Experimental and theoretical investigations of rate coefficients of the reaction S (3 P) + O_2 in the temperature range 298–878 K

Chih-Wei Lu, Yu-Jong Wu, Yuan-Pern Lee, R. S. Zhu, and M. C. Lin

Citation: The Journal of Chemical Physics 121, 8271 (2004); doi: 10.1063/1.1792611
View online: http://dx.doi.org/10.1063/1.1792611
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/121/17?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Experimental and theoretical investigation of rate coefficients of the reaction S (P 3 ) + OCS in the temperature range of 298 – 985 K

Experimental and theoretical studies of rate coefficients for the reaction O (P 3 ) + C H 3 O H at high temperatures

Determination of the internal state distribution of the SD product from the S (1 D)+ D 2 reaction

Isomers of OCS 2 : IR absorption spectra of OSCS and O(CS 2 ) in solid Ar

Rate coefficients for the reactions of Si (3 P J ) with C 2 H 2 and C 2 H 4 : Experimental results down to 15 K
Experimental and theoretical investigations of rate coefficients of the reaction $S(^3P) + O_2$ in the temperature range 298–878 K

Chih-Wei Lu and Yu-Jong Wu
Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan

Yuan-Pern Lee
Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10676, Taiwan

R. S. Zhu and M. C. Lin
Department of Chemistry, Emory University, Atlanta, Georgia 30322

(Received 1 June 2004; accepted 23 July 2004)

Rate coefficients of the reaction $S + O_2$ with Ar under 50 Torr in the temperature range 298–878 K were determined with the laser photolysis technique. S atoms were generated by photolysis of OCS with a KrF excimer laser at 248 nm; their concentration was monitored via resonance fluorescence excited by atomic emission of S produced from microwave-discharged SO$_2$. Our measurements show that $k(298 K) = (1.92 \pm 0.29) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, in satisfactory agreement with previous reports. New data determined for 505–878 K show non-Arrhenius behavior; combining our results with data reported at high temperatures, we derive an expression $k(T) = (9.02 \pm 0.27) \times 10^{-19} T^{2.11 \pm 0.15} \exp[(730 \pm 120)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ for $298 \leq T \leq 3460 \text{ K}$. Theoretical calculations at the G2M (RCC2) level, using geometries optimized with the B3LYP/6-311 + G(3d$p$) method, yield energies of transition states and products relative to those of the reactants. Rate coefficients predicted with multichannel RRKM calculations agree satisfactorily with experimental observations; the reaction channel via SOO($^3A'$) dominates at $T < 500 \text{ K}$, whereas channels involving formation of SOO($^3A''$) followed by isomerization to SO$_2$ before dissociation, and formation of SOO($^1A''$) followed by direct dissociation, become important at high temperatures, accounting for the observed rapid increase in rate coefficient. © 2004 American Institute of Physics. [DOI: 10.1063/1.1792611]

I. INTRODUCTION

The reaction of $S(^3P)$ with $O_2$ is important in combustion chemistry; it plays an important role in the $SO_x$ emission during combustion of fuels containing sulfur compounds. Table I summarizes rate coefficients reported for this reaction. The rate coefficient for this reaction near room temperature has been extensively investigated and values are reported in the range $(1.5 – 2.8) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. The temperature dependence of the rate coefficient below 423 K was reported to be small, with $E_a/R$ values of $0 \pm 50 \text{ K}$ (Ref. 3) or $-(153 \pm 108) \text{ K}$. Measurements of rate coefficients at high temperatures ($T \geq 675 \text{ K}$) have large discrepancies. Although the activation energy reported by Homann, Krome, and Wagner (Table I, 675 K) is similar to that ($E_a/R = 3110 \text{ K}$) reported by Woiki and Roth, the preexponential factors $A$ vary more than fourfold. Saito et al., reported a value $k = (6.3 \pm 1.2) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ for temperatures between 1900 and 2200 K, about 0.4 times that reported by Woiki and Roth in this temperature range. Matsui and co-workers reported $E_a/R = 1840 \pm 300 \text{ K}$ for temperatures between 980 and 1610 K, much smaller than that reported by Woiki and Roth, but rate coefficients determined in both works are within experimental uncertainties in the overlapping temperature range 1138–1610 K. No experimental data exist for temperatures between 423 and 980 K except much smaller, and likely erroneous, values reported by Homann, Krome, and Wagner for $T > 675 \text{ K}$. The reaction might proceed via various channels:

$$S(^3P) + O_2 \rightarrow SO + O(^3P) \quad \Delta H_0 = -5.5 \text{ kcal mol}^{-1}, \quad (1a)$$

$$M \quad \rightarrow \quad SOO \quad \Delta H_0 \approx -21 \text{ kcal mol}^{-1}, \quad (1b)$$

$$M \quad \rightarrow \quad SO_2 \quad \Delta H_0 = -136 \text{ kcal mol}^{-1}. \quad (1c)$$

Formation of O atoms was observed near 300 K (Ref. 3) and at high temperatures. Miyoshi et al. reported the yield of O atom to be $1.05 \pm 0.14$ at 1566 K and 924 Torr, $1.06 \pm 0.11$ at 293 K and 2.02 Torr, and $1.04 \pm 0.12$ at 293 K and 50.2 Torr (all with Ar buffer gas), indicating that reactions (1b) and (1c) are unimportant.

The reaction of $S(^3P)$ with $O_2$ is expected to proceed via multiple potential-energy surfaces (PES). Based on an ob-
TABLE I. Summary of reported experimental rate coefficients using various methods.

<table>
<thead>
<tr>
<th>Temperature /K</th>
<th>Pressure (gas) /Torr</th>
<th>$k$ (~298 K) /10^{-12}</th>
<th>$A$ /10^{-12}</th>
<th>$E_a/R$ /K</th>
<th>Method</th>
<th>Author names</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>2.2 (Ar)</td>
<td>2.0 ± 0.5</td>
<td></td>
<td></td>
<td>DF/CL</td>
<td>Fair and Thrush (FT)</td>
<td>1</td>
</tr>
<tr>
<td>298</td>
<td>60–200 (CO_2, Ar)</td>
<td>2.8 ± 0.3</td>
<td></td>
<td></td>
<td>FP/ABS</td>
<td>Fair, Rooidelar, and Strauss (FRS)</td>
<td>2</td>
</tr>
<tr>
<td>295</td>
<td>113 (Ar)</td>
<td>1.7 ± 0.3</td>
<td></td>
<td></td>
<td>FP/ABS</td>
<td>Donovan and Little (DL)</td>
<td>4</td>
</tr>
<tr>
<td>298</td>
<td>0.98–3.0 (He)</td>
<td>1.5 ± 0.5</td>
<td></td>
<td></td>
<td>DF/RF</td>
<td>Clyne and Townsend (CT)</td>
<td>5</td>
</tr>
<tr>
<td>293</td>
<td>2–50 (Ar)</td>
<td>2.27 ± 0.08</td>
<td></td>
<td></td>
<td>LP/LIF</td>
<td>Miyoshi et al. (MSTM)</td>
<td>7</td>
</tr>
<tr>
<td>252–423</td>
<td>20–200 (CO_2, He, Ar)</td>
<td>2.32 ± 0.27</td>
<td>2.24 ± 0.27</td>
<td>0 ± 50</td>
<td>FP/RF</td>
<td>Davis, Klemm, and Pilling (DKP)</td>
<td>3</td>
</tr>
<tr>
<td>296–393</td>
<td>0.72–1.15 (Ar)</td>
<td>2.6 ± 0.3</td>
<td>1.7 ± 0.5</td>
<td>−(153±108)</td>
<td>DF/RF</td>
<td>Clyne and Whitefield (CW)</td>
<td>6</td>
</tr>
<tr>
<td>675–1090</td>
<td>1–60 (Ar)</td>
<td>16.6</td>
<td></td>
<td>2820</td>
<td>DF/MS</td>
<td>Homann, Krome, and Wagner (HKW)</td>
<td>8</td>
</tr>
<tr>
<td>980–1610</td>
<td>&gt;578 Ar</td>
<td>25 ± 6</td>
<td></td>
<td>1840±300</td>
<td>ST/ABS</td>
<td>Miyoshi et al. (MSTM)</td>
<td>7</td>
</tr>
<tr>
<td>1138–3463</td>
<td>281–953 (Ar)</td>
<td>69.8</td>
<td></td>
<td>3110</td>
<td>ST/ABS</td>
<td>Woiki and Roth (WR)</td>
<td>9</td>
</tr>
<tr>
<td>1900–2200</td>
<td>&gt;1212 (Ar)</td>
<td>6.3 ± 1.2d</td>
<td>0f</td>
<td></td>
<td>ST/ABS</td>
<td>Saito et al. (SUIKI)</td>
<td>10</td>
</tr>
<tr>
<td>298–878</td>
<td>50 (Ar)</td>
<td>1.92 ± 0.29</td>
<td></td>
<td></td>
<td>LP/RF</td>
<td>This work</td>
<td>...</td>
</tr>
</tbody>
</table>

*a In units of cm^3 molecule^{-1} s^{-1}.

b DF—discharge flow; FP—flash photolysis; LP—laser photolysis; ST—shock tube; CL—chemiluminescence; ABS—absorption; RF—resonance fluorescence; LIF—laser-induced fluorescence.

c $k(T) = 1.2 \times 10^{-12} \exp(-167/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ for all data reported in the range 250–2200 K.

d $k(T) = (9.02 \pm 0.27) \times 10^{-19} T^{13.38 \pm 0.15} \exp[(730 \pm 120)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ for temperature range 298–3460 K.

The existence of intermediate SOO is supported by its infrared absorption spectrum recorded after photolysis with laser radiation at 193 nm of an Ar matrix sample containing SO_2. Craven and Murrell performed quasiclassical trajectory (QCT) calculations and predicted a rate coefficient of $(1.67 \pm 0.17) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ for reaction (1) at 298 K, in satisfactory agreement with experiment. All trajectories show a common mechanism in which an initial SOO intermediate is formed, followed by rapid isomerization to OSO, which subsequently dissociates to O + SO.

Lendvay, Shatz, and Harding performed a similar study with a many-body expansion (MBE) PES calibrated with extensive ab initio calculations. Rodrigues and Varandas performed QCT calculations with an accurate single-value double many-body expansion (DMBE) PES of SO_2 (Ref. 17) and obtained rate coefficients of reaction (1) and its reverse reaction in the temperature range 50–3500 K; the rate coefficient predicted at 300 K, $(6.21 \pm 0.08) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, is about two to four times that determined experimentally. They indicate that nearly all trajectories evolve via intermediate SOO, and only about one quarter of the trajectories are associated with a long-lived SO_2 isomer having a lifetime ~1.5 ps.

We have performed careful experimental work on the reaction of S + O_2 under 50 Torr of Ar and extended the rate measurements from 298 to 878 K to bridge between the region $T \approx 423$ K with a nearly temperature-independent rate coefficient and the region $T \approx 980$ K in which rate coefficients show an activation energy corresponding to $E_a/R = 1840–3110$ K. We also performed detailed theoretical calculations to predict rate coefficients and to identify important channels in this reaction at various temperatures.

II. EXPERIMENTS

The experimental setup was described in detail previously, only a brief description is given. The reaction vessel is a six-way tubular quartz cross (diameter 40 mm) with one axis having sidearms ~15 cm in length and with Brewster windows for laser photolysis. The temperature of the reactor was regulated through resistive heating with a temperature controller (Omega CN 9000). S atoms were produced by photolysis of OCS with radiation from a pulsed KrF excimer laser at 248 nm (24–60 mJ cm$^{-2}$, 1–3 Hz). Excessive Ar gas was added to the system to ensure that most S(1D) is quenched before reaction. S atoms were excited with emission of S(3S)–S(3P) at 180.73, 182.03, and 182.62 nm, respectively, from a microwave-discharge lamp with a flowing gas mixture of SO_2 ~0.10% in He. An S1-UV lens (focal length $f = 5$ cm) served to collect light of wavelength $\lambda > 170$ nm and to discriminate against emission of shorter wavelength.

The fluorescence was collected perpendicular to both photolysis laser and probe beams with a MgF_2 lens ($f = 5$ cm) before being detected with a solar-blind photomultiplier tube (EMR 541G-09). The signal was converted to voltage with a low-noise amplifier (Stanford Research Systems, SR570) before being transferred to a digital oscilloscope (Tektronix, TDS-620B, 2.5 GS s$^{-1}$ with 500 MHz bandwidth). The signal was typically averaged over more than 500 laser pulses. The temporal profiles of S atoms were transferred to a computer for further processing.

He (99.9995%), Ar (99.9995%), and O_2 (99.999%, all AGA Specialty Gases) were used without further purification. OCS (99.98%, Matheson) was purified through trap-to-trap
molecular trap distillation. A 20% mixture of OCS in Ar was prepared with standard gas handling techniques. Flow rates of He, Ar, O$_2$, and the OCS/Ar mixture were monitored with mass flow meters (Tylan FM360) that were calibrated with a wet test meter and by the pressure increase in a calibrated volume before and after experiments.

Typical experimental conditions were as follows: total flow rate $F_r = 7-11$ STP cm$^3$ s$^{-1}$ (STP=1 atm and 273 K), total pressure $P=50$ Torr, reaction temperature $T=298-878$ K, [OCS]$=1.50-37.50 	imes 10^{14}$ molecule cm$^{-3}$, [S] = (1.4-33.4) x 10$^{14}$ molecule cm$^{-3}$, [O$_2$] = (1.0-35.7) x 10$^{14}$ molecule cm$^{-3}$, [Ar] = (5.5-16.5) x 10$^{17}$ molecule cm$^{-3}$, probed intervals of decay = 20 µs-20 ms, and mean flow speed $v = 5.9-24.2$ cm s$^{-1}$.

III. COMPUTATIONAL METHODS

The geometries of reactants, intermediates, transition states, and products of the title reaction were optimized at the B3LYP/6-311+G(3d,f) level of theory with Becke’s three-parameter nonlocal exchange functional$^{21}$ and the nonlocal correlation functional of Lee, Yang, and Parr.$^{22}$ Energies of all species were calculated at the G2M(RCC2) level of theory$^{23}$ using geometries optimized with the B3LYP/6-311 + G(3d,f) method. Intrinsic reaction coordinate calculations$^{24}$ were performed to connect each transition state with designated reactants and products. All calculations were carried out with GAUSSIAN98 (Ref. 25) and MOLPRO 2002 programs.$^{26}$

Rate coefficients for various reaction channels were calculated with a microcanonical variational RRKM method using the Variflex program.$^{27}$ The component rates were evaluated at $E$, $J$-resolved levels. The master equation was solved with an inversion approach for association and an eigenvalue-based approach for dissociation.$^{28,29}$ For the barrierless transition state, we used a Morse potential

$$E(R) = D_0 \left[ 1 - e^{-\beta (R-R_e)} \right]^2,$$

in which $D_0$ is the dissociation energy ($D_0$) plus zero-point energy, $R_e$ is the equilibrium bond distance, and $\beta$ is fitted from calculated potential energies at discrete atomic separations $R$, to represent the potential energy in a stretching mode along the minimum energy path of each individual reaction coordinate. In addition, a Lennard-Jones pairwise potential and an anisotropic potential (a form for potential anisotropy assuming a bonding potential that is cylindrically symmetric with respect to each fragment) are combined to form the final potential for calculation of the variational rate coefficient with the Variflex code. For tight transition states, numbers of states were calculated with the rigid-rotor harmonic-oscillator approximation.

IV. RESULTS AND DISCUSSION

A. Experimental rate coefficient

All experiments were carried out under pseudo-first-order conditions with [O$_2$] / [S] greater than 200. The initial concentration of S, [S]$_0$, was estimated from the absorption cross section (2.36 $\times$ 10$^{-20}$ cm$^2$) of OCS and quantum yield $\Phi(S) = 0.72 \pm 0.08$ at 248 nm,$^{30}$ and the fluence of the photolysis laser. Figure 1(a) shows a typical temporal profile of [S], observed when a flowing gas mixture containing OCS, O$_2$, and Ar was irradiated at 248 nm; a semilogarithmic plot is shown in Fig. 1(b). The relative concentration of S atoms, [S]$_t$, follows an exponential decay in the initial stage. The apparent pseudo-first-order rate coefficient $k^1$ may be derived with the equation

$$\ln([S]_t/[S]_0) = -k^1t + at^2 + bt^3,$$

in which $t$ is the reaction time and $a$ and $b$ are fitting parameters to account for secondary reactions. To derive accurate rate coefficients, we employed a model consisting of the following reactions:

1. $S + O_2 \rightarrow SO + O$  
2. $SO \rightarrow SO_2$  
3. $S + OCS \rightarrow S_2 + CO$  
4. $O + SO \rightarrow S + O_2$  
5. $S + O \rightarrow SO_2$.

FIG. 1. (A) Temporal profiles of [S], observed after photolysis of an Ar sample containing OCS and O$_2$. $T=878$ K, [O$_2$] = 7.77 x 10$^{14}$ molecule cm$^{-3}$, [OCS] = 3.83 $\times$ 10$^{14}$ molecule cm$^{-3}$, and [Ar] = 5.53 $\times$ 10$^{17}$ molecule cm$^{-3}$. The solid line represents fitted results according to a model described in the text. (B) Semilogarithmic plot of (A). The solid line represents fitted results according to Eq. (3) and the dashed line represents initial pseudo-first-order decay.
O + OCS → S + CO₂
→ SO + CO₂

(7a)

(7b)

O + O₂ → O₃,
SO + SO → S + SO₂,
SO + O₂ → O + SO₂,
S + SO₂ → SO + S,
O + S₂ → SO + S,

(8)

(9)

(10)

(11)

(12)

for which rate coefficients have these reported dependences on temperature:

\[ k_{1b}(T) = 1.09 \times 10^{-25} T^{-2.6} \times \exp(-276/T) \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1}, \]  

\[ k_{4a}(T) = 0.12 T^{-2.19} \times \exp(-10630/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}, \]  

\[ k_{4b}(T) = 7.02 \times 10^{-4} T^{-1.72} \times \exp(-10803/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}, \]  

\[ k_5(T) = 3.16 \times 10^{-19} T^{2.35} \times \exp(-1253/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}, \]  

\[ k_{6a}(T) = 3.76 \times 10^{-18} T^{-1.79} \times \exp(-2230/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}, \]  

\[ k_{6b}(T) = 4.82 \times 10^{-31} (T/298)^{-2.17} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1}, \]  

\[ k_{7a}(T) = 6.61 \times 10^{-11} \exp(-2706/T) \times (0.4 - 202/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ (Ref. 31)}, \]  

\[ k_{7b}(T) = 6.61 \times 10^{-11} \exp(-2706/T) \times (0.6 + 202/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ (Ref. 31)}, \]  

\[ k_8(T) = 2.16 \times 10^{-27} T^{-2.7} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1} \text{ (Ref. 32)}, \]  

\[ k_9(T) = 1.0 \times 10^{-12} \times \exp(-1720/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ (Ref. 33)}, \]  

\[ k_{10}(T) = 1.7 \times 10^{-12} \times \exp(-4089/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ (Ref. 34)}, \]  

\[ k_{11}(T) = 1.86 \times 10^{-40} \times \exp(-4829/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ (Ref. 35)}, \]  

\[ k_{12}(T) = 2.2 \times 10^{-11} \times \exp(-84/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ (Ref. 14)}, \]  

\[ (13) \]

\[ (14) \]

\[ (15) \]

\[ (16) \]

\[ (17) \]

\[ (18) \]

\[ (19) \]

\[ (20) \]

\[ (21) \]

\[ (22) \]

\[ (23) \]

\[ (24) \]

\[ (25) \]

\[ k_{1b}, k_{4a}, \text{ and } k_{4b} \text{ are calculated results discussed in the following section, and } k_5 \text{ is derived on fitting data at high temperatures (860} \leq T \leq 1680 \text{ K) (Ref. 36) and low temperatures (233} \leq T \leq 445 \text{ K) (Ref. 37) to the equation, } k_{6a} \text{ is derived on fitting data at high temperatures (2212} \leq T \leq 3385 \text{ K) (Ref. 38) and those at low temperatures (252} \leq T \leq 423 \text{ K) (Ref. 3) estimated from } k_{1a} \text{ and the equilibrium constants based on } \Delta G \text{ of formation, and } k_{6b} \text{ is theoretically predicted in our previous work on pyrolysis of } \text{SO}_3; \text{ the latter agrees satisfactorily with the expression } 9.3 \times 10^{-31} (T/298)^{-2.1} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1} \text{ reported by Grillo, Reed, and Slack.} \]

FIG. 2. Derived \( k_{1a} \) as a function of [O₂] at various temperatures. (A) 878 K, symbol △; (B) 726 K, symbol ▶; (C) 658 K symbol ○; (D) 298 K symbol ●. The ordinates are shifted for each set of data for clarity.

We modeled observed temporal profiles of [S], with reactions (1a), (1b), and (4)–(12) with a commercial kinetic modeling program FACSIMILE; rate coefficients listed in Eqs. (13)–(25) were held constant and the pseudo-first-order rate coefficient of the title reaction, \( k_{1a} \), was varied to yield the best fit. Summary of experimental conditions and values of \( k_{1a} \) for 58 measurements in a temperature range 298–878 K may be found in Electronic Physics Auxiliary Publication Service (EPAPS); we list also \( k_{1a} / k_{1a} \) for comparison. Values of \( k_{1a} \) obtained with Eq. (3) based on initial pseudo-first-order decays deviate from \( k_{1a} \) by less than 15% in most cases, indicating that secondary reactions play only a minor role under the initial experimental conditions. Detailed modeling shows that secondary reactions are negligible at low temperatures, whereas at high temperatures and with large [OCS] and [S] the corrections become greater; only reactions (5), (7a), and (7b) account for corrections greater than 3%.

Values of \( k_{1a} \) determined with various concentrations of O₂ at temperatures 298, 658, 726, and 878 K are plotted in Fig. 2, with ordinates shifted vertically for each line for clarity; the slope of the line fitted with least squares yields the bimolecular rate coefficient \( k_{1a} \) at each temperature. At 298 K, \( k_{1a} = (1.92 \pm 0.08) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \); unless otherwise noted, the uncertainty represents one standard error in fitting. In these experiments, rate coefficients remained
the same while $[S]_0$ was varied from $2.1 \times 10^{11}$ to $3.34 \times 10^{12}$ molecule cm$^{-3}$. Combined systematic error (measurements of flow rates, pressure, and temperature) of our system is estimated to be $\sim$8%, and the error in deriving $k_{1a}$ and its dependence on $[O_2]$ is $\sim$12%. Hence, we estimate an error $\sim$15% for $k_{1a}$ and recommend a rate coefficient $(1.92 \pm 0.29) \times 10^{-12}$ cm$^3$ molecule$^{-1}$ s$^{-1}$ at 298 K.

Rate coefficients $k_{1a}$ determined at 298, 406, 505, 658, 726, and 878 K are listed in Table II. $k_{1a}$ remains approximately constant from 298 to 505 K, but increases from $\sim 1.8 \times 10^{-12}$ to $3.0 \times 10^{-12}$ cm$^3$ molecule$^{-1}$ s$^{-1}$ as the temperature increases further to 878 K. In the temperature range 298–505 K, rate coefficients show a small negative temperature dependence with $E_a/R = (65 \pm 40)$ K. Reported rate coefficients are compared in Table I and Fig. 3; lines of various types are drawn for only the range of temperature investigated. The value of $k_{1a}$ at 298 K determined in this work is within experimental uncertainties of previous reports by Fair and Thrush (designated FT in Fig. 3),$^{1}$ Donovan and Little (DL),$^{4}$ Clyne and Townsend (CT),$^{5}$ Miyoshi et al. (MSTM),$^{7}$ and Davis, Klemm, and Pilling (DKP),$^{3}$ but is slightly smaller than values of $(2.6 \pm 0.3) \times 10^{-12}$ cm$^3$ molecule$^{-1}$ s$^{-1}$ by Clyne and Whitefield (CW),$^{6}$ and $(2.8 \pm 0.3) \times 10^{-12}$ cm$^3$ molecule$^{-1}$ s$^{-1}$ by Fair, Roodseelar, and Strausz (FRS).$^{2}$ The small negative activation energy of $E_a/R = (65 \pm 40)$ K is consistent also with two previous reports of $E_a/R = (153 \pm 108)$ K by CW$^6$ and $0 \pm 50$ K by DKP,$^3$ even though their rate coefficients are slightly greater than ours. Rate coefficients at 505–878 K are new; they match well with rate coefficients reported for $T \geq 980$ K by MSTM (Ref. 7) and WR.$^9$ as illustrated in Fig. 3.

Fitting our results yields an expression for the rate coefficient in the range 298$\leq T \leq$878 K:

$$k_{1a}(T) = (8.60 \pm 0.34) \times 10^{-20}T^{-0.24} \times \exp\left(\frac{960 \pm 120}{T}\right) \text{cm}^3\text{molecule}^{-1}\text{s}^{-1}. \quad (26)$$

When combined with data at high temperatures by MSTM and WR, a general expression

$$k_{1a}(T) = (9.02 \pm 0.27) \times 10^{-19}T^{0.15} \times \exp\left(\frac{730 \pm 120}{T}\right) \text{cm}^3\text{molecule}^{-1}\text{s}^{-1}. \quad (27)$$

is derived for 298$\leq T \leq$3460 K. This equation reproduces reported rate coefficients by MSTM, WR, and our work to within 30% except a few data points.

### B. Potential-energy surfaces and reaction mechanism

Our calculations show that several triplet and singlet intermediates and transition states are involved in the reaction $S(3P) + O_2(X^3\Sigma_g^+) \rightarrow SO(X^3\Sigma_g^-) + O(3P)$. Optimized geometries of the intermediates and transition states involved in the reaction are shown in Fig. 4. The energy diagrams for singlet and triplet surfaces calculated with the G2M(RCC2)/B3LYP/6-311+G(3df) method are presented in Fig. 5. Predicted vibrational wave numbers and rotational constants as well as available experimental data$^{43–47}$ for the species involved are discussed and summarized in Table 4 of Ref. 38. The results indicate that the predicted vibrational wave numbers are underestimated by 0.2%–2.3% from experimental values.

The predicted enthalpy of reaction, $\sim 4.8$ kcal mol$^{-1}$, for reaction (1a) is near the value obtained from JANAF Thermochimical Tables, $\sim 5.5$ kcal mol$^{-1}$. Figure 5 shows that $S(3P) + O_2(X^3\Sigma_g^+)$ might proceed via singlet and triplet SOO intermediates. The singlet channels involve two sur-

---

### Table II. Bimolecular rate coefficients $k_{1a}$ at various temperatures.

<table>
<thead>
<tr>
<th>Temp /K</th>
<th>$P$ /Torr</th>
<th>$[S]$ /$10^{11}$a</th>
<th>$[O_2]$ /$10^{12}$a</th>
<th>$[Ar]$ /$10^{17}$a</th>
<th>$k_{1a}$ /$10^{-12}$b</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>51</td>
<td>2.12–33.4</td>
<td>4.96–17.4</td>
<td>16.5</td>
<td>$1.92 \pm 0.29$</td>
</tr>
<tr>
<td>406</td>
<td>51</td>
<td>7.65</td>
<td>2.24–12.3</td>
<td>12.0</td>
<td>$1.74 \pm 0.26$</td>
</tr>
<tr>
<td>505</td>
<td>50</td>
<td>7.72</td>
<td>1.01–4.43</td>
<td>9.6</td>
<td>$1.77 \pm 0.27$</td>
</tr>
<tr>
<td>658</td>
<td>51</td>
<td>5.37–14.7</td>
<td>4.91–29.7</td>
<td>7.4</td>
<td>$2.19 \pm 0.33$</td>
</tr>
<tr>
<td>726</td>
<td>51</td>
<td>4.27</td>
<td>2.57–35.7</td>
<td>6.7</td>
<td>$2.55 \pm 0.38$</td>
</tr>
<tr>
<td>878</td>
<td>50</td>
<td>3.41–11.13</td>
<td>3.45–21.5</td>
<td>5.5</td>
<td>$3.01 \pm 0.45$</td>
</tr>
</tbody>
</table>

---

*In units of molecule cm$^{-3}$.

*In units of cm$^3$ molecule$^{-1}$ s$^{-1}$.

---

### Figure 3.

Arrhenius plots of $k_{1a}$ for the reaction $S + O_2 \rightarrow O + SO$. Our data are shown as symbols $\blacktriangle$ with a fitted equation shown as a thick solid line. Previous results on temperature dependence are shown as lines of various types drawn for the temperature range of study. A combination of first characters of each authors last name is used to indicate previous reports, as listed in Table I.

---

### Figure 4.

Optimized geometries of transition states and intermediates of the $S + O_2$ system at the B3LYP/6-311+G(3df) level, with bond lengths in Å and bond angles in degree. Small and large solid spheres in the structures represent O and S atoms, respectively.
The triplet channel proceeds via $\text{SOO-4}(^3\text{A}^\prime)$ without a barrier, followed by formation of $\text{SOO}_2(\text{A}^\prime_2)$ and $\text{SOO}_5(^3\text{A}^\prime)$ via $\text{TS6}$ and $\text{TS7}$ with barriers of $5.4$ and $3.4$ kcal mol$^{-1}$, respectively. $\text{SO}_2(\text{A}^\prime_2)$ dissociates to $\text{SO} + \text{O}_2$ with an endothermicity of $52.6$ kcal mol$^{-1}$ and $\text{SOO}_5(^3\text{A}^\prime)$ dissociates to $\text{SO} + \text{O}_2$ via $\text{TS8}$ at $20.0$ kcal mol$^{-1}$ above $\text{S}^3(\Sigma_g^+) + \text{O}_2(\Sigma_g^+)$. The above singlet channel via $\text{TS4}$ and $\text{TS5}$ and the triplet channel via $\text{TS6}$ are expected to be insignificant at low temperatures, but become important at high temperatures.

The quintuplet surface is also investigated in this work, but no stable intermediates are found. One direct abstraction channel with a linear transition state is located; it lies $54.4$ kcal mol$^{-1}$ above the reactants $\text{S} + \text{O}_2$. Hence, the contribution of quintuplet surfaces to production of $\text{SO} + \text{O}$ is negligible even at high temperature.

Calculations based on variational transition-state (VTS) and RRKM theories were carried out with the Variflex code$^{27}$ for the overall reaction

$$\text{S} + \text{O}_2 \rightarrow \text{SO} + \text{O}$$  \hspace{1cm} (1a)

via three possible channels to yield rate coefficients

$$k_{1a-1}(T) = 6.78 \times 10^{-14}T^{0.53} \exp(-15/T) \text{ cm}^3\text{molec}^{-1}\text{s}^{-1},$$  \hspace{1cm} (28)

$$k_{1a-2}(T) = 1.07 \times 10^{-14}T^{0.46} \exp(-1980/T) \text{ cm}^3\text{molec}^{-1}\text{s}^{-1},$$  \hspace{1cm} (29)

$$k_{1a-3}(T) = 8.69 \times 10^{-15}T^{0.89} \exp(-2240/T) \text{ cm}^3\text{molec}^{-1}\text{s}^{-1}.$$  \hspace{1cm} (30)

Channel 1 proceeds via $\text{SOO-1}(^4\text{A}^\prime)$ and $\text{TS1}$ that has the smallest barrier relative to $\text{S} + \text{O}_2$. Channel 2 involves $\text{SOO-4}(^3\text{A}^\prime)$ and $\text{TS6}$ on the triplet surface, with an energy of $4.4$ kcal mol$^{-1}$, whereas channel 3 proceeding via $\text{SOO-2}(^4\text{A}^\prime)$, $\text{TS4}$, $\text{SOO-3}(^3\text{A}^\prime)$, and $\text{TS5}$; $\text{TS5}$ has the greatest energy (4.8 kcal mol$^{-1}$) among these three channels. The predicted total rate coefficients are expressed as

$$k_{1a}(T) = 1.29 \times 10^{-17}T^{1.78} \exp(430/T) \text{ cm}^3\text{molec}^{-1}\text{s}^{-1}.$$  \hspace{1cm} (31)

In the above calculations, the association from $\text{S} + \text{O}_2$ to the potential minimum $\text{SOO-1}(^4\text{A}^\prime)$ was calculated on increasing the S-O bond distance from its equilibrium value of 1.610 to 3.740 Å at intervals of 0.1 Å with the B3LYP/6-311+G(3df) method; the calculated energies were fitted to a Morse equation [Eq. (2)] to evaluate $\beta=4.06$ Å$^{-1}$. For the associations from $\text{S} + \text{O}_2$ to $\text{SOO-2}(^4\text{A}^\prime)$ and to $\text{SOO-4}(^3\text{A}^\prime)$, because the wells are shallow, $\beta$ and $\alpha$ are $0.7$ and $-1.0$ kcal mol$^{-1}$, respectively, above $\text{S} + \text{O}_2$. In addition, $\text{SOO-2}$ can isomerize to $\text{SO}_2(\text{A}^\prime_2)$ via $\text{TS3}$ with a barrier of $10.4$ kcal mol$^{-1}$ above the reactants, followed by dissociation to products.

The triplet channel proceeds via $\text{SOO-4}(^3\text{A}^\prime)$ without a barrier, followed by formation of $\text{SOO}_2(\text{A}^\prime_2)$ and $\text{SOO}_5(^3\text{A}^\prime)$ via $\text{TS8}$ and $\text{TS7}$ with barriers of $5.4$ and $3.4$ kcal mol$^{-1}$, respectively. $\text{SO}_2(\text{A}^\prime_2)$ dissociates to $\text{SO} + \text{O}_2$ with an endothermicity of $52.6$ kcal mol$^{-1}$ and $\text{SOO}_5(^3\text{A}^\prime)$ dissociates to $\text{SO} + \text{O}_2$ via $\text{TS8}$ at $20.0$ kcal mol$^{-1}$ above $\text{S}^3(\Sigma_g^+) + \text{O}_2(\Sigma_g^+)$. The above singlet
Rate coefficients for each channel and the total rate coefficient, Eq. (31), for the title reaction are plotted in Fig. 6(a); the total rate coefficient is compared with experimental results on an expanded scale in Fig. 6(b). Channel 1 is clearly the only available path at temperatures below 500 K, whereas channels 2 and 3 become important at higher temperatures, resulting in a more rapid increase of the rate coefficient at high temperatures. The total rate coefficient agrees satisfactorily with experimental results in this work, and also with those at high temperatures reported by Miyoshi et al. and by Woiki and Roth. In our previous experiments using a diaphragmless shock tube to investigate pyrolysis of SO₂, we observed formation of S atoms from the secondary reaction of S with O₂, which might produce SOO in the low temperature range, 200–298 K, is also obtained, which is attributed to combined effects of the barrierless association reaction (1b) and the decomposition reaction (4b).

The results are consistent with previous experimental results by Woiki and Roth, and our theoretical predictions described above, as compared in Fig. 6.

The formation of SO₂ via channel 2 is negligibly small. SOO might be produced at high pressure and low temperature via channel 1 [Reaction (1b)]; subsequent decomposition might produce S + O₂ and SO + O:

\[
\text{SOO}^1(1A') \rightarrow S + O_2, \quad (4a)
\]

\[
\text{SOO}^1(1A') \rightarrow \text{SO} + O. \quad (4b)
\]

Rate coefficients for reactions (1b), (4a), and (4b) are predicted, as listed in Eqs. (13)–(15); they are negligibly small at 50 Torr and 298 K.

It must be mentioned that the predicted rate coefficients at low temperatures are sensitive to pressure and the energy of TS1. Our results show that, at 298 K, increasing the pressure to 700 Torr and decreasing the exit barrier of TS1 by 0.2 kcal mol⁻¹ can well reproduce the experimental value; a negative temperature-dependent effect on the rate coefficient is predicted, as listed in Eqs. (6a), (13), and (14);

\[
k_{13}(T) = (9.02 \pm 0.27) \times 10^{-19} \exp^{-2.11 \pm 0.15} \exp \left[ \frac{730 \pm 120}{T} \right] \text{cm}^3 \text{molecule}^{-1} \text{s}^{-1} \quad (32)
\]

Combining with the equilibrium constant derived from literature values of ∆₁G(T) for the corresponding species, we derive the rate expression for the title reaction in the temperature range 2212–3385 K to be

\[
k_{13}(T) = (1.1 \pm 0.3) \times 10^{-11} \times \exp^{-4360 \pm 220}/T \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1} \quad (33)
\]

V. CONCLUSION

Rate coefficients for the reaction of S with O₂ to form S and SO in the temperature range 298–878 K are determined using laser photolysis for production of S atoms and resonance fluorescence for detection of S atoms. Our result at 298 K, \( k_{13}(T) = (1.92 \pm 0.29) \times 10^{-12} \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1} \), is consistent with previous measurements, and new data in the range 505–878 K fill the gap between reported rate coefficients for \( T \approx 423 \text{K} \) and \( T \approx 980 \text{K} \). From combined available data, rate coefficients fit well with the equation

\[
k_{13}(T) = (9.02 \pm 0.27) \times 10^{-19} \exp^{-2.11 \pm 0.15} \exp \left[ \frac{730 \pm 120}{T} \right] \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1} \quad (32)
\]

for temperatures in the range 298–3460 K; listed uncertainties represent one standard error in fitting. Theoretical calculations based on PES computed at the G2M(RCC2)/B3LYP/6-311+(3df) level indicate that the reaction proceeds to form SOO having various conformations; the reaction path via SOO(1A') to form SO+O dominates at \( T \leq 500 \text{K} \), but two additional paths, one via SOO(2A') then SO₃ and one via SOO(1A'), become important at high temperatures. Predicted total rate coefficients agree with experiments throughout the temperature range under investigation. Predicted and reported experimental rate coefficients at high temperatures also agree satisfactorily with those calculated based on the reverse reaction O+SO and equilibrium constants.

ACKNOWLEDGMENTS

Y.P.L. thanks the National Science Council of Taiwan (Grant No. NSC92-2113-M-007-034) and the MOE Program for Promoting Academic Excellence of Universities (Grant No. 89-FA04-AA) for support. R.S.Z. thanks the Office of Naval Research, U.S. Navy (Contract No. N00014-89-