Compact microdisk cavity laser with type-II GaSb/GaAs quantum dots

Citation: Applied Physics Letters 98, 051105 (2011); doi: 10.1063/1.3543839
View online: http://dx.doi.org/10.1063/1.3543839
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/98/5?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Lasing properties of non-polar GaN quantum dots in cubic aluminum nitride microdisk cavities

Photonic crystal microdisk lasers

Visible submicron microdisk lasers

CdSe quantum dot microdisk laser
Appl. Phys. Lett. 89, 231104 (2006); 10.1063/1.2402263

Lasing in GaN microdisks pivoted on Si
Compact microdisk cavity laser with type-II GaSb/GaAs quantum dots

K. S. Hsu, T. T. Chiu, Wei-Hsun Lin, K. L. Chen, M. H. Shih, and Yia-Chung Chang

1Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan
2Department of Photonics, National Chiao Tung University (NCTU), Hsinchu 30010, Taiwan

Abstract

In recent years, the GaSb/GaAs quantum dot (QD) structures have attracted great interest due to their type-II band alignment and intrinsically different properties compared to the well-known InAs/GaAs QD system. There are several studies of the type-II GaSb/GaAs QDs for understanding their optical properties and carrier dynamics. The type-II band alignment accommodates spatially indirect transitions in which the interface properties will drastically influence the optical and electrical properties. Meanwhile, the type-II band-alignment heterojunctions have been widely studied for semiconductor lasers, memories, and light emitting diodes. Besides the emission at the near-infrared or mid-infrared regimes, the light sources with type-II QDs may also have advantages in photon stability, thermal stability, and an extra parameter to fine tune wavelength. These advantages will benefit many applications such as optical integrated circuits, flexible optoelectronics, or bioimage.

In this study, we demonstrated a compact microdisk cavity laser made of type-II GaSb/GaAs QDs on GaAs substrate. The GaSb/GaAs QD epitaxial wafer was prepared for optical emission around 1 μm wavelength. Microdisk cavities were fabricated in the GaSb/GaAs QD membrane by electron-beam lithography and several etching steps. The observed blueshift in photoluminescence (PL) spectrum is one of the key characteristics and indications for type-II QD heterostructure. The lasing action was obtained from a 3.9 μm diameter microdisk with a low threshold. The high quality factor first-order whispering-gallery lasing mode was verified with three-dimensional finite-element method (FEM) simulation.

The microdisk cavities were fabricated from a 225-nm-thick GaSb/GaAs QD layer. This GaSb/GaAs QD layer contains three monolayer thick GaSb QD sublayers separated by GaAs barriers, which forms the active region for the QD heterostructure laser. Figure 1(a) shows the layer structures of the GaSb/GaAs QD epilayer. The first half of the wafer includes 2.0-μm-thick AlGaAs layer grown by metal-organic chemical vapor deposition, followed by the active GaSb/GaAs QD region grown by molecular beam epitaxy. Figure 1(b) shows the atomic force microscopy surface image of the GaSb/GaAs QD layer prior to encapsulation by GaAs. The area density of GaSb QDs is around 4.53 × 10^10 cm^-2.

For fabrication of microdisk cavities on the wafer, a silicon nitride (SiN) layer and a polymethylmethacrylate layer are deposited for the dry etching processes and electron-beam lithography. The microdisk patterns were defined by electron-beam lithography followed by two dry etching steps with CHF3/O2 mixture and Ar/SiCl4 mixture gas in the inductively coupled plasma system. From the suspended membrane structure, the Al0.6Ga0.4As sacrificial layer was removed by HF solution with HF:H2O=1:1. Figure 2(a) shows the scanning electron microscopy (SEM) image of a microdisk cavity with diameter of 3.9 μm and Fig. 2(b) shows the angle view.

The microdisk cavities were then optically pumped in the cryostat by using an 850 nm wavelength diode laser at normal incidence with a 1.5% duty cycle and a 30 ns pulse width. The pump beam was focused on the devices by a 100× objective lens. The pumped beam spot size is approximately 2 μm in diameter. The output power from the lasers was collected by a multimode fiber connected to an optical spectrum analyzer.

Before measuring the optical properties of microdisk cavities, the PL from the GaSb/GaAs QD wafer was first characterized. Figure 3(a) shows the PL spectrum from QD wafer under different incident pump powers. The PL spectra show good optical response form the GaSb/GaAs QD wafer for the wavelength region from 950 to 1100 nm. Three main peaks were observed. They could correspond to lowest unoccupied molecular orbital–highest occupied molecular orbital emissions from QDs of different sizes or from emis-

FIG. 1. (Color online) (a) The illustration of a layer structure with the GaSb/GaAs QD epilayer and (b) the atomic force microscopy image of the GaSb/GaAs QD epilayer.

sions involving excited states of QDs (which are populated at high pump power). The emission associated with the GaSb wetting layer was observed for other samples and it is much weaker than the QD emissions shown here. The PL spectrum also shows a blueshift as the pump power increases, which is one of the key characteristics of type-II gain material, which had been studied widely.17–19 Time-resolved PL spectra characterization is our current work, and we will investigate more details of carrier dynamics in the type-II QD system.19–21 The peak position for the principal PL peak of this QD wafer versus the pump power density is shown in Fig. 3(b). As shown in Fig. 3(b), the principal PL peak is shifted from 1.2424 to 1.2523 eV with increasing pump power density. The black curve in Fig. 3(b) is a fitting curve based on the following relation: (PL peak energy) = 1.299 + 0.000 23 (power density)1/3. This relation between energy and power density can be explained by the band bending effect due to excited carriers and had been reported.6,17 We obtained a good agreement between fitting curve and measured results.

The lasing action of the microdisk cavities was observed during the characterization. The blue curve in Fig. 4(a) illustrates the lasing spectrum from a microdisk laser with 3.9 \(\mu \)m diameter at 150 K temperature. The lasing peak appears at a wavelength of 968.2 nm. The light-in-light-out (L-L) characteristics of this laser are shown with a red curve in Fig. 4(b). It was found that the laser has a low threshold power of 450 pJ/pulse. The linewidths of the lasing mode at various pump powers are also marked with blue circles in Fig. 4(b). A linewidth narrowing was observed as the incident pump power increases, confirming the lasing action from the GaSb/GaAs QD microdisk. The quality factor of the microdisk cavity is approximately 5300, which was estimated from the ratio of resonant peak wavelength to linewidth at transparency (i.e., Q \(\sim \lambda / \Delta \lambda \)). The temperature dependence in lasing threshold was also studied. The device was characterized at different temperatures under similar pumping conditions. Figure 4(c) shows the threshold power versus operating temperature. The threshold power of the microdisk laser rises from 235 to 465 pJ/pulse as the temperature increases form 120 to 170 K. The temperature dependence of lasing threshold \((I_{th}) \) can be described the empirical form,

\[I_{th}(T) = I_{th}(T_0)e^{(-T/T_0)}, \]

where \(T_0 \) is the characteristic temperature of threshold for the laser. By fitting experimental data to this formula, we obtained a threshold characteristic temperature of 77 K for the GaSb QD microdisk laser. This value is higher than reported values for similar-size lasers made of InGaAsP quantum wells22 and InAs QDs.23 A high threshold characteristic temperature indicates high thermal stability of this microdisk laser, which is one of the advantages of the Type-II QD lasers.

In order to understand the optical mode of this microdisk cavity, the three-dimensional FEM was used to perform the simulation for the 3.9 \(\mu \)m microdisk. A whispering-gallery mode (WGM) was observed at 961 nm in the FEM simulation, which is close to the lasing mode observed at 968.2 nm from the measurement. Figure 5 shows the simulated \(H_2 \) mode profile for the lasing mode: (a) top view and (b) cross-section view. The results indicate the behavior of the first-order WGM lasing mode in the microdisk cavity. The small wavelength shift (<1\%) between simulation and measurement is attributed to the imperfection of fabrication. Another WGM resonant mode was also observed at 991 nm wavelength in the lasing spectrum of Fig. 4(a). Other modes were not observed because they are outside the strong optical gain region of GaSb/GaAs QDs.

In summary, a GaSb/GaAs QD microdisk laser with 3.9 \(\mu \)m diameter has been demonstrated. The high-Q microdisk cavity was fabricated in a 225-nm-thick type-II GaSb/GaAs QD layer on the GaAs substrate. The blueshift in PL peak with increasing pump power was observed for the type-II QD structure. The lasing at 968.2 nm wavelength with a low threshold was achieved at 150 K. The resonance
wavelength of the first-order whispering-gallery lasing mode was also verified by the three-dimensional FEM simulation.

The authors would like to thank the Center for Nano Science and Technology (CNST) in National Chiao Tung University (NCTU) for the fabrication facilities. This study was supported by the National Science Council (NSC) of Taiwan, ROC under Contract Nos. NSC-99-2112-M-001-033-MY3 and NSC-96-2112-M-001-037-MY3 and by the Grant of Academia Sinica Nano Program, Taiwan.