can be used to group the call detail records with a close occurrence time.

1.3. Deriving movement functions

Location identification techniques typically use one of two location models: the geometric model and the symbolic models [11]. The geometric model specifies the location in n-dimensional coordinates (typically n = 2 or 3). The symbolic model, however, uses logical entities to describe the location. This article represents the location of mobile users in CDRs using the symbolic model (i.e., the base station identification). To derive movement functions of a mobile user, the location of the call detail records in the symbolic model must be transformed into the geometric model. Then, with the cluster results obtained, we develop algorithm MF (standing for Movement Function) for each cluster. This algorithm utilizes weighted regression analysis to derive the corresponding movement functions of a user.

The RUMP approach consists of a series of algorithms that tackle the various issues described above. This study evaluates RUMP performance using both synthetic and real datasets. Sensitivity analysis is conducted on several design parameters. Experimental results show that RUMP is able to efficiently and effectively derive user movement patterns that capture the frequent movement behaviors of mobile users.
The rest of this article is organized as follows. Section 2 presents some related works. Section 3 then devises algorithms for mining user movement patterns. Section 4 presents performance results. Finally, Section 5 draws conclusions.

2. Related works

The problem of mining user movement patterns has attracted a considerable amount of research effort. Prior studies are generally classified into two categories based on their definitions of user movement patterns: spatial movement patterns and spatio-temporal movement patterns. In the first category, a user movement pattern refers to a sequence consisting of base station identifiers or pre-defined regions. In the second category, user movement patterns represent the spatio-temporal associated relationships among base station identifiers or pre-defined regions.

In the first category, the authors in [12] proposed an information-theoretical method to mine user movement patterns and represented them in a trie data structure. Moreover, the authors in [3] proposed a statistical approach to mine user movement patterns. The authors of [13] and [4] proposed a data mining approach for mining user movement patterns based on the movement logs of mobile users.

In the second category, user movement patterns are usually extracted from user trajectories, where trajectories are detailed user movements. A considerable amount of research efforts focuses on mining spatio-temporal association rules [14–19]. The authors in [20] explored the fuzziness of locations in patterns and developed algorithms to discover spatio-temporal sequential patterns. Furthermore, the authors in [21] proposed a clustering-based approach to discover movement regions within time intervals. In [22], the authors developed a hybrid prediction model, consisting of vector-based and pattern-based models, to predict user movements. In [23] and [24], the authors exploited temporal annotated sequences in which sequences are associated with time information (i.e., transition times between two movements).

To the best of our knowledge, this study proposes a new way of mining user movement patterns from random sample data points. Though the main theme of this article is to mine user movement patterns from call detail records, the proposed approach can be used for other log data with randomly sampled data features. Existing studies neither fully utilize fragmented spatio-temporal information (e.g., call detail records) for mining user movement patterns nor explore regression techniques for deriving movement functions. These features distinguish this article from others. Our preliminary work was presented in [25]. The current article extends this preliminary work with more detailed complexity and theoretical analysis. Furthermore, we conduct an extensive performance analysis on both synthetic and real datasets. Finally, this study investigates the sensitivity of several parameters, such as the calling behavior and thresholds for each algorithm.

3. A regression-based approach for mining user movement patterns

This section develops a regression-based approach (i.e., RUMP) consisting of a sequence of algorithms to mine user movement patterns. First, Section 3.1 provides an overview of RUMP, and the following sections present details of Algorithm LS, TC, and MF.

3.1. An overview

Given a log of CDRs, the goal of this article is to derive movement functions that closely reflect the frequent movement behaviors of mobile users. Due to that CDRs are random samples, the timestamps of CDRs are not likely to be the same even if a user follows the same movement behavior. Consequently, a basic time slot is defined as a time interval. For example, if call detail records whose occurrence time is within the time interval of one time slot, these CDRs are associated with the same time slot. Therefore, these CDRs are further put in a movement record defined as follows:

3.1.1. Definition: movement record

A movement record is defined as a set of pairs \((BS_i, N_i)\), where \(BS_i\) is a base station and \(N_i\) is the number of occurrence counts of \(BS_i\) in call detail records whose occurring times are within the same time slot.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Notations used in our algorithms.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>Notation</td>
</tr>
<tr>
<td>Number of movement sequences</td>
<td>(w)</td>
</tr>
<tr>
<td>Movement sequence (i)</td>
<td>(MS_i)</td>
</tr>
<tr>
<td>Movement record at time slot (j) in (MS_i)</td>
<td>(MR_{i,j})</td>
</tr>
<tr>
<td>A large movement sequence</td>
<td>(LMS)</td>
</tr>
<tr>
<td>Large movement record at time slot (i)</td>
<td>(LMR_i)</td>
</tr>
<tr>
<td>An aggregation movement sequence</td>
<td>(AMS)</td>
</tr>
<tr>
<td>Aggregated movement record at time slot (i)</td>
<td>(AMR_i)</td>
</tr>
<tr>
<td>A time projection sequence of (AMS)</td>
<td>(TP_{AMS})</td>
</tr>
<tr>
<td>A clustered time projection sequence of (AMS)</td>
<td>(CTP_{AMS})</td>
</tr>
</tbody>
</table>
Assume that one time unit has its time interval of 6:00 am to 10:00 am. From Table 1, in Day 1, we could have one movement record that includes (A:1, D:1, E:1) since the occurrence time of three call detail records (i.e., A, D, and E) is within the time interval (i.e., 6:00 am to 10:00 am). With the definition of movement records, a movement sequence is defined as follows:

3.2.1. Definition: movement sequence

A movement sequence MS_i, denoted by $<MR_{i,1}, MR_{i,2}, MR_{i,3}, \ldots, MR_{i,w}>$, is an ordered sequence of $ε$ movement records, where $MR_{i,j}$ is the movement record at time slot j in MS_i and $ε$ is an adjustable parameter.

The length of a time slot determines the granularity of user movement patterns in terms of time. Same as in [22], the value of $ε$ indicates that a movement pattern may re-appear. Thus, the value of $ε$ depends on the periodicity of a user. Table 2 are notations used in our article. The overall procedure for mining movement patterns is outlined as follows:

3.1.2. Execution steps in RUMP

Step 1. (Extracting the aggregation movement sequence) In this step, call detail records are converted into w movement sequences, where w is an adjustable window size for the recent movement sequences being considered. Algorithm LS discovers an aggregation movement sequence, in which each movement record contains frequent areas that a user appears.

Step 2. (Clustering movement records) According to the aggregation movement sequence derived, we further develop algorithm TC to cluster movement records whose time slots are close.

Step 3. (Deriving movement functions) We then use regression techniques to derive the corresponding movement functions for each group in Step 2.

CDRs only reflect the fragmented movement behaviors of mobile users. Thus, the RUMP approach uses regression techniques to derive movement functions which are close to the frequent movement behaviors of mobile users. Due to the nature of regression techniques, without the proper determination of call detail records, user movement functions derived cannot capture the frequent movement behaviors of mobile users. On the other hand, call detail records should be fully utilized to mine user movement patterns since only limited information is available in CDRs. In the following subsections, each algorithm is presented in detail.

3.2. Algorithm LS: extracting the aggregation movement sequence

In this article, a user movement trajectory is represented as a sequence of base station identifications (hereafter, we use “base station” for short). Hence, call detail records are converted into movement sequences. With a set of movement sequences, algorithm LS determines an Aggregation Movement Sequence (abbreviated as AMS) and uses it to represent the frequent movement behaviors of a user. Intuitively, AMS is a sequence of movement records that have frequent base station and their corresponding counts at each time slot. At each time slot, a frequent base station in this article refers to a base station which a user appears more than min_freq times among movement sequences. The min_freq is given to quantify frequent base stations. As pointed out early, counts for frequent base stations should also be determined. Thus, before deriving AMS, a large movement sequence (abbreviated as LMS) is a sequence of frequent base stations and we use LMS to compute the similarity between LMS and each movement sequence. In light of similarity measurements obtained, we are able to identify those movement sequences capturing the frequent moving behavior of users and aggregate them as AMS.

3.2.1. Definition: large movement record

Given a set of movement sequences MS_1, MS_2, \ldots, MS_w and a threshold min_freq, a large movement record at time slot t is denoted as LMR_t, and LMR_t contains a set of base stations whose occurrence count in the set of movement records at time slot t (i.e., $MR_{1,t}, MR_{2,t}, \ldots, MR_{w,t}$) is larger or equal to min_freq.

Given five movement sequences in Table 3, if min_freq is set to 2, LMR_4 is (D,F) since both D and F have their occurrence count equal to min_freq. Large movement records demonstrate the frequent movement behavior of a user at each specific time slot. After obtaining large movement records at each time slot, a large movement sequence LMS is thus a sequence of large movement records, which is denoted as $LMS = <LMR_1, LMR_2, \ldots, LMR_c>$. Consequently, LMS indicates the frequent moving behavior of users.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS_1</td>
<td>A:14</td>
<td></td>
<td></td>
<td>F:1</td>
<td>i:2</td>
</tr>
<tr>
<td>MS_2</td>
<td>A:1</td>
<td>C:1</td>
<td></td>
<td>C:1, D:1, F:1</td>
<td>H:1, G:4</td>
</tr>
<tr>
<td>MS_3</td>
<td>A:1, B:1</td>
<td>A:1</td>
<td>F:9</td>
<td>D:1</td>
<td>H:1</td>
</tr>
<tr>
<td>MS_4</td>
<td>B:4</td>
<td>D:4</td>
<td>H:1</td>
<td>A:1, B:2</td>
<td></td>
</tr>
<tr>
<td>MS_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMS</td>
<td>{A, B}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMS</td>
<td>{A:16, B:1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An example of algorithm LS.
Once a large movement sequence LMS is determined, we should further formulate the similarity between movement sequences and LMS to identify whether a movement sequence is the frequent movement behavior of a user or not. The conventional similarity measurements, such as Cosine similarity [26] and extended Jaccard coefficient [27], cannot be applied for the similarity measurement because they can only deal with scalar vectors with no missing values. Movement sequences and LMS are sequences of sets of base stations, not sequences of scalar values. Moreover, empty sets are allowed in movement sequences because they can only deal with scalar vectors with no missing values. Movement sequences and LMS are sequences of sets of base stations, which are the same in large movement record for each movement sequence.

Conventional similarity measurements, such as Cosine similarity [26] and extended Jaccard coefficient [27], cannot be applied for the similarity measurement because they can only deal with scalar vectors with no missing values. Movement sequences and LMS are sequences of sets of base stations, not sequences of scalar values. Moreover, empty sets are allowed in movement sequences because they can only deal with scalar vectors with no missing values. Movement sequences and LMS are sequences of sets of base stations, which are the same in large movement record for each movement sequence.

3.2.2. Definition: aggregation movement sequence

The aggregation movement sequence is denoted as AMS = <AMR1, AMR2, ..., AMRn>, where AMR is an aggregated movement record that contains frequent base stations, which are the same in large movement record LMR and their occurring counts accumulated from movement records at time slot j of similar movement sequences.

Consider the AMR1 of AMS in Table 3 as an example. From those similar movement sequences, the occurrence count of A in AMR1 is calculated as the sum of the count of A in MRj,1 that in MRj,2 and that in MRj,4 (i.e., 14 + 1 + 1 = 16). Following the same procedure, we could have AMS = <{A: 16, B: 1}, {A: 3}, φ, {D: 2, F: 3}, {H: 2}> shown in Table 3.

3.2.3. Time complexity analysis

Given w movement sequences with ε time slots, the complexity of algorithm LS can be expressed as O(εw). The complexity involved in calculating large movement records is O(εw), while that of extracting frequent movement sequences is ε * ω * O(1) = O(εw). As a result, the overall time complexity of algorithm LS is O(εw). Thus, algorithm LS is of polynomial time complexity.

Algorithm 1. Algorithm LS

Input: w movement sequences with length ε, two threshold: min freq and min sim
Output: aggregation movement sequence AMS

1: begin
2: for j ← 1 to ε do
3: for i ← 1 to w do
4: begin
5: LMRi ← frequent 1-itemset of MRi,j; //by min freq
6: end
7: for i ← 1 to w do
8: begin
9: match ← 0;
10: for j ← 1 to ε do
11: begin
12: C(MRi,j, LMRj) ← |x ∈ MRi,j ∩ LMRj| / |y ∈ MRi,j ∩ LMRj|;
13: match ← match + |MRi,j ∩ LMRj|;
14: end
15: if match ≥ min sim then
16: accumulate the occurring counts of items in the aggregation movement sequence;
17: end
18: end

3.3. Algorithm TC: clustering aggregation movement records

As pointed out early, the movement trajectories of mobile users generally follow spatio-temporal locality (i.e., if the time interval between two consecutive calls of a mobile user is small, the mobile user is likely to have moved nearby). Accordingly, aggregation movement records in AMS could be clustered into several groups if their corresponding time slots are close. To
facilitate the presentation of this paper, only time information (i.e., time slots) is extracted from AMS. Thus, time projection sequence of AMS is defined as follows:

3.3.1. Definition: time projection sequence
A time projection sequence of AMS is expressed as $TP_{AMS} = \langle \alpha_1, ..., \alpha_n \rangle$, where $AMR_{AMS} \neq \emptyset$ and $\alpha_i < ... < \alpha_n$.

A time projection sequence is a sequence of time slots in which the corresponding movement records are not empty. Algorithm TC then uses the time projection sequence to cluster close time slots. The cluster result of algorithm TC is represented as a clustered time projection sequence defined as follows:

3.3.2. Definition: clustered time projection sequence
A clustered time projection sequence of TP_{AMS}, denoted by CTP_{AMS}, is represented as $\langle CL_1, CL_2, ..., CL_k \rangle$, where the i-th group CL_i is the time slots of the clustered movement records, and k is an integer such that $1 \leq k \leq \epsilon$.

Given AMS obtained in Step 1, TP_{AMS} is then easily determined. By exploring the feature of spatial-temporal locality, algorithm TC generates a clustered time projection sequence of AMS (i.e., CTP_{AMS}). Each cluster in CTP_{AMS} contains close time slots. Those movement records with their time slots being clustered preserve the feature of spatial-temporal locality. Therefore, the objective of clustering is to bound the variance of time slots in each group with a given threshold (i.e., \min_var).

The variance of a group CL_i is defined as $Var(CL_i) = \frac{1}{m} \sum_{i=1}^{m} (n_i - \frac{1}{m} \sum_{i=1}^{m} n_i)^2$, where n_{ij} represents the j-th time slots of movement records in CL_i and the total number of movement records in CL_i is m. Algorithm TC generates a clustered time projection sequence CTP_{AMS} such that $Var(CL_i) \leq \min_var$ for all clusters CL_i.

To achieve the objective of clustering, algorithm TC first starts coarsely clustering TP_{AMS} into several marked clusters using a value δ. The initial value of δ is set to ϵ and δ then decreases by one for each round. Thus, in the beginning, there is only one cluster. Dividing clusters with a variance larger than \min_var increases the number of clusters. In algorithm TC, unmarked clusters refer to clusters that do not need to be refined, whereas marked clusters refer to clusters that should be further partitioned. For each cluster CL_i, if $Var(CL_i)$ is smaller than \min_var, the cluster CL_i is unmarked. Otherwise, δ decreases by 1 and algorithm TC re-clusters the time slots in unmarked clusters with the updated value of δ. Algorithm TC partitions TP_{AMS} iteratively until no marked cluster remain or until $\delta = 1$. If there are no marked clusters, CTP_{AMS} is generated. Otherwise, if there are still marked clusters with their variance values larger than \min_var, algorithm TC continues to finely partition these marked clusters so that the variance for every marked cluster is constrained by the threshold value of \min_var.

When the value of δ is 1, the time slots of movement records in a marked cluster generally follow a sequence of consecutive integers such that the variance of marked clusters is still larger than \min_var. This situation results in loss of spatio-temporal locality. For example, given movement records with a sequence of consecutive time slots $1, 2, 3, 4, 5, 6, 7$, and ϵ, the differences of consecutive time slots are small, the location of a user at time slot 1 and that at time slot 7 are probably far from each other. To deal with this problem, this cluster must be further partitioned into smaller clusters. The variance of each refined cluster should be smaller than \min_var. Moreover, to guarantee that no time slots of each refined clusters are as close as possible, the total variance of the refined clusters should be minimized. To derive the optimal method for further partitioning, the following Lemma is derived:

Lemma. Given a cluster that has a sequence of consecutive integers $1, 2, 3, ..., n$ and a positive integer k, the optimal method to minimize the sum of variance in each cluster and divide this cluster into k clusters is to partition it into k sub-clusters each with a size of $\frac{n}{k}$.

Proof. Suppose that $\langle 1, 2, 3, ..., n \rangle$ is divided into k sub-clusters: $\langle 1, t_1 \rangle, \langle t_1 + 1, t_2 \rangle, ..., \langle t_k - 1 + 1, n \rangle$. Let $t_0 = 0$, $t_k = n$, and $Var_i = Var(\langle t_i - 1 + 1, t_i \rangle)$. Our goal is to find the cutting points (i.e., $t_1, t_2, ..., t_{k-1}$) to minimize $f = \sum_{i=1}^{k} Var_i$.

The variance remains the same constant for a sequence of consecutive integers with the same length. For example, consider two clusters with two sequences of consecutive time slots: $\langle 1, 2, 3, 4, 5 \rangle$ and $\langle 7, 8, 9, 10, 11 \rangle$. It can be verified that $Var(\langle 1, 2, 3, 4, 5 \rangle) = Var(\langle 7, 8, 9, 10, 11 \rangle)$. Since $Var(\langle 1, 2, ..., n \rangle) = \frac{1}{12} (n^2 - 1)$, we have $f = \sum_{i=1}^{k} Var_i = \frac{1}{12} \sum_{i=1}^{k} \left((t_i - t_{i-1})^2 - 1 \right)$.

To minimize $f = \sum_{i=1}^{k} Var_i$, the cutting points $t_1, t_2, ..., t_{k-1}$ are derived by letting the first derivatives be zero.

$$\frac{df}{dt_i} = 4t_i - 2t_{i-1} - 2t_{i+1} = 0$$
$$\frac{df}{dt_{i+1}} = 4t_{i+1} - 2t_i - 2t_{i+2} = 0$$

Thus, we can have the following terms:

$$\begin{aligned}
 t_1 &= \frac{t_0 + t_2}{2} \\
 t_2 &= \frac{t_1 + t_3}{2} \\
 &\vdots \\
 t_{k-1} &= \frac{t_{k-2} + t_k}{2}
\end{aligned}$$
Using substitution, we have
\[
\begin{align*}
t_1 &= \frac{1}{k} t_{k-1} \\
t_2 &= \frac{2}{k} t_{k-1} \\
&\vdots \\
t_k &= \frac{k-1}{k} t_{k-1}
\end{align*}
\]

Therefore, we can get:
\[
\begin{align*}
t_1 &= \frac{1}{k} n \\
t_2 &= \frac{2}{k} n \\
&\vdots \\
t_k &= \frac{k-1}{k} n
\end{align*}
\]

From the derivation above, the optimal way to divide \(1,2,3,\ldots,n\) into \(k\) sub-clusters is to divide \(1,2,3,\ldots,n\) into \(k\) sub-clusters each with size of \(\frac{n}{k}\).

This Lemma provides a guideline for partitioning a marked cluster that has a sequence of consecutive time slots into smaller clusters. Since the value of \(k\) is not known in advance, the value of \(k\) is initially set 2, and then increases in each iteration. In each iteration, a marked cluster is evenly divided into \(k\) sub-clusters, each with size of \(\frac{n}{k}\), and the variance of each sub-cluster is tested. If the variance of a sub-cluster is smaller than \(\text{min_var}\), the procedure terminates. Otherwise, the value of \(k\) is increased by 1 and the marked cluster will be further refined into smaller sub-clusters.

Consider the execution scenario in Table 4, where the time projection sequence is \(TPAMS = <1,2,3,4,5,9,10,14,17,18,20>\). The initial cluster is \(<1,2,3,4,5,9,10,14,17,18,20>\). Given \(\text{min_var} = 1.6\), algorithm TC first roughly partitions \(TPAMS\) into three clusters. Table 4 shows that two marked clusters (i.e., \(<1,2,3,4,5>\) with \(Var(<1,2,3,4,5>) = 2\) and \(<14,17,18,20>\) with \(Var(<14,17,18,20>) = 4.69\) are determined because the variance values of these two clusters are larger than 1.6. Then, \(\hat{\delta}\) is reduced to 2, and these two marked clusters are re-examined. In the following run, the previous cluster \(<14,17,18,20>\) is divided into two clusters, i.e., \(<14>\) and \(<17,18,20>\) in this run. Since \(Var(<14>) = 0 < 1.6\) and \(Var(<17,18,20>) = 1.56 < 1.6\), these two clusters remain unmarked. Following the same procedure, algorithm TC partitions marked clusters until \(\hat{\delta}\) equals 1. Run 4 in Table 4 shows that \(<1,2,3,4,5>\) is still a marked cluster with \(Var(<1,2,3,4,5>) = 2\). Therefore, algorithm TC finely partitions \(<1,2,3,4,5>\). The value of \(k\) is initially set at 1. Since \(Var(<1,2,3,4,5>) = 2.5\) is larger than \(\text{min_var}\) (i.e., 1.6), \(k\) increases to 2. Then, \(<1,2,3,4,5>\) is divided into \(<1,2,3>, <4,5>\). Of these two clusters (i.e., \(<1,2,3>\) and \(<4,5>\), the \(<1,2,3>\) cluster has the larger variance and thus \(<1,2,3>\) is compared with the value of \(\text{min_var}\). Since the \(Var(<1,2,3>) = 0.67 < 1.6\), algorithm TC stops the clustering process. Finally, a \(CTPAMS\) is generated as \(<1,2,3>, <4,5>, <9,10>, <14>, <17,18,20>\).

3.3.3. Time complexity analysis

Algorithm TC is of polynomial time complexity. Let \(TPAMS\) have \(n\) numbers. Algorithm TC needs \(O(n)\) to divide \(TPAMS\) into clusters from lines 5 to 15. From lines 17 to line 25, assume that there are still \(s\) clusters with \(m\) numbers to be refined.

Algorithm 2. Algorithm TC

Input: time projection sequence: \(TPAMS\), thresholds: \(\text{min_var}\)

Output: clustered time projection sequence: \(CTPAMS\)

1: \hspace{10mm} begin
2: \hspace{10mm} \(\hat{\delta} \leftarrow \epsilon;\)
3: \hspace{10mm} \(\text{CL} \leftarrow TPAMS;\)
4: \hspace{10mm} Mark \(\text{CL}\);
5: \hspace{10mm} while there exist marked clusters and \(\hat{\delta} \geq 2\) do
Since k is at most m, we have $s = O(m)$ to run the clustering process. The worst case occurs when estimating the time complexity of algorithm TC. In the worst case (i.e., $m = n$), the overall time complexity of algorithm TC is at most $O(n)$.

3.4. Algorithm MF: deriving movement functions

Given the aggregation movement sequence AMS devised by algorithm LS and its clustered time projection sequence CTP_{AMS} generated by algorithm TC, algorithm MF is able to derive a sequence of movement functions able to estimate the frequent movement behaviors of mobile users. For each cluster, we need to derive confidence movement functions. Then, linkage movement functions are determined to link confidence movement functions among clusters. Finally, a movement function $F(t)$ is derived and represented as $<U_i(t), E_i(t), U_{i1}(t), E_{i1}(t),..., U_{in}(t), E_{in}(t)>$, where $E_i(t)$ is the confidence movement function in cluster CL_i of CTP_{AMS} and $U_i(t)$ is the linkage movement function from $E_i(t)$ to $E_{i+1}(t)$.

3.4.1. Deriving confidence movement functions

For each cluster CL_i of CTP_{AMS}, the confidence movement function of a mobile user, expressed as $E_i(t) = (\hat{x}_i(t), \hat{y}_i(t), T_i)$, is derived. In this case, $\hat{x}_i(t)$ (respectively, $\hat{y}_i(t)$) is a movement function in x-coordinate axis (respectively, in y-coordinate axis) and the confidence movement function is valid for the time interval indicated in T_i.

Without loss of generality, let CL_i be $<t_1, t_2, ..., t_n>$, where t_j denotes one of the time slots in CL_i for $j = 1, 2, ..., n$. AMR^c contains frequent base stations with their corresponding counts in the i-th time slot of AMS. To derive movement functions, the location of base stations should be converted from the symbolic model into the geometric model through a map table that indicates the coordinates of base stations and is provided by telecommunication companies. Hence, given AMS and CTP_{AMS}, for each cluster of CTP_{AMS}, the geometric coordinates of frequent base stations can be derived along with their corresponding counts and represented as $(x_1, y_1, w_1), (x_2, y_2, w_2), ..., (x_n, y_n, w_n)$ where t_i is the corresponding time slot, x_i (respectively, y_i) is the x-coordinate (respectively, y-coordinate) of the base station, and w_i is the number of phone calls a mobile user has made at this base station. Accordingly, for each cluster of CTP_{AMS}, a weighted regression analysis is able to derive the corresponding confidence movement function.

Given a set of data points, the goal of regression analysis is to derive the best estimated curve with the minimal sum of least square errors [28]. One aggregation movement sequence is generated in Step 1, which calculates the appearance counts of base stations. Thus, based on the appearance counts of base stations, we can derive curves closer to those base stations with larger appearance counts. This is because the more calls a user makes at a base station, the more confidence we have that this mobile user frequently appears in the coverage area of this base station. Another advantage of utilizing weighted regression analysis is that in a real scenario of mobile computing systems, the base station that serves to a user is not always the nearest base station. This is because other base stations nearby will cover the nearest base station when it becomes overloaded. However, the scenario above does not always happen. The appearing counts of other base stations will be fewer than that of the nearest base station. Therefore, weighted regression analysis makes it possible to derive curves close to base stations with higher appearance counts.

Given data points within a cluster, this article considers the derivation of the $\hat{x}(t)$. An m-degree polynomial function $\hat{x}(t) = a_0 + a_1 t + ... + a_m t^m$ is derived to approximate the movement behavior along x-coordinate axis. Given the data points $(t_1, x_1, y_1, w_1), (t_2, x_2, y_2, w_2), ..., (t_n, x_n, y_n, w_n)$, the regression coefficients $(a_0, a_1, ..., a_m)$ are then selected to minimize the residual sum of squares $e = \sum_{i=1}^n w_i e_i^2$, where $e_i = (x_i - (a_0 + a_1 t_i + a_2 t_i^2 + ... + a_m t_i^m))$. The value of m is application dependent, and must be smaller than the number of data points. The value of m is proportional to the precision of the fitting curve. Since $\hat{x}(t)$ is obtained by matrix operations, the matrix size is thus the dominant factor in regression performance. However, the impact of weighted regression analysis on execution time is not significant in this article since the maximal value of m is usually small. When
the value of \(m \) is small, the execution time of regression analysis is acceptable. Therefore, according to the number of data points available, the value of \(m \) should be set as large as possible.

For ease of presentation, the following terms are defined:

\[
H = \begin{bmatrix}
1 & t_1 & (t_1)^2 & \cdots & (t_1)^m \\
1 & t_2 & (t_2)^2 & \cdots & (t_2)^m \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & t_n & (t_n)^2 & \cdots & (t_n)^m \\
\end{bmatrix},
\]

\[
a^* = \begin{bmatrix}
a_0 \\
a_1 \\
a_2 \\
\vdots \\
a_m \\
\end{bmatrix},
\]

\[
x = \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\vdots \\
x_n \\
\end{bmatrix},
\]

\[
e = \begin{bmatrix}
e_1 \\
e_2 \\
e_3 \\
\vdots \\
e_n \\
\end{bmatrix},
\]

\[
W = \begin{bmatrix}
w_1 \\
w_2 \\
w_3 \\
\vdots \\
w_n \\
\end{bmatrix}.
\]

By solving the equation \((\sqrt{WH})^T \sqrt{WH} a^* = (\sqrt{WH})^T \sqrt{W} \tilde{b}_e \), \(a^* \) can be derived such that the value of \(e \) is minimized. This leads to \(\tilde{x}(t) = a_0 + a_1 t + \cdots + a_m t^m \). \(\tilde{y}(t) \) can be derived following the same procedure. As a result, for each cluster of CTPAMS, the confidence movement function \(E_i(t) = (\tilde{x}(t), \tilde{y}(t), [t_1, t_2]) \) of a mobile user can be devised.

For example, let \(AMS = <\{A1, 16, B1, \{A1\}, \{D2, F3\}, \{H2\}> \) and the coordinates of A, B, D, F and H be (1, 1), (1, 2), (4, 2), (3, 3) and (5, 3), respectively. Given \(AMS \) and \(CTPAMS = <1, 2, 4, 5> \), it is possible to obtain data points with their weights, as Table 5 shows. By setting \(m \) to 3, the 3-degree polynomial \(\tilde{x}(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \) is derived. The coefficients \(a_0, a_1, a_2 \) and \(a_3 \) are determined by a regression curve that minimize the residual sum error. That is, \(a^* = (a_0, a_1, a_2, a_3)^T \) must be determined. Since there are six data points with their corresponding time slots of 1, 1, 2, 4, 4 and 5, \(H = \)

\[
\begin{bmatrix}
1 & 1 & 1 & (1)^2 & (1)^3 \\
1 & 1 & 1 & (1)^2 & (1)^3 \\
1 & 1 & 2 & (2)^2 & (2)^3 \\
1 & 4 & 4 & (4)^2 & (4)^3 \\
1 & 4 & 4 & (4)^2 & (4)^3 \\
1 & 5 & 5 & (5)^2 & (5)^3 \\
\end{bmatrix}
\]

is then calculated. The weights of the data points are 16, 1, 1, 2, 3 and 2, respectively. Hence, \(\sqrt{W} \) is a diagonal matrix with the diagonal entries of \(\{\sqrt{16}, \sqrt{1}, \sqrt{1}, \sqrt{2}, \sqrt{3}, \sqrt{2}\} \). Table 5 shows that \(\tilde{b}_e = (1 1 4 3 5)^T \). By solving the equation \((\sqrt{WH})^T \sqrt{WH} a^* = (\sqrt{WH})^T \sqrt{W} \tilde{b}_e \), we can get \(a = (2.333 -2.133 0.867 -0.066)^T \). Therefore, \(\tilde{x}(t) = 2.333 -2.133 t + 0.867 t^2 -0.066 t^3 \) is devised to predict the x-coordinate axis of the mobile user from \(t = 1 \) to \(t = 5 \). Similarly, \(\tilde{y}(t) = (1 2 1 2 3 3)^T \) is then determined from Table 5. By solving the normal equation \((\sqrt{WH})^T \sqrt{WH} a^* = (\sqrt{WH})^T \sqrt{W} \tilde{b}_e \), we can get \(a^* = (2.529 -2.386 1.021 -0.105)^T \). We can obtain \(\tilde{y}(t) = 2.529 -2.386 t + 1.021 t^2 -0.105 t^3 \). Fig. 3 shows that the confidence movement functions, where the circle point indicates the location of a base station with its corresponding weight and the solid line is the curve derived by algorithm MF. The confidence movement function closely resembles actual movement behavior, demonstrating the advantage of utilizing regression analysis to mine user movement patterns.

Algorithm 3. Algorithm MF

Input: AMS and clustered time projection sequence CTPAMS

Output: a list of movement functions \(F(t) = \{E1(t), U1(t), E2(t), \ldots, EK(t), UK(t)\} \)

1: begin
2: \(F(t) = \langle \rangle \)
3: for \(i = 1 \) to \(k - 1 \) do
4: begin
5: doing regression on \(CL_i \) to generate \(E_i(t) \)
6: doing regression on \(CL_{i+1} \) to generate \(E_{i+1}(t) \)
7: \(t_f = \) the last time slot in \(CL_i \)
8: \(t_0 = \) the first time slot in \(CL_{i+1} \)
9: using inner interpolation to generate \(U_i(t) = (\tilde{x}(t), \tilde{y}(t), [t_f, t_0]) \)
10: insert \(E_i(t), U_i(t) \) and \(E_{i+1}(t) \) in \(F(t) \)
11: end
12: if \(1 \in CL_i \) then
13: generate \(U_0(t) \) and insert \(U_0(t) \) into the head of \(F(t) \)
14: if \(\epsilon \neq CL_4 \) then
15: generate \(U_5(t) \) and insert \(U_5(t) \) into the tail of \(F(t) \)
16: end

3.4.2. Deriving linkage movement functions

Given the AMS and a cluster of \(CTPAMS = <CL_1, CL_2, \ldots, CL_k> \), algorithm MF generates the whole confidence movement function, denoted as \(F(t) \). \(F(t) \) is represented as \(\{U_0(t), E_1(t), U_1(t), E_2(t), \ldots, E_k(t), U_k(t)\} \), where \(E_i(t) \) is the confidence movement function in cluster \(CL_i \) of \(CTPAMS \) and \(U_i(t) \) is the linkage movement function from \(E_i(t) \) to \(E_{i+1}(t) \). Algorithm MF (from lines 5 to 6) shows that for each cluster of \(CTPAMS \), the corresponding confidence movement functions are derived using the regression method above. However, the first time slot may not be included in \(CL_1 \). If \(t_0 \) is the first time slot of \(CL_1 \) and \(t_0 \neq 1 \), the \(U_0(t) = \{E_1(t_0), [1, t_0]\} \) is generated for the boundary condition. Otherwise, \(U_0(t) \) will not be valid in \(F(t) \). The same is true for \(U_k(t) \). The linkage movement function is calculated by interpolation (in line 9 of algorithm MF).

3 For the proof, see Appendix A.
For example, assume that $CTPAMS = <1,2,4,5>,<7,9,10>$. $E_1(t) = (2.333 - 2.133t + 0.867t^2 - 0.066t^3,2.529 - 2.386t + 1.021t^2 - 0.105t^3,[1,5])$ and $E_2(t) = (6 + 1.17t - 0.16t^2,3 + 0t + 0t^2,[7,10])$. It can be verified that the first time slot of cluster $<1,2,4,5>$ is 1. The last time slot of $<1,2,4,5>$ is 5 and the first time slot of cluster $<7,9,10>$ is 7. Thus, a linkage movement function should be generated by inner interpolation. From $E_1(t)$, at the 5th time slot, we can have a data point $(x = 5.09, y = 3)$. At the 7th time slot, a data point $(x = 6.35, y = 3)$ is generated by applying $E_2(t)$. By inner interpolation, we could have $U_1(t) = 1.94 + \frac{6.35 - 5.09}{5 - 1}t + \frac{3 - 2}{5 - 1}t, (5,7))$. Similarly, $U_2(t)$ can be determined. After obtaining the confidence and linkage functions, the $F(t) = <E_1(t),U_1(t),E_2(t),U_2(t)>$ can be derived. Fig. 4 shows the snapshot of $F(t)$. When using $F(t)$ to predict the location of mobile users, we will only use the confidence movement function whose time interval includes the given time t. For $F(t) = <E_1(t),U_1(t),E_2(t),U_2(t)>$, when the time is 4, only $E_1(t)$ will be used to predict the location since the given time 4 is within the time interval of $E_1(t)$.
3.4.3. Time complexity analysis

Algorithm MF is of polynomial time complexity. When the maximal size in row/column is \(n \), the time complexity used to solve the normal equation by Strassen’s algorithm is \(\Theta(n^{\log_27}) \) [29]. Moreover, the interpolation by Lagrange’s formula requires \(\Theta(m^2) \), where \(m \) represents the number of points involved in the interpolation [29]. Since \(n \) is usually larger than \(m \), the value of \(\Theta(n^{\log_27}) \) dominates the complexity of algorithm MF.

3.5. Estimating a user’s location based on a movement function

For many applications, it is necessary to estimate a user’s location in the symbolic model. In this case, \(F(t) \) represents the movement behavior of mobile users. Thus, once movement functions \(F(t) \) have been obtained, the location of mobile users can be predicted as \((x_i, y_i) \), which denotes the coordinates of applying the movement function at time \(t \). Through the estimated coordinate \((x_i, y_i) \), this coordinate can be transformed into a symbol which contains \((x_i, y_i) \). In our example, since each base station is aware of its location and coverage area, it is easy to transform the geometric location \((x_i, y_i) \) into the identification of the base station in the symbolic model.

4. Performance evaluation

This section evaluates the effectiveness and efficiency of mining user movement patterns from call detail records. Section 4.1 presents the models for user behaviors, including movement behavior and calling behavior. Section 4.1 also describes both the synthetic dataset and the real dataset. Section 4.2 presents experimental results. Finally, the RUMP sensitivity analysis is given in Section 4.3.

4.1. Modeling user behaviors

User behaviors in a mobile computing environment include movement behaviors and calling behaviors. This section first describes the synthetic dataset used in this study, in which user movement behaviors are derived according to pre-defined parameters. To simulate a mobile computing environment, we use a 16 × 16 mesh network, in which each node represents a base station. Thus, the simulation model contains 256 base stations [4,30]. Moreover, our simulation considers 10,000 users. As in [31], this simulation considers three movement trajectories. For each user, we randomly select one movement trajectory as his/her own movement pattern. Then, a user mostly follows his/her own movement pattern. However, users may have some movements that do not follow their movement patterns. These movements are viewed as biased movements. To prevent users from diverging too far from their movement patterns due to biased movements, we borrowed the concept in [17] that allows users to move back to their movement patterns. The number of movements made by mobile users in one time slot is modeled as a uniform distribution between \(mf - 2 \) and \(mf + 2 \). The larger the value of \(mf \) is, the more frequently mobile users move. We used the design above to generate user movements.

However, for a real dataset, it is difficult to obtain real call detail records from mobile service providers due to the privacy issue of customers. Moreover, the RUMP approach requires the location information of base stations, which is business-related information for mobile service providers. Thus, for real datasets, we use real movement logs from a GPS-based testbed, CarWeb [32], and generate simulated CDRs along with real movements. In the CarWeb platform, users can obtain their locations from a GPS device every five seconds and upload their locations to CarWeb servers. Fig. 5 shows one frequent movement behavior, where every red flag represents a user-uploaded location. By collecting user movement behaviors for four months, we produce roughly 200 movement trajectories for each user. In the CarWeb dataset, the ground truth is known, which is useful to validate our mining results. In the CarWeb dataset, a user has frequent and infrequent movements. To simulate the coverage area of a base station, we divided the whole space into grids and viewed each grid as the coverage area of one base station. Fig. 5 shows the grids in the CarWeb datasets, where the frequent movement behaviors of this user occurred within or around 16 grids. Furthermore, since the traveling times of movement sequences in the CarWeb dataset are not exactly the same, the traveling time for each trajectory is thus normalized to 24 hours. In both datasets, the time slot is set to 2 hours and the value of \(c \) is 12.

Once user movements have been determined, calling behaviors can be modeled for each user’s movements. According to [30], calling behavior can be modeled as a Poisson distribution. Moreover, a Zeta distribution is used to model burst calling behavior in this article. In a Poisson distribution, the probability that a user has \(x \) calls in a time slot is determined by \(P(x) = \frac{e^{-\lambda} \lambda^x}{x!} \), where \(x \) is the number of calls and \(\lambda \) is the expected number of calls in a time slot. Three time slots are grouped and then each time slot is divided into three subsections, producing a total of 9 subsections in each group. For each user, the probability of having phone calls in the \(x \)-th subsection of a group is \(Z(x) = \frac{x}{\sum_{i=1}^{n} i} \), where \(x \) indicates the subsection order in a group (i.e., the \(x \)-th subsection in a group) and \(\lambda \) is the value of the exponent variable for a Zeta distribution. In the beginning of subsections in a group, a user will have more phone calls, but the number of phone calls decays exponentially in the remaining subsections of a group. The speed of decay is determined by the parameter \(\lambda \); the larger this parameter is, the faster the decay is. For brevity, \(CDR(\rho, \lambda) \) indicates that the

4 Due to customer privacy issues, it is impossible to get the ground truth of user movement behaviors even if mobile service providers were to release call detail records.
calling behavior is modeled as ρ distribution with parameter λ, where the value of ρ is set to P (respectively, Z) if a Poisson (respectively, Zeta) distribution is used. For example, $\text{CDR}(P, 2)$ represents the calling behavior of a user under a Poisson distribution with $\lambda = 2$.

For comparison purposes, we also implemented the method of mining movement patterns in [4], denoted by UMP. To validate the quality of movement patterns mined by UMP and RUMP, we could utilize movement patterns to predict next movements of users. The accuracy of prediction indicates the quality of movement patterns mined. Hence, the hop count (referred to as hn) represents the number of base stations between the prediction location and the actual location of the mobile user. Intuitively, the smaller the value of the hop count, the closer the current location and the derived location. Thus, the expected value of hop counts per call $E(hn/call)$ is defined as $\frac{\text{total hop counts}}{\text{number of calls}}$, where the total hop counts is the sum of hop counts per call and number of calls is the total number of calls per user. To evaluate the quality of user movement patterns mined by UMP and RUMP, the precision ratio is derived and defined as $1 - \frac{E(hn/call)}{\frac{1}{2n}}$, where the size of network is $n \times n$ and $E(hn/call)$ is the expected value of hop counts per call. The precision ratio represents the percentage of the average hop counts from the derived cell to the current cell a mobile user with respect to the network size. Table 6 summarizes the definitions of some primary simulation parameters. In this table, the default values are optimal values based on following experiments in our experimental environment. Each experimental result was obtained by an average of twenty experiments.

4.2. Experiments of UMP and RUMP

We first evaluated UMP and RUMP in terms of the data amount, the precision ratio, and the execution time. The data amount is the number of records stored in a movement log and a CDR log. Fig. 6(a) shows that the data amount of UMP increases with the value of mf. This is because with a larger mf, a user tends to move frequently, producing a greater amount of data of the movement log. On the contrary, the data amount in RUMP remains almost constant. Fig. 6(b) shows that the precision ratio of RUMP is smaller than that of UMP. However, with $\text{CDR}(P, 4)$, the precision ratio of RUMP is not far below UMP. Note, however,
that though UMP performs better than RUMP in terms of the precision ratio, it also incurs a larger amount of data in a movement log. To investigate the precision ratio gained by having the additional amount of log data, this study defines data utilization as the ratio between the precision ratio and the amount of log data. Fig. 7 shows the data utilization of UMP and RUMP. With a
higher mf, the data utilization of UMP drastically decreases. This is because the amount of data in the movement log increases dramatically as users move frequently. If the value of mf is smaller, the data utilization of RUMP with a Zeta distribution is larger than that of RUMP with a Poisson distribution. On the other hand, when the value of mf increases, the data utilization of RUMP with a Poisson distribution is larger than that of RUMP with a Zeta distribution. It is primarily because when mf is large, it is better to have more uniform calling behaviors to allow the call detail records fully reflect user movement behaviors. These experimental results show that RUMP has a higher data utilization than UMP. By exploring CDRs, RUMP is more cost-effective in mining user movement patterns.

Fig. 8(a) shows the data amount of UMP and RUMP with various calling behaviors under the CarWeb dataset. Fig. 8(a) shows that the data amount of RUMP is much smaller than that of UMP. Furthermore, Fig. 8(b) shows that the precision ratios of UMP and RUMP, indicating that the difference between UMP and RUMP is not large. This suggests that RUMP is able to achieve acceptable precision ratios when using a smaller amount of data. However, through performing better than RUMP in terms of the precision ratio, UMP incurs more amounts of data in the movement log. In Fig. 9, the data utilization of UMP is much smaller than that of RUMP, showing that with a smaller amount of log data, RUMP can still achieve an acceptable precision ratio.

Fig. 10 shows the execution time of UMP and RUMP under the synthetic dataset. Fig. 9 shows that the RUMP execution time is smaller than that of UMP in both the synthetic dataset and the CarWeb dataset. With a larger number of movement sequences, the UMP execution time significantly increases. With a higher mf, the execution time of RUMP becomes much slower than that of UMP. Further, RUMP has better scalability than UMP. In addition, Fig. 9 shows the execution time of UMP and RUMP on the CarWeb dataset. Similar to the results in the synthetic dataset, the RUMP execution time is much smaller than that of UMP. As the number of movement sequences increases, UMP takes longer to discover user movement patterns. On the other hand, the RUMP performance is determined by the data amount generated by calling. Since the data amount generated by calling is usually fewer than that by movements, RUMP incurs a smaller execution time.
4.3. Sensitivity analysis of RUMP

This section further investigates the parameters used in RUMP. First, the impact of w is presented. Then, we examine the impact of thresholds on the mining results.

4.3.1. Impact of w

Fig. 11 shows the experiments of varying w values for RUMP under both the synthetic dataset and the CarWeb dataset. This figure indicates that the RUMP precision ratio increases as the value of w increases in both datasets. This is because as the value of w increases, the number of movement sequences considered in RUMP increases as the value of w increases. In this case, RUMP can use more calls to discover user movement patterns. The RUMP precision ratio with a Poisson distribution is larger than that of RUMP with a Zeta distribution. This is because the calling behavior in a Poisson distribution is much more evenly across user movements. Thus, RUMP is able to fully capture user movement behaviors when the calling behavior follows a Poisson distribution. In a Poisson distribution, with a larger value of λ, the precision ratio of RUMP is larger. For a larger value of λ, the amount of call detail records tends to increase, thereby reflecting the complete movement behaviors of users. For users with a larger number of calls and non-burst calling behavior, the value of w can be set smaller to quickly obtain movement patterns. In contrast, for users with a smaller number of calls or burst calling behavior, the value of w should be set larger to improve the precision ratio of the movement patterns mined by RUMP.

4.3.2. Impact of thresholds in algorithm LS

This section examines the impact of min_freq and min_sim on the RUMP performance. Algorithm LS uses min_freq and min_sim thresholds to extract CDRs representing frequent movement behaviors. Figs. 12 and 13 show RUMP experiments with...
varying values of \(\text{min_freq} \) and \(\text{min_sim} \). Fig. 12(a) shows the result of using RUMP on the synthetic dataset. This figure indicates that the RUMP precision ratio tends to increase when the value of \(\text{min_freq} \) increases from 0.1 to 0.3. This figure also shows that the RUMP precision ratio decreases when \(\text{min_freq} \) exceeds than 0.3. This is because increasing \(\text{min_freq} \) filters out areas through which users do not frequently move are filtered out. However, a larger \(\text{min_freq} \) is too strict for identifying what areas are frequent and decreases the precision ratio. Fig. 12(b) shows that the same phenomenon for the CarWeb dataset. Selecting the value of \(\text{min_freq} \) should be determined empirically. For example, in this experiment, we set \(\text{min_freq} \) at 0.3.

Fig. 13 shows the RUMP precision ratio with various values of \(\text{min_sim} \). In both datasets, the RUMP precision ratio tends to increase when \(\text{min_sim} \) increases from 0.1 to 0.5. However, when the value of \(\text{min_sim} \) exceeds than 0.5, the RUMP precision ratio decreases. The \(\text{min_sim} \) threshold is set to identify whether or not a movement sequence is similar to the frequent movement behavior. With a larger value of \(\text{min_sim} \), only a few movement sequences are identified as being similar to frequent user movement behaviors. This, in this turn, decreases the RUMP precision ratio. Therefore, the value of \(\text{min_sim} \) should be carefully set. Experimental results shows that \(\text{min_freq} \) should be set to 0.3 and \(\text{min_sim} \) should be set to be 0.5 to achieve the best precision ratio performance.

4.3.3. Impact of thresholds in algorithm TC

As described above, the value of \(\text{min_var} \) for algorithm TC affects the accuracy of the RUMP time clustering results. We conducted experiments to examine the impact of \(\text{min_var} \). For the synthetic dataset, Fig. 14(a) shows that the precision ratio of RUMP with the values of threshold \(\text{min_var} \) varied. This figure indicates the RUMP precision ratio significantly increases when \(\text{min_var} \) is 0.25. However, the precision ratio of RUMP decreases when \(\text{min_var} \) exceeds than 0.75. This is because excessively
large values of \(\text{min}_\text{var} \) result in most of the call detail records being grouped in the same cluster. Hence, the number of movement functions is not enough to capture user movement behaviors. Furthermore, with a larger \(mf \), the \textit{RUMP} precision ratio is smaller and significantly decreases when \(\text{min}_\text{var} \) is larger. For the CarWeb dataset, Fig. 14(b) shows the similar experimental results. These results indicate that \(\text{min}_\text{var} \) should be set to be a smaller value for users who move frequently. The value of \(\text{min}_\text{var} \), which can be determined empirically, should not set too larger. For example, in Fig. 14(a), \(\text{min}_\text{var} \) should set to 0.75 because the \textit{RUMP} precision ratio is the highest.

Fig. 15 depicts the \textit{RUMP} precision ratio with various calling behaviors. In Fig. 15(a), the results of CDR(P,2) and CDR(P,4) are similar to the results above. However, it is interesting to note that the precision ratios of CDR(Z,2) and CDR(Z,4) do not decrease when the value of \(\text{min}_\text{var} \) exceeds 0.75. Since burst calls happen in the beginning of every three time slots, most of the call detail records in these three time slots can be grouped into one cluster. Fig. 15 shows the similar results in the CarWeb dataset. Thus, we can set \(\text{min}_\text{var} \) as 0.75 to obtain the highest \textit{RUMP} precision ratio.

5. Conclusions

User movement patterns can provide a lot of benefits in many mobile design schemes and applications, including designing a paging area, developing data allocation schemes, conducting querying strategies, or offering navigation services. This article proposes a regression-based approach called \textit{RUMP} for mining user movement patterns from call detail records. To fully exploit the fragmented spatio-temporal information hidden in such trajectories, the proposed regression-based solution discovers user movement patterns. The \textit{RUMP} approach uses three algorithms. First, algorithm LS extracts CDRs that reflect the frequent movement behaviors of mobile users. By capturing similar movement sequences from call detail records, an aggregation movement sequence is computed to represent the frequent movement behaviors of mobile users in each time slot. The feature of spatio-temporal locality states that if the time interval between consecutive calls is small, the mobile user is likely to have moved nearby. By exploring this feature, algorithm TC is able to determine the number of regression functions properly by clustering those movement records whose time of occurrence are very close from an aggregation movement sequence. For each cluster of the aggregation movement sequence, algorithm MF generates the movement functions representing user movement patterns of mobile users. This article evaluates the performance of the proposed algorithms and conducts sensitivity analysis on several design parameters. Experimental results indicate that \textit{RUMP} can efficiently and effectively discover user movement patterns that capture the frequent movement behaviors of mobile users.

Appendix A. Proof of minimizing residual error sum

Following the same notation in Section 3.4, the residual sum of squares (i.e., \(e_x = \sum_{i=1}^{n} w_i e_i^2 \)) can be expressed as \(e_x = e^T We \) in a linear algebra manner. All elements in \(W \) are positive and \(e \) is able to be formulated as \((b_x - Ha^*) \). Thus, we have:

\[
\begin{align*}
\epsilon_x &= e^T We = (b_x - Ha^*)^T W (b_x - Ha^*) = (b_x - Ha^*)^T \sqrt{W} \sqrt{W} (b_x - Ha^*) = (\sqrt{W} b_x - \sqrt{W} Ha^*)^T (\sqrt{W} b_x - \sqrt{W} Ha^*) \\
&= \| \sqrt{W} b_x - \sqrt{W} Ha^* \|
\end{align*}
\]
let \(A = \sqrt{W}H \) and \(B = \sqrt{W} \tilde{b} \). The main objective is to minimize \(\varepsilon_s = | |B - AA^*|| \). According to the least squares theorem, \(B - AA^* \) must be orthogonal to \(AA^* \) so as to minimize \(\varepsilon_s \). For the sake of brevity, the description of least squares theorem is omitted in this article. We can have:

\[
B - AA^* \in \mathcal{R}(A^\perp) = N (A^T),
\]

where \(\mathcal{R}(A^\perp) \) represents the orthogonal complement of column space of \(A \) and \(N (A^T) \) represents the kernel space of \(A^T \):

\[
\Rightarrow A^T (B - AA^*) = 0
\]

\[
\Rightarrow AA^* = A^T B
\]

\(A^T B \) is viewed as the normal equation. By substituting \(A = \sqrt{W}H \) and \(B = \sqrt{W} \tilde{b} \), we have \((\sqrt{W}H)^T (\sqrt{W}H)A^* = (\sqrt{W}H)^T \sqrt{W} \tilde{b} \). By solving the normal equation, \(a \) can be derived to minimize the value of \(\varepsilon_s \).

References

Wen-Chih Peng was born in Hsinchu, Taiwan, R.O.C in 1973. He received the BS and MS degrees from the National Chiao Tung University, Taiwan, in 1995 and 1997, respectively, and the Ph.D. degree in Electrical Engineering from the National Taiwan University, Taiwan, R.O.C in 2001. Currently, he is an associate professor at the department of Computer Science, National Chiao Tung University, Taiwan. Prior to joining the department of Computer Science and Information Engineering, National Chiao Tung University, he was mainly involved in the projects related to mobile computing, data broadcasting and network data management. Dr. Peng serves as PC members in several prestigious conferences, such as IEEE International Conference on Data Engineering (ICDE), Pacific Asia Knowledge Discovering and Mining (PAKDD) and Mobile Data Management (MDM). His research interests include mobile computing, network data management and data mining. He is a member of IEEE.

Chih-Chieh Hung was born in Taipei, Taiwan in 1977. He received the MS degrees from National Chiao Tung University, Taiwan in 2005, respectively. Currently, he is a Ph.D. candidate in the department of Computer Science, National Chiao Tung University, Taiwan. During his Ph.D. program, he was mainly involved in the projects related to mobile computing, wireless sensor data management, and location-based services. He received the best paper award in ACM workshop on Location-Based Social Network in 2009. He was also selected as a full-time intern of Microsoft Research Asia in 2010. His research interests include trajectory pattern mining and applications, location-based social network, and mobile data management on sensor networks.