Precise measurement of the thermo-optical coefficients of various Nd-doped vanadates with an intracavity self-mode-locked scheme

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2014 Laser Phys. 24 035804
(http://iopscience.iop.org/1555-6611/24/3/035804)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 140.113.38.11
This content was downloaded on 28/04/2014 at 23:12

Please note that terms and conditions apply.
Precise measurement of the thermo-optical coefficients of various Nd-doped vanadates with an intracavity self-mode-locked scheme

J C Tung\(^1\), T Y Wu\(^1\), H C Liang\(^2\) and Y F Chen\(^1\)

\(^1\) Department of Electrophysics, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30050, Taiwan
\(^2\) Institute of Optoelectronic Science, National Taiwan Ocean University, Keelung 20224, Taiwan

E-mail: yfchen@cc.nctu.edu.tw

Received 28 October 2013
Accepted for publication 13 January 2014
Published 11 February 2014

Abstract
We employ an intracavity self-mode-locked laser to precisely measure the group refractive indices and thermo-optic coefficients for Nd-doped vanadates at 1064 nm. The samples include Nd:GdVO\(_4\), Nd:YVO\(_4\) and Nd:LuVO\(_4\) crystals. We make a detailed comparison between the present results and those currently reported in the literature. We confirm that the present results are in good agreement with the currently available data with the best precision.

Keywords: thermo-optical coefficient, Nd-doped vanadates, self-mode-locking

(Some figures may appear in colour only in the online journal)

1. Introduction
In the past decade, Nd-doped rare-earth vanadate crystals such as yttrium orthovanadate (YVO\(_4\)), lutetium vanadate (LuVO\(_4\)) and gadolinium vanadate (GdVO\(_4\)) have been identified to be promising laser materials because of their significant advantages that include high stimulated emission cross-sections at 1.06 \(\mu\)m and wide absorption bandwidths for the diode-pumping scheme [1–5]. The thermal-optic coefficient \(dn/dT\) of a laser crystal is explicitly associated with the thermally induced lensing effect that significantly influences the cavity stability, the oscillation mode size, the maximum achievable average power and the quality of the output beam [6, 7]. There are some reported values of \(dn/dT\) obtained by different methods for Nd:GdVO\(_4\), Nd:YVO\(_4\) and Nd:LuVO\(_4\) crystals near 1064 nm [8–14]. However, the reported data are found to differ considerably from each other. Therefore, it is highly desirable to precisely clarify the values of the thermo-optic coefficients for various vanadate crystals.

Recently, an intracavity scheme in a self-mode-locked laser has been proposed for measuring the temperature dependence of the group refractive index with great precision [15]. In this work we employ this intracavity method to systematically measure the group refractive indices and the thermo-optic coefficients for Nd:GdVO\(_4\), Nd:YVO\(_4\) and Nd:LuVO\(_4\) crystals at 1064 nm. We make a detailed comparison between the present results and those currently reported in the literature. Measured results reveal that the LuVO\(_4\) crystal has an obviously smaller value than the GdVO\(_4\) and YVO\(_4\) crystals for the thermo-optic coefficient in the direction parallel to the c-axis. On the other hand, the GdVO\(_4\) crystal has a somewhat smaller value than the LuVO\(_4\) and YVO\(_4\) crystals for the thermo-optic coefficient in the direction perpendicular to the c-axis. On the whole, our experimental results are found to agree very well with the data reported by Zelmon et al [13, 14].

2. Experimental setup
Recently, it has been experimentally demonstrated that under the condition of eliminating the internal and external unwanted reflection, diode-end-pumped Nd-doped crystal lasers could be spontaneously operated in the self-mode-locking state [16, 17]. Here we set up a self-mode-locked Nd:YVO\(_4\) laser
Figure 1. Experimental setup of a self-mode-locked Nd:YVO₄ laser for measuring the group refractive indices and thermo-optic coefficients.

Table 1. Experimental results for the group refractive indices for \(n_o \) and \(n_e \) at the wavelength of 1064 nm.

<table>
<thead>
<tr>
<th>Group refractive index</th>
<th>(n_o)</th>
<th>(n_e)</th>
<th>(n_o)</th>
<th>(n_e)</th>
<th>(n_o)</th>
<th>(n_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>2.012 34</td>
<td>2.249 30</td>
<td>1.998 22</td>
<td>2.222 02</td>
<td>2.034 86</td>
<td>2.254 72</td>
</tr>
<tr>
<td>Zelmon et al [13, 14] (at (T = 23^\circ C))</td>
<td>2.012 35</td>
<td>2.249 11</td>
<td>1.998 35</td>
<td>2.222 06</td>
<td>2.034 90</td>
<td>2.254 56</td>
</tr>
</tbody>
</table>

3. Experimental results and discussion

First of all, we set up the cavity length without inserting the sample to be approximately 6.49 cm, corresponding to a free spectral range of 2.313 GHz. As reported in the earlier study [16, 17], the laser cavity could be optimized to exhibit stable mode locking by finely adjusting the cavity alignment with monitoring the real-time pulse train. After optimizing the self-mode-locked laser, the sample crystal was inserted into the cavity to measure the change in the pulse repetition rate. The sample crystals are \(a \)-cut 0.2 at.% Nd:GdVO₄ crystal with a length of 10.04 mm, \(a \)-cut 0.1 at.% Nd:YVO₄ crystal with a length of 12.39 mm and \(a \)-cut 0.5 at.% Nd:LuVO₄ crystal with a length of 8.22 mm. We set the \(a \)-axis and \(c \)-axis of the sample crystals to be along the output polarization separately, and the optical path difference can be precisely calculated from the variation of the pulse repetition rate. Since these crystals are positive uniaxial crystals with \(n_o = n_a = n_b \) and \(n_e = n_c \), we set the \(c \)-axis of the sample crystal to be along the output polarization, and the group refractive index for \(n_e \) can be determined by measuring the optical path difference. In addition, the group refractive index for \(n_o \) can be determined by turning the sample crystal by 90° around the longitudinal axis.

Table 1 shows the experimental results for the group refractive indices for \(n_o \) and \(n_e \) at a wavelength of 1064 nm. Numerical calculations based on the models developed by Zelmon et al [13, 14] are also listed in table 1 for comparison. The group refractive index \(n_g \) for the wavelength can be calculated mathematically from the phase refractive index \(n_p \) by use of [18]

\[
n_g = n_p - \lambda \frac{\partial n_p}{\partial \lambda}.
\]
Recently, Zelmon et al [13, 14] reported new measurements of the phase refractive indices for Nd:GdVO$_4$, Nd:YVO$_4$ and Nd:LuVO$_4$ crystals and fitted a Sellmeier equation of the form

$$n^2 = A + \frac{B \lambda^2}{\lambda^2 - C} + \frac{D \lambda^2}{\lambda^2 - E}. \tag{2}$$

The five parameters in equation (2) for the Nd:GdVO$_4$, Nd:YVO$_4$ and Nd:LuVO$_4$ crystals can be found in [13, 14]. Using equations (1) and (2), the group refractive indices for n_o and n_e at a wavelength of 1064 nm are calculated and shown in table 1. It can be seen that the deviations between the present results and the numerical calculations are generally less than 2×10^{-4}.

Measurement for the thermo-optic coefficient of a laser crystal is of practical importance for scaling up the output power because this parameter is directly related to the thermally induced lensing effect. To measure the temperature dependences of refractive indices, we employed an oven and a temperature controller to steadily adjust the temperature of the sample crystal between 50 and 170 °C. The variation of the temperature ΔT leads to an optical path difference ΔL that is given by

$$\Delta L = \left(\frac{dn}{dT} + \alpha_T \times (n - 1)\right) \times l_c \times \Delta T,$$

where l_c is the length of the sample crystal and α_T is the linear thermal expansion coefficient. The thermally induced optical path difference results in a variation of the pulse repetition rate Δf to be given by $\Delta f = -\left(2 \times f^2/c\right) \times \Delta L$. Figure 2 depicts experimental results for the frequency shift versus the temperature change for light polarization in the directions along and perpendicular to the c-axis of the Nd:GdVO$_4$, Nd:YVO$_4$ and Nd:LuVO$_4$ crystals. We subsequently exploited the experimental data for the temperature dependence of the pulse repetition rate and information about the thermal expansion coefficient α_T to determine the temperature dependence of the group refractive index. The α_T values used in the calculation are 1.5×10^{-6} K$^{-1}$ [10], 4.43×10^{-6} K$^{-1}$ [19] and 1.7×10^{-6} K$^{-1}$ [4] for the Nd:GdVO$_4$, Nd:YVO$_4$ and Nd:LuVO$_4$ crystals, respectively. Figure 3 depicts the calculated results of the group refractive indices versus the temperature at a wavelength of 1064 nm for light polarization in the directions along and perpendicular to the c-axis of the Nd:GdVO$_4$, Nd:YVO$_4$ and Nd:LuVO$_4$ crystals. In this work the sample crystal was heated uniformly in an oven with a temperature controller. The effects of thermal expansion and the temperature dependence of the refractive index are considered in the measurement of the optical path difference. However, if the sample crystal were heated locally, the effects

![Figure 2](image-url)
Figure 3. Calculated results of the group refractive indices versus the temperature at 1064 nm for the laser polarization in directions along and perpendicular to the c-axis of the (a), (b)) Nd:GdVO$_4$, ((c), (d)) Nd:YVO$_4$ and ((e), (f)) Nd:LuVO$_4$ crystals.

Table 2. Experimental results and those currently reported in the literature for temperature dependences of refractive indices.

<table>
<thead>
<tr>
<th></th>
<th>Nd:GdVO$_4$</th>
<th>Nd:YVO$_4$</th>
<th>Nd:LuVO$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>dn_o/dT</td>
<td>dn_e/dT</td>
<td>dn_o/dT</td>
<td>dn_e/dT</td>
</tr>
<tr>
<td>(×10$^{-6}$ K$^{-1}$)</td>
<td>(×10$^{-6}$ K$^{-1}$)</td>
<td>(×10$^{-6}$ K$^{-1}$)</td>
<td>(×10$^{-6}$ K$^{-1}$)</td>
</tr>
<tr>
<td>This work (at 1064 nm)</td>
<td>11.8</td>
<td>9.5</td>
<td>14.6</td>
</tr>
<tr>
<td>Zelmon et al [13, 14] (at 1064 nm, $T = 23 \degree$C)</td>
<td>11.8</td>
<td>9.0</td>
<td>14.0</td>
</tr>
<tr>
<td>Loiko et al [12] (at 632.8 nm)</td>
<td>5.5</td>
<td>4.3</td>
<td>8.2</td>
</tr>
<tr>
<td>Mukhopadhyay et al [11] (at 1064 nm)</td>
<td>4.87</td>
<td>2.64</td>
<td>—</td>
</tr>
<tr>
<td>Zhang et al [10] (at 1064 nm)</td>
<td>—</td>
<td>4.7</td>
<td>—</td>
</tr>
</tbody>
</table>

such as refractive index change, bulging and stress optical birefringence might be more complicated [20]. A detailed comparison between the present results and those currently reported in the literature is shown in Table 2. Our experimental results can be seen to be fairly consistent with the data reported by Zelmon et al [13, 14]. The method adopted by Zelmon et al is still believed to be the most accurate way to measure the refractive indices of materials. As seen in Table 2, the value of the thermo-optic coefficient dn_c/dT of the LuVO$_4$ crystal is obviously smaller than those of the GdVO$_4$ and YVO$_4$ crystals. On the other hand, the value of the thermo-optic coefficient dn_o/dT of the GdVO$_4$ crystal is somewhat smaller than those of the LuVO$_4$ and YVO$_4$ crystals.

4. Conclusion

In conclusion, we employed the intracavity scheme in a self-mode-locked laser to systematically measure the group refractive indices and the thermo-optic coefficients for Nd:
GdVO₄, Nd:YVO₄ and Nd:LuVO₄ crystals at 1064 nm. Measured results reveal that the value of the thermo-optic coefficient of the LuVO₄ crystal is obviously smaller than those of the GdVO₄ and YVO₄ crystals in the direction parallel to the c-axis. On the other hand, the value of the thermo-optic coefficient of the GdVO₄ crystal is somewhat smaller than those of the LuVO₄ and YVO₄ crystals in the direction perpendicular to the c-axis. In general, experimental results are found to be in good agreement with the recent measured values with the best precision.

Acknowledgment

The authors thank the National Science Council for their financial support of this research under contract no. NSC-100-2628-M-009-001-MY3.

References

