Trajectory Entropy of Continuous Stochastic Processes at Equilibrium

Kevin R. Haas,† Haw Yang,*‡ and Jhih-Wei Chu*§∥

†Department of Chemical and Biomolecular Engineering, University of California-Berkeley, 201 Gilman Hall, Berkeley, California 94720, United States
‡Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08544, United States
§Department of Biological Science and Technology, National Chiao Tung University, 75 Bo-Ai Street, Hsinchu, Taiwan, ROC
∥Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan, ROC

ABSTRACT: We propose to quantify the trajectory entropy of a dynamic system as the information content in excess of a free-diffusion reference model. The space–time trajectory is now the dynamic variable, and its path probability is given by the Onsager–Machlup action. For the time propagation of the overdamped Langevin equation, we solved the action path integral in the continuum limit and arrived at an exact analytical expression that emerged as a simple functional of the deterministic mean force and the stochastic diffusion. This work may have direct implications in chemical and phase equilibria, bond isomerization, and conformational changes in biological macromolecules as well transport problems in general.

SECTION: Molecular Structure, Quantum Chemistry, and General Theory

A dynamic system subjected to both random fluctuations and variations in the energy surface explores its possible outcomes during the evolution over time. We see such examples in areas including physics, chemistry, biology, as well economics. It would therefore be of great interest to have a quantitative measure that elucidates the manner by which the deterministic and the stochastic forces acting on the system affect the dynamics.

The general features of the problem are as follows. Let \(x \) be some continuous observable that characterizes the outcome of a system that is under stochastic thermal agitation; for example, \(x \) could be the distance characterizing the conformational change of a protein, the angle of a chemical bond isomerization process, the reaction coordinate of a chemical equilibrium, the relative population of a phase equilibrium, or the spatial coordinate of an electron diffusing classically in a periodic potential, to name a few. Without loss of generality, here \(x \) is designated as the spatial coordinate in this Letter. The system with an initial condition \(x_0 \) at time zero will evolve to trace out a trajectory function \(X(t) \) that gives a value of \(x \) at time \(t \), with \(t \) going from 0 to the finite observation time of \(t_{\text{obs}} \). A trajectory thus records how the system changes as a function of time and contains the dynamics information as Figure 1 illustrates. This Figure shows four different trajectories with the respective initial conditions marked by filled circles on the leftmost plane. The contours on the same plane mark the potential \(V(x) \) of the mean force, \(F(x) = -dV(x)/dx \), which drives the system deterministically. In this work, we nondimensionalize the potential of mean force (PMF) by \(k_B T \), where \(k_B \) is the Boltzmann constant and \(T \) is the temperature. A rugged PMF, for example, \(V(x) \) with many local minima and maxima, will encode complicated features in the resulting trajectories that are composed of various dynamical processes such as waiting in different wells and making transitions between them.

In the presence of stochastic forces, the trajectories become even more complex to exhibit zigzags: One realization of the trajectory \(X(t) \) will be different from the next, \(X(t) \), even if the initial conditions are identical. The combined actions of both

Figure 1. Space–time trajectories of a dynamic system under the influences of both deterministic and stochastic forces. The equilibrium entropy is determined by the potential of mean force (PMF, the leftmost plane with contour lines) of the static distribution (the shaded gradients on the PMF plane). Jaynes’s caliper evaluates the extent, over which the system can explore over a slice of finite time width, \(\Delta t \), such as between the two gray panes. The trajectory entropy focused in this work resolves both the static and dynamical contributions to the apparent variation in dynamics over the observation time from \(t = 0 \) to \(t_{\text{obs}} \) and quantifies them analytically. This Figure serves as a pictorial representation of space–time trajectories and does not correspond to the model systems later studied.

Received: January 17, 2014
Accepted: February 28, 2014
Published: March 3, 2014

© 2014 American Chemical Society
the deterministic and the stochastic forces thus power the system to explore a specific space–time volume (cf. Figure 1) and both forces contribute to this apparent feature of trajectories. Because of the presence of stochastic forces, any description of the system dynamics needs to be statistical, and the problem of quantitatively characterizing the dynamics becomes evaluating the statistics of the ensemble of all trajectories that can be realized by the system.

In this Letter, we use the entropy measure defined in eq 1

$$S \equiv -\int_0^{t_{obs}} DX(t)P[X(t)] \ln \frac{P[X(t)]}{Q[X(t)]}$$ \hspace{1cm} (1)

to quantitatively evaluate the trajectory ensemble, where $P[X(t)]$ is the probability density of obtaining the trajectory $X(t)$, $Q(X(t))$ is the probability density of obtaining the same trajectory but from a reference dynamics, and the integration over $DX(t)$ is a path-integral over all realizable $X(t)$ from the dynamics. In one limiting case that only the deterministic forces are present, the initial condition sets the future and the dynamics is precisely known. In the other limiting case, that the system is influenced by stochastic forces only, the time propagation is the purely diffusive Brownian dynamics (BD). In this work, the latter case is chosen to be the reference dynamics for determining $Q(X(t))$. Therefore, if the system is solely influenced by random fluctuations, the trajectory entropy follows $S = 0$. If the system is driven by deterministic forces without stochasticity, $S \to -\infty$ for fully predictive trajectories. In general, the trajectory entropy will be bound by these two limiting cases.

As an illustration, we consider the three model PMFs shown in Figure 2. Their equilibrium probability density functions, $p_{eq}(x)$, have identical values of equilibrium entropy but different dynamics. (left) The potential of mean force, $V(x)$, of Model 1: $247.15(x - 1)^2$, Model 2: $17302.265(x - 1)^2 - 611.347(x - 1)^3$, and Model 3: $1/(15.47)(x - 1)/13.9^3 - 15(x - 1)/13.9^4 + 53(x - 1)/13.9^5 + 2(x - 1)/13.9^6 - 15(x - 1)/13.9^7$. Models 1–3 have 1, 2, and 3 minima in $V(x)$, respectively. (right) A sample Langevin trajectory for each of the three models with $D = 1$ in the dimensionless unit.
This design allows us to separate out the deterministic and stochastic contributions, as will be seen shortly.

Path Integral of the Onsager–Machlup (OM) Action. Here our evaluation of the trajectory entropy begins with the probability density of a Langevin path of duration \(t_{\text{obs}} \) that is proportional to the OM action \(E^\text{OM}[X(t)] \) as

\[
P[X(t)] = e^{-V(x_0)/Z_{\text{eq}}} e^{-E^\text{OM}[X(t)]/Z}
\]

\[
Z = \int \mathcal{D}X(t) e^{-E^\text{OM}[X(t)]}
\]

\[
E^\text{OM}[X(t)] = \frac{1}{2} \left(V(x_{t_{\text{obs}}}) - V(x_0) \right) + \frac{1}{4} \int_0^{t_{\text{obs}}} \frac{\dot{x}^2}{D} + D F^2(x_t) + 2DF'(x_t)
\]

Applying eqs 4–6 to eq 1 with the BD reference and collecting terms leads to the following expression (for the \(E_{\text{ref}} = 0 \) reference dynamics, we have discarded \(V_{\text{eq}} \) and set \(Z_{\text{eq}}/Z_{\text{ref}} = 1 \) to ignore the unnecessary scalar offsets)

\[
S = \frac{1}{2} \left(V(x_0) + V(x_{t_{\text{obs}}}) \right)_{X(t)} - \frac{D}{4} \left(\int_0^{t_{\text{obs}}} \dot{x}^2 \right)_{X(t)} + \frac{1}{4} \int_0^{t_{\text{obs}}} \frac{\dot{x}^2}{D} + \frac{\dot{x}^2}{D_{\text{ref}}} \right)_{X(t)} + \ln Z_{\text{eq}} + \ln \frac{Z}{Z_{\text{ref}}}
\]

The terms in eq 7 are taken over the distribution of trajectories of the system dynamics. For an arbitrary functional of \(X(t) \), \(g[X(t)]_{X(t)} = \int DX(t) P[X(t)]g[X(t)] \). An important consequence of equilibrium dynamics is that the path-integral expression of single-time functions can be obtained by switching the order of integrating over time \(\int d\tau \) and path \(\int DX(t) \) such that \(\int dt \varphi(x_t) \) becomes \(\int dx \varphi(x_{t_{\text{obs}}}) \).

Applying this result together with the fact that \(\langle V(x) \rangle_{eq} + \ln Z_{eq} = S_{eq} \) eq 7 becomes

\[
S = S_{eq} - t_{\text{obs}} D \langle F^2(x) \rangle_{eq} + \frac{1}{4} \left(\int_0^{t_{\text{obs}}} \frac{\dot{x}^2}{D} - \frac{\dot{x}^2}{D_{\text{ref}}} \right)_{X(t)} + \ln \frac{Z}{Z_{\text{ref}}}
\]

The remaining terms can be obtained from the trajectory partition function defined in eq 5. Because the origin of stochastic forces of the Langevin equations is the same as that of random diffusion without the deterministic forces, the value of \(Z \) is identical to the result of Brownian dynamics\(^{14,15}\)

\[
Z_\Delta(t) = (4\pi D \Delta t)^{t_{\text{obs}}/2}\Delta t
\]

The exponent is the number of time steps used to discretize the trajectory and hence the dimensionality of the path integral in eqs 1 and 5. The result of eq 9 can also be reached by taking the functional derivative of eq 5 with respect to \(F(x) \) and observing that the result is zero.\(^{16,17}\) Because \(Z \) is the cumulant generator of the OM action defined in eq 6, the velocity-squared terms in eq 7 can be obtained by applying

\[
d \ln(Z)/d(1/D) \text{ to eq 9 and imposing the definition of eq 6 to arrive the following expression}
\]

\[
\langle \dot{x}_t^2 \rangle_{X(t)} = \frac{2D}{\Delta t} - D^2 \langle F^2(x) \rangle_{eq}
\]

The nondifferentiability of Langevin trajectories does cause the velocity-squared term to diverge in the continuum limit of \(\Delta t \to 0^+ \), as expected, but one immediately sees that the procedure of eq 3 removes the divergence with that of the BD reference.

Applying eq 10 to eq 8, the dependence of trajectory entropy on \(F(x) \) reads

\[
S_{\text{ref}} = S_{eq} + t_{\text{obs}} D \left(\frac{D}{4D_{\text{ref}}} - \frac{1}{2} \langle F^2(x) \rangle_{eq} \right)
\]

Along the diffusion coordinate, taking the ratio of trajectory partition functions and adding the \(\sim 2D/\Delta t \) terms from the path integral of square velocity leads to the asymptote

\[
S_{\text{ref}} = \lim_{\Delta t \to 0^+} \frac{t_{\text{obs}} D}{2\Delta t} \ln \left(\frac{D}{D_{\text{ref}}} \right) + 1 - \frac{D}{D_{\text{ref}}}
\]

It ought be noted that extending the result of eqs 11 and 12 to multiple dimensions only requires a generalized path action and careful integration by parts to give the force expectation term \(\langle \dot{F}(x) \dot{F}(x) \rangle_{eq} \). The arbitrariness of reference dynamics in the trajectory entropy functional previously derived can in fact be eliminated by employing the most disordered dynamics of \(E_{\text{ref}} \to 0 \) and \(D_{\text{ref}} \to \infty \) as the reference model. Discarding the scalar constants irrelevant to \(F(x) \) and \(D \) in eqs 12 and 11 gives the trajectory entropy functional presented in eq 2.

Numerical Studies. We next use eq 2 to illustrate how the three model PMFs previously shown in Figure 2 give rise to different levels of complexity in dynamics despite their identical values of \(S_{eq} = -1.683 \). The results of numerical calculations can also serve as an independent validation for the analytical expression previously derived. In this regard, it is instructive to contrast our results with Jaynes’s caliber that considers the statistics of dynamics according to the conditional propagator, \(p(x_{t_{\text{obs}}}|x_0) \)\(^{17-19}\) with the trajectory entropy. The contours of \(p(x_{t_{\text{obs}}}|x_0) \) at an informative time lag for the three model systems listed in Figure 2 are shown in Figure 3. Caliber was originally defined for finite-state Markov models\(^{20}\) and may be generalized to the continuous space as the conditional entropy for the propagator \(p(x_{t_{\text{obs}}}|x_0) \) at a time resolution \(\Delta t \)

\[
S(\Delta t) = -\int dx_0 dx_{\Delta t} p(x_{\Delta t}, x_0) \ln p(x_{t_{\text{obs}}}|x_0)
\]

The caliber thus quantifies both the static and the dynamical complexity of the system within a time slice of \(\Delta t \) (Figure 1).

At a specified value of \(\Delta t \), eq 13 can be evaluated by solving the corresponding Fokker–Planck equation using standard numerical schemes or averaging over Langevin trajectories.\(^2\) As shown in Figure 3, variation of the caliber with \(\Delta t \) can be used to gain insight into the system dynamics. As \(\Delta t \to \infty \), the conditional probability density converges to \(p_{eq}(x) \) and the information about dynamics is lost. In the continuum limit of \(\Delta t \to 0^+ \), the conditional entropy diverges at a rate of \(\sim \ln(\Delta t) \) due to the nondifferentiability of the Weiner process.\(^3,4,15\) By scanning \(\Delta t \), the caliber does reveal differences in the dynamical contents of the three distinct models at intermediate \(\Delta t \). However, the relative contributions from the
illustrates the quantitative agreement as to compare with the values given by eq 11 that constitutes the = 1 in the dimensionless unit. Therefore, numerical calculations of entropy as a function of the continuum limit. In this comparison, approximately 10 times more models shown in Figure 2. The dynamics of Model 3 is summarizes this numerical validation of eq 11 for the three model systems. In all cases, $D = 1$ in the dimensionless unit.

deterministic and stochastic forces to dynamics are obscure in the caliber integral.

Because the caliber represents a temporal slice of the trajectory entropy (cf. Figure 1),16,17,21 applying eq 11 indicates the KL divergence of the caliber

$$S_{KL}(\Delta t) = \int d x_0 \; d x_{\Delta t} \; p(x_{\Delta t}|x_0) \ln p(x_{\Delta t}|x_0)/q(x_{\Delta t}|x_0)$$

(14)

Here $q(x_{\Delta t}|x_0)$ is the conditional probability density of the time propagation of BD, which would follow $S_{KL}(\Delta t)/\Delta t \rightarrow -D/4(F^2(x))_{eq}$ in the continuum limit when $D = D_{ref}$. Therefore, numerical calculations of $S_{KL}(\Delta t)/\Delta t$ can be used to compare with the values given by eq 11 that constitutes the deterministic part of the trajectory entropy, and Figure 4 illustrates the quantitative agreement as $\Delta t \rightarrow 0$. Table 1 summarizes this numerical validation of eq 11 for the three models shown in Figure 2. The dynamics of Model 3 is approximately 10 times more “complex” than that in Model 1 due to the greater mean forces in having two additional wells. It is clear that the trajectory entropy enables a direct and immediate identification for the origin of the differing complexity in dynamical trajectories

Concluding Perspective. This work illustrates how the path integral of the entire continuous stochastic trajectory ensemble can be compressed into an analytic functional. The results provide a foundation for understanding the dynamics due to fluctuations in systems that can be modeled by an overdamped Langevin equation. In addition to the examples noted in the introductory paragraph of this Letter, a potential application is using the expression of the trajectory entropy in design equations of information processing for dynamic systems. For systems that propagate quantum information, for example, the commonly employed modeling equations are isomorphic to the Langevin equation discussed here.22 For future works generalizing the ideas to nonequilibrium cases and to more complex dynamics such as those with memory effects, the analytical result presented here, which is valid for an arbitrary potential of mean force, can serve as a general starting reference.

Table 1. Numerical Calculations of $S_{KL}(\Delta t)$ for the Three Model Systems Discussed in This Lettera

<table>
<thead>
<tr>
<th>functionals</th>
<th>model 1</th>
<th>model 2</th>
<th>model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-\int dx ; p_{eq}(x) \ln p_{eq}(x)$</td>
<td>-1.683</td>
<td>-1.683</td>
<td>-1.683</td>
</tr>
<tr>
<td>$\Delta t \cdot S_{KL}(\Delta t)^b$</td>
<td>-123.6</td>
<td>-558.6</td>
<td>-1210</td>
</tr>
<tr>
<td>$-D/4(F^2(x))_{eq}$</td>
<td>-123.5</td>
<td>-558.7</td>
<td>-1211</td>
</tr>
</tbody>
</table>

aq(x_{\Delta t}|x_0) is the reference time propagator of BD with the same diffusion constant $D = 1$ in the dimensionless unit. When $D_{ref} = D$, the relation between the trajectory entropy and $S_{KL}(\Delta t)$ leads to $S_{KL}(\Delta t)/\Delta t \rightarrow -D/4(F^2(x))_{eq}$ in the continuum limit, as discussed in the text.

bNumerically evaluated at $\Delta t = 10^{-3}$. $S_{KL}(\Delta t)/\Delta t$ when $D = D_{ref}$.

![Figure 3. Conditional entropy of the time propagator. (top) The contours of the transition probability density $p(x_{\Delta t}|x_0)$ for the time propagation of models 1–3 with $\Delta t = 10^{-3}$. (bottom) The conditional entropy as a function of Δt for the three model systems. In all cases, $D = 1$ in the dimensionless unit.](image3.png)

![Figure 4. Comparison of numerical and analytical $S_{KL}(\Delta t)$ for the three model systems at different levels of time resolution Δt. The horizontal lines indicate the analytic prediction of $-D/4(F^2(x))_{eq}$ in the continuum limit. In this comparison, $D = D_{ref}$.](image4.png)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: hawyang@princeton.edu (H.Y.).

*E-mail: jwchu@nctu.edu.tw (J.-W.C.).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the University of California, Berkeley, the Princeton University, and the National Chiao Tung University, Taiwan, Republic of China. The funding from the National Science Council of Taiwan, Republic of China via grant number 102-2113-M-009-022-MY2 is acknowledged. We also thank Gavin Crooks, Chris Jarzynski, and David Sivak for helpful discussions.

REFERENCES