Sterol Regulatory Element Binding Protein 2 Activation of NLRP3 Inflammasome in Endothelium Mediates Hemodynamic-Induced Atherosclerosis Susceptibility

Han Xiao, Min Lu, Ting Yang Lin, Zhen Chen, Gang Chen, Wei-Chi Wang, Traci Marin, Tzu-pin Shentu, Liang Wen, Brendan Gongol, Wei Sun, Xiao Liang, Ju Chen, Hsien-Da Huang, Joao H.F. Pedra, David A. Johnson and John Y-J. Shyy

Circulation. 2013;128:632-642; originally published online July 9, 2013; doi: 10.1161/CIRCULATIONAHA.113.002714

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/128/6/632

Data Supplement (unedited) at:
http://circ.ahajournals.org/content/suppl/2013/07/09/CIRCULATIONAHA.113.002714.DC1.html

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org/subscriptions/
Atherosclerosis preferentially develops at branches and curvatures in the arterial tree. Cardiovascular risk factors such as hyperlipidemia, smoking, and hypertension increase the prevalence and severity of lesions in these atheroprone regions. At the cellular and molecular levels, disturbed flow patterns with low shear stress such as those found at vascular branches and curvatures increase the expression of genes such as interleukin 1β (IL-1β) and NADPH oxidase (NOX) to promote inflammatory and oxidative stresses in vascular endothelial cells (ECs). Such hemodynamic-induced functionally disturbed endothelium predisposes localized areas to become atherogenic, with ensuing monocyte recruitment and foam cell formation. Although extensive studies have revealed EC gene expression profiles associated with the atheroprone flow patterns, the key molecular events linking mechanical stimuli to atherogenic responses remain underetermined.

Background—The molecular basis for the focal nature of atherosclerotic lesions is poorly understood. Here, we explored whether disturbed flow patterns activate an innate immune response to form the NLRP3 inflammasome scaffold in vascular endothelial cells via sterol regulatory element binding protein 2 (SREBP2).

Methods and Results—Oscillatory flow activates SREBP2 and induces NLRP3 inflammasome in endothelial cells. The underlying mechanisms involve SREBP2 transactivating NADPH oxidase 2 and NLRP3. Consistently, SREBP2, NADPH oxidase 2, and NLRP3 levels were elevated in atheroprone areas of mouse aortas, suggesting that the SREBP2-activated NLRP3 inflammasome causes functionally disturbed endothelium with increased inflammation. Mimicking the effect of atheroprone flow, endothelial cell–specific overexpression of the activated form of SREBP2 synergized with hyperlipidemia to increase atherosclerosis in the atheroresistant areas of mouse aortas.

Conclusions—Atheroprone flow induces NLRP3 inflammasome in endothelium through SREBP2 activation. This increased innate immunity in endothelium synergizes with hyperlipidemia to cause topographical distribution of atherosclerotic lesions.

(Circulation. 2013;128:632-642.)

Key Words: atherosclerosis ■ endothelial cell ■ NLRP3 protein, human ■ shear stress ■ sterol regulatory element binding proteins
The connection between hemodynamic-induced endothelial dysfunction and inflammatory and oxidative stresses is poorly understood. However, aberrant lipid metabolism, unbalanced redox states, and innate immunity in phagocytes are linked through NLRP3 inflammasome with subsequent cleavage and activation of interleukin (IL)-1 family proteins. Moreover, cholesterol crystals activate the NLRP3 inflammasome and increase the secretion of mature IL-1β in monocyte/macrophages. LDL receptor–deficient mice receiving bone marrow–derived cells lacking NLRP3, ASC, or IL-1α/β were resistant to the development of diet-induced atherosclerosis. Alone, systemic activation of NLRP3 inflammasome in macrophages does not explain the preferential localization of atherosclerosis in the arterial tree.

Disturbed flow can activate NOX and induce reactive oxygen species (ROS). This raises the possibility that inflammasome is involved in oxidative stress in ECs. Additionally, a recent report of minute cholesterol crystals appearing early in atherosclerotic lesions suggests a linkage between hemodynamic stimuli, SREBP2 activation, and NLRP3 inflammasome in ECs, all linked to atherosclerosis. Using in vitro and in vivo approaches, we report here that the atheroprone flow–induced endothelial inflammation and oxidative stress are mediated through SREBP2–elicited NLRP3 inflammasome. Our findings reinforce a primary role of EC innate immunity in the origin of atherosclerosis.

Methods

Antibodies and Reagents
Anti-SREBP2 antibody was from BD Transduction Laboratory and Abcam; anti–IL-1β, anti-caspase-1, and anti–β-tubulin, horseradish peroxide–conjugated anti-rabbit and anti-mouse antibodies were from Cell Signaling Technology; anti-ABC-G1, anti-NLRP3, anti-NOX2 antibodies were from Abcam; anti–ABC-A1 antibody was from Millipore; and anti-ASC antibody was from Enzo Life Science. The caspase-1 inhibitor Z-YVAD-FMK was from Biovision. 25-Hydroxycholesterol (25-HC) and methyl-β-cyclodextrin were from Sigma.

Cell Culture
Human umbilical vein ECs (HUVECs) were cultured in medium M199 (Gibco) supplemented with 15% FBS (Omega), 3 ng/mL β-EC growth factor, 4 U/mL heparin, and 100 U/mL penicillin-streptomycin. Total cholesterol was measured with the Infinity Total Cholesterol Kit (Thermo Scientific). Caspase-1 activity was measured with the use of the Caspase-1/ICE Colorimetric Assay Kit (R&D Systems). Primary mouse lung ECs were isolated as described.

Shear Stress Experiments
A circulating flow system was used to impose shear stress on confluent monolayers of cells seeded on glass slides as described. A reciprocating syringe pump connected to the circulating system introduced a sinusoidal (1 Hz) component onto the shear stress. The atheroprotective pulsatile shear flow (PS) or atheroprone oscillatory shear flow (OS) generated shear stresses of 12±4 or 1±4 dynes/cm², respectively. The flow system was enclosed in a chamber held at 37°C and ventilated with 95% humidified air plus 5% CO₂.

siRNA Knockdown
HUVECs at 50% to 70% confluence were transfected with SREBP2 siRNA, NLRP3 siRNA, ASC siRNA, NOX2 siRNA, or control siRNA at 20 nmol/L with Lipofectamine 2000 RNAi Max (Invitrogen). Experiments were performed with these cells at 48 hours after transfection.

Adenovirus Construction and Infection
Recombinant adenovirus encoding the mature form of SREBP2, that is, Ad-HA-SREBP2(N), was created, amplified, and titrated as reported previously. For adenovirus infection, the virus mixture was added to 70% confluent cultured HUVECs and incubated for 12 hours. Adenovirus (Ad-null) was an infection control. The infected cells were then incubated in fresh growth medium for 24 hours before RNA or protein extraction.

Binding Site Prediction
The potential SREBP2 binding sites on selected human and mouse genes were predicted by use of the position weight matrix algorithm from TRANSFAC to scan the promoter regions of the genes. The promoter regions were defined as ~3000 to 500 from the transcriptional start site of the gene.

Chromatin Immunoprecipitation Assay
Chromatin immunoprecipitation assays were performed with standard protocols using antibodies for SREBP2 (BD Transduction Laboratory) and mouse IgG (Cell Signaling).

EC-SREBP2(N) Transgenic Mice
Animal experimental protocols were approved by the Institutional Animal Care and Use Committee of the University of California, Riverside. The creation of the EC-SREBP2(N)-Tg mouse model is described in the online-only Data Supplement. Littermates carrying ApoE^{−/−} or EC-SREBP2(N)^{−/−}ApoE^{−/−} genotypes were generated by crossing EC-SREBP2(N)-Tg mice and ApoE^{−/−} mice. All mice were housed in colony cages with a 14-hour light/10-hour dark cycle and fed Rodent Diet 5001 (PMI Nutrition International) ad libitum unless otherwise indicated. Eight-week-old male EC-SREBP2(N)^{−/−}ApoE^{−/−} mice and their male EC-SREBP2(N)^{−/−}ApoE^{−/−} littermates were fed a high-fat, high-cholesterol diet containing 15% fat, 1.25% cholesterol, and 0.5% sodium cholate (Harlan Teklad) ad libitum. Eight weeks after the diet treatment, all mice were euthanized. In addition, 24-week-old male EC-SREBP2(N)^{−/−}ApoE^{−/−} mice and their male EC-SREBP2(N)^{−/−}ApoE^{−/−} littermates were fed normal chow. Mouse aortas were isolated to assess the extent and distribution of lesions by Oil Red O staining. Lesion area was measured with Image Pro Plus 6.0 (Media Cybernetics) and expressed as a percentage of the total area of aorta. Plasma levels of total cholesterol, high-density lipoprotein cholesterol, and triglycerides were determined with assay kits from Wako Pure Chemicals (Tokyo, Japan).

Statistical Analysis
Data are expressed as means±SEM (n=3 unless otherwise noted). In parametric data, the Student t test or ANOVA was used to analyze the differences among groups if data were determined to be normally distributed. For nonparametric data, the Mann-Whitney U test with the exact method was used to analyze differences between 2 groups. Values of P<0.05 were considered statistically significant.

Results

Coinduction of SREBP2 and miR-33 in ECs by OS
Initially, we examined the effects of PS and OS on the expression of SREBP2 in ECs. Imposition of OS, but not PS, activated SREBP2, as evidenced by the increased level of the mature form of SREBP2, namely SREBP2(N), and SREBP2 mRNA (Figure 1A and 1B). Given that miR-33 is intrinsic with SREBP-2, OS also elevated the level of miR-33 (Figure 1B). Additionally, the expression of SREBP2-targeted genes, that is, HMG-CoA reductase, HMG-CoA synthase, squalene synthase, and LDL receptor, was higher with OS...
than PS (Figure 1C). The miR-33–targeted ABCA1, but not ABCG1, was downregulated at both the transcriptional and translational levels (Figure 1D and 1E). Thus, OS increased the expression of genes involved in cholesterol synthesis and uptake while decreasing ABCA1, which is involved in cholesterol efflux. In line with these changes, the cholesterol content of HUVECs was greater with OS than PS (Figure 1F). One possible mechanism for OS induction of SREBP2 is that the action of OS is secondary to sterol depletion. Consequently, we examined whether sterol replenishment with 25-HC blocks the effect of OS on SREBP2 activation. Although 25-HC and methyl-β-cyclodextrin reduced and increased SREBP activation in HUVECs, respectively, incubation of 25-HC had little effect on OS-induced SREBP2 expression (Figure 1G). Interestingly, overexpression of the mature form of SREBP2, that is, SREBP2(N) or premiR33, increased the cholesterol content (Figure 1A and 1B in the online-only Data Supplement). However, siRNA knockdown of SREBP2, but not miR-33, abolished OS-induced cholesterol accumulation (Figure 1C). Consequently, we focused on the role of SREBP2 in OS-disturbed endothelial functions.

OS Induces NLRP3 Inflammasome in ECs via SREBP2

The atheroprone nature of OS is due largely to its imposition of inflammatory and oxidative stresses on ECs.18 Because SREBP1a induces caspase-1–activated NLRP3 inflammasome in macrophages, resulting in cleavage and secretion of IL-1 family cytokines,19 we investigated whether OS induces inflammasome in ECs. The levels of cleaved caspase-1 and IL-1β were greater in ECs with OS than PS (Figure 2A). Because OS induced SREBP2 maturation, we explored whether SREBP2(N) overexpression mimics OS to induce inflammasome in ECs. As expected, increased cleavage of caspase-1 and IL-1β was found in ECs infected with Ad-SREBP2(N) encoding SREBP2(N) (Figure 2B). Consistent with this finding, ectopic expression of SREBP2(N) increased caspase-1 activity in ECs (Figure 2C). With siRNA knockdown of endogenous SREBP2, OS–induced cleavage of caspase-1 or IL-1β was reduced (Figure 2D). Similar results were found when the inflammasome components NLRP3 and ASC were knocked down (Figure 2E and 2F). Together, these results suggest that SREBP2 mediates OS-induced NLRP3 inflammasome in ECs.

Figure 1. Oscillatory shear flow (OS) induces sterol regulatory element binding protein 2 (SREBP2) and miR-33 in human umbilical vein endothelial cells (HUVECs). HUVECs were exposed to a pulsatile shear flow (PS; 12±4 dynes/cm²) or OS (1±4 dynes/cm²) for 14 hours.

A. Representative immunoblot for precursor SREBP2 and mature form of SREBP2. B. Analysis of levels of SREBP2 mRNA and miR-33 by quantitative real-time–polymerase chain reaction. C. The mRNA levels of HMG-CoA synthase, HMG-CoA reductase, squalene synthase, and low-density lipoprotein receptor (LDLR). D. mRNA levels of ATP-binding cassette transporter (ABC) A1 and ABCG1. E. Representative immunoblot for ABCA1 and ABCG1. F. Total cellular cholesterol level (n=8). G. Representative immunoblot for precursor SREBP2 and mature form of SREBP2 in HUVECs treated with methyl-β-cyclodextrin (MβCD), 25-hydroxycholesterol (25-HC; 1 µg/mL), or OS plus 25-HC (1 µg/mL). Data are means±SEM from at least 3 independent experiments. The Student t test or Mann-Whitney U test with the exact method was used. MW indicates molecular weight. *P<0.05.
SREBP2 Upregulates NOX2 With Increased ROS Production

We then investigated the underlying mechanism by which SREBP2 regulates the OS-induced inflammasome in ECs. The ROS level is increased by NLRP3 inhibitors such as asbestos and silica,

Increased ROS are secondary messengers essential for inducing NLRP3 inflammasome. Given that OS is known to increase ROS production, we examined SREBP2 augmentation in relation to ROS production. The intracellular level of ROS increased in ECs infected with Ad-SREBP2(N) encoding the mature form of SREBP2 (Figure 3A). To assess the source of the increased level of ROS in ECs overexpressing SREBP2(N), we monitored ROS-generating mitochondria using MitoSOX, a selective mitochondrial superoxide indicator. Rotenone, the complex I inhibitor, greatly increased mitochondrial ROS production, but Ad-SREBP2(N) overexpression was without effect (Figure 3B).

SREBP2 Upregulates NLRP3 Expression

Bioinformatics also predicted the presence of an SRE located at −1379/−1368 bp in the promoter region of the NLRP3 gene (Figure 4A). As expected, NLRP3 expression was increased in Ad-SREBP2(N)-infected HUVECs (Figure 4B and 4C) and ECs isolated from EC-SREBP2(N)-Tg mice (Figure 4D).

Note, the levels of other NADPH oxidase subunits (except NOX1) were not significantly increased in these cells (Figure II in the online-only Data Supplement). Chromatin immunoprecipitation assay demonstrated an increase in the binding of SREBP2 to the 3 SREs containing the consensus sequence of CACC(T)CCA (Figure 3G). To investigate whether SREBP2 is required for OS-induced NOX2, we knocked down SREBP2 and found that the OS-induced NOX2 was partially suppressed (Figure 3H). Furthermore, NOX2 knockdown inhibited the OS-induced caspase-1 and IL-1β cleavage (Figure 3I). A similar inhibitory effect was found in NOX2−/− mouse embryonic fibroblasts (Figure III in the online-only Data Supplement). These results suggest that the SREBP2-transactivated NOX2 is required for OS-induced inflammasome in ECs.
Therefore, the OS-activated SREBP2 transactivates NLRP3 in ECs.

SREBP2(N) Overexpression Enhances Endothelial Inflammation

IL-1β stimulates the expression of chemokines, for example, monocyte chemoattractant protein 1, and adhesion molecules, for example, vascular cell adhesion molecule 1 and E-selectin, in ECs, which enhances leukocyte-endothelium interactions. In agreement with increased IL-1β secretion via SREBP2-augmented inflammasome, SREBP2(N) overexpression increased the mRNA levels of monocyte chemoattractant protein 1, vascular cell adhesion molecule 1, and E-selectin (Figure 5A). Increased expression of monocyte chemoattractant protein 1 and adhesion molecules was also found in ECs isolated from EC-SREBP2(N)-Tg mice compared with wild-type littermates (Figure 5B). The SREBP2(N)-induced inflammation in ECs was associated with increased monocyte association, which was attenuated with caspase-1 inhibitor or NOX2 or NLPR3 siRNA knockdown (Figure 5C and 5D).

SREBP2-NOX2-Inflammasome Activation in Atheroprotive Regions of the Mouse Aorta

We next investigated whether the differential regulation of SREBP2 by PS and OS in ECs cultured in the flow channel also translated to a functional or functionally disturbed endothelium in atheroprotective versus atheroprone regions in the mouse arterial tree. As shown in Figure 6A and 6B, the activation of NLRP3 inflammasome was evident in the aortic arch, where the endothelium is exposed predominantly to disturbed flow.\(^{23}\) As expected, the levels of the cleaved caspase-1 and IL-1β p17, that is, IL-1β p17, were higher in the aortic arch than in the thoracic aorta (Figure 6B). Consistent with this observation, the expression of IL-1β-regulated genes, that is,
monocyte chemoattractant protein 1, vascular cell adhesion molecule 1, intercellular adhesion molecule 1, and E-selectin, was increased in the aortic arch (Figure 6A). In addition, we separated intima (endothelium) from media and adventitia of thoracic aorta and aortic arch of C57BL/6 mice. As illustrated in Figure 6C, the expression levels of SREBP2, NOX2, and NLRP3 in the isolated endothelium in aortic arch were higher than those in thoracic aorta. Importantly, no differences were found between thoracic aorta and aortic arch in tissues containing media and adventitia. Higher levels of NLRP3, NOX2, and SREBP2 in the aortic arch were also verified by in situ hybridization (Figure IV in the online-only Data Supplement). Thus, the NLRP3 inflammasome is activated in the endothelium of atheroprolific regions of the arterial tree in vivo.

EC-specific SREBP2(N) overexpression mimicking OS induction of SREBP2 should render the thoracic aorta of EC-SREBP2(N)-Tg mice atheroprotective. As expected, activation of NLRP3 inflammasome and induction of chemotactants and adhesion molecules were seen in these arterial segments compared with corresponding areas in wild-type littermates (Figure 6D). SREBP2(N) overexpression also caused a functionally disturbed endothelium, as evidenced by impaired vasodilation responding to flow (Figure V in the online-only Data Supplement).

Figure 4. Sterol regulatory element binding protein 2 (SREBP2) overexpression upregulates NLRP3 inflammasome. A, Depiction of the putative SRE binding site located at −1379/−1368 bp upstream of the transcription initiation site in the human NLRP3 promoter. NLRP3 mRNA levels (B) and representative immunoblot (and quantification) of NLRP3 and the mature form of SREBP2 (C) in human umbilical vein endothelial cells (HUVECs) treated with adenovirus-null (Ad-null; 5 multiplicities of infection [MOI]) or Ad-SREBP2(N) (2.5 or 5 MOI). D, NLRP3 mRNA levels in lung ECs from wild-type or EC-SREBP2(N)-Tg mice (n=8). E, Chromatin immunoprecipitation analysis with antibodies against SREBP2 or IgG, soluble chromatin from HUVECs infected with Ad-null or Ad-SREBP2(N), and primers targeting the region spanning the SRE binding site in the NLRP3 promoter. F, Representative immunoblot of NLRP3, precursor SREBP2, and mature form of SREBP2 in HUVECs transfected with 20 nmol/L control RNA or SREBP2 siRNA for 48 hours and then exposed to static conditions or oscillatory shear flow (OS) for 14 hours. Bar graphs represent means±SEM from at least 3 independent experiments. The Mann-Whitney U test with the exact method was used. *P<0.05 vs Ad-null or wild-type; #P=0.05 vs Ad-null.

SREBP2(N) Overexpression in ECs Predisposes Atherosclerosis

We introduced the ApoE-null background into EC-SREBP2(N)-Tg mice to investigate whether EC-specific overexpression of SREBP2(N) leads to atherogenesis in atheroprotective regions in ApoE−/−/EC-SREBP2(N) mice. After 8 weeks of an atherogenic diet, the levels of total cholesterol and LDL were comparable between ApoE−/−/EC-SREBP2(N) mice and their ApoE−/− littermates (Table 1). However, the mean lesion area in thoracic aortas was 1.5-fold larger for ApoE−/−/EC-SREBP2(N)-Tg mice than ApoE−/− mice (17.4±1.7% versus 11.5±1.3%; Figure 7A and 7C). The mean lesion area in the aortic arch was also larger for ApoE−/−/EC-SREBP2(N) than ApoE−/− mice (47.7±2.5% versus 39.7±3.1%). The order of lesion size was as follows: aortic arch of ApoE−/−/EC-SREBP2(N) mice>thoracic aorta of ApoE−/−/EC-SREBP2(N) mice>thoracic aorta of ApoE−/− mice. The total lesion area as a sum of aortic arch, thoracic aorta, plus abdominal aorta remained greater for ApoE−/−/EC-SREBP2(N) mice than control littermates (22.5±1.4% versus 18.2±1.5%). These results demonstrate that local flow patterns synergize with other atherogenic factors, for example, hyperlipidemia, in the formation of atherosclerotic lesions. We also compared the lesion development in the 2 groups of animals fed normal chow for 24 weeks. As expected, the serum levels of total cholesterol and LDL were significantly lower with normal chow than with an atherogenic diet (Table 1). Compared with the ApoE−/− littermates, ApoE−/−/EC-SREBP2(N) mice showed more lesions in aortic arches, particularly the inner curvature of the arch and the orifices of the arch vessels (Figure 7B and 7D). Previous studies by others showed that these areas have elevated nuclear...
factor-κB and vascular cell adhesion molecule 1 activation.23,24 Of note, with normal chow, lesion areas were marginal in the thoracic aortas of both ApoE−/−/EC-SREBP2(N) and ApoE−/− mice, which reiterates the notion that hyperlipidemia synergizes with hemodynamic forces in the origin of atherosclerosis.

Discussion
The “response-to-injury” hypothesis states that endothelial dysfunction precedes the development of atherosclerosis.25 Much evidence suggests that atheroprone flow patterns in the conduit arteries are a determining factor of atherogenesis. Furthermore, the Pathological Determinants of Atherosclerosis in Youth (PDAY) study provides unequivocal evidence that cardiovascular risk factors (eg, hyperlipidemia, smoking, and hypertension) exacerbate atherosclerosis in atheroprone areas in the human arterial tree.26,27 Here, we report that disturbed flow applied to ECs induced NLRP3 inflammasome via SREBP2 activation. Such SREBP2 activation of NLRP3 inflammasome is sufficient for functionally disturbed endothelium leading to atherogenesis as supported by mouse models harboring the EC-SREBP2(N) transgene. Differential development of atherosclerotic lesions in the aortic arch compared with thoracic aorta in mice with or without EC-specific expression of SREBP2(N) and in the presence or absence of an atherogenic diet (Figure 7) provides a molecular basis for the hemodynamic-induced atherosclerosis susceptibility seen in the human arterial tree. We reasoned that endothelial expression of SREBP2(N) mimicking the effect of disturbed flow synergizes with hyperlipidemia (caused by an apoE−/− background together with an atherogenic diet) to accelerate atherosclerosis. The thesis is further supported by experiments using EC-SREBP2(N)-Tg or wild-type C57BL6 mice fed an atherogenic diet. Early atherosclerotic plaques developed in the aortic root of EC-SREBP2(N)-Tg mice but not control littermate mice (Figure VI in the online-only Data Supplement and Table 2). Thus, the translational relevance of this study is that the spatial localization and severity of atherosclerosis can depend on atheroprone flow coupled with cardiovascular risk factors via SREBP2(N)-induced NLRP3 inflammasome.

Clearly, IL-1β is a major atheroprone factor.28 Atherosclerosis was decreased in several rodent models lacking IL-1β or type I IL-1 receptor.29,30 In contrast, mice deficient in IL-1 receptor antagonist show increased atherosclerosis.31 Canakinumab, an anti-human IL-1β monoclonal antibody, is currently being used in the Canakinumab

Figure 5. Increased level of sterol regulatory element binding protein 2 (SREBP2) causes endothelial cell (EC) NLRP3 inflammation. A, Quantification of mRNA levels of monocyte chemoattractant protein 1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin in human umbilical vein endothelial cells (HUVECs) treated with adenovirus-null (Ad-null; 5 multiplicities of infection [MOI]) or Ad-SREBP2(N) (2.5 or 5 MOI) or (B) in lung ECs from wild-type or EC-SREBP2(N)-Tg mice (n=8). C and D, HUVECs were infected with Ad-null or Ad-HA-SREBP2(N) for 24 hours and then treated with or without caspase-1 inhibitor Z-YVAD-FMK (2 μmol/L) for 24 hours. In separate experiments, HUVECs were transfected with control RNA, NADPH oxidase 2 (NOX2) siRNA, or NLRP3 siRNA and then infected with Ad-null or Ad-HA-SREBP2(N) for 24 hours. The cells were incubated for 30 minutes with LeukoTracker-labeled THP1 cells. For quantification, parallel batches of treated cells were lysed and the fluorescence was measured. Data are means±SEM from 3 independent experiments performed in triplicate. The Mann-Whitney U test with the exact method was used. *P<0.05 for comparisons with Ad-null or wild-type ECs.
Anti-inflammatory Thrombosis Outcomes Study (CANTOS) to assess the efficacy of anti-IL-1β in reducing cardiovascular events. The antiatherosclerosis effect resulting from IL-1β antagonism should involve the inhibition of NLRP3 inflammasome in the endothelium and should be experimentally verified. Undoubtedly, NLRP3 inflammasome in monocyte/macrophage is important for atherosclerosis, as suggested by transplantation experiments with bone marrow deficient in NLRP3, ASC, or IL-1α/β. However, this macrophage-associated mechanism would not contribute to functionally disturbed endothelium and ensuing atherosclerosis in our mouse models because the SREBP2(N) transgene was expressed only in ECs, not in bone marrow–derived macrophages (Figure VII in the online-only Data Supplement).

Table 1. Serum Lipid Profile of ApoE−/−/EC-SREBP2(N) and Their ApoE−/− Littermates Fed a Normal Chow or an Atherogenic Diet

<table>
<thead>
<tr>
<th>Serum Lipids</th>
<th>Normal Chow, mg/dL*</th>
<th>Atherogenic Diet, mg/dL†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ApoE−/− (n=7)</td>
<td>ApoE−/−/EC-SREBP2(N) (n=6)</td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>1284±272‡</td>
<td>1224±334</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>169±49</td>
<td>197±112</td>
</tr>
<tr>
<td>LDL</td>
<td>490±54</td>
<td>478±83</td>
</tr>
<tr>
<td>VLDL</td>
<td>30±14</td>
<td>39±22</td>
</tr>
<tr>
<td>HDL</td>
<td>764±253</td>
<td>707±374</td>
</tr>
</tbody>
</table>

EC indicates endothelial cell; HDL, high-density lipoprotein; LDL, low-density lipoprotein; SREBP2, sterol regulatory element binding protein 2; and VLDL, very-low-density lipoprotein.

*Normal chow group was 24-week-old mice fed a normal chow.
†Atherogenic diet group was 8-week-old mice fed an atherogenic diet for 8 weeks.
‡All values are expressed as mean±SEM averaged from the number of animals as indicated.
Reconciling published literature with the present report, we propose that the disturbed flow–increased NLRP3 inflammasome in ECs and consequent production and secretion of IL-1β create a focal gradient of inflammatory cytokines and chemoattractants. This flow-elicited proinflammatory milieu recruits sentinel cells (ie, monocytes) and facilitates the retention and differentiation of monocytes in the subendothelial space. Indeed, atherosclerosis was found to be substantially lower in ApoE−/−/IL-1β−/− than ApoE−/−/IL-1β+/+ thoracic aortas.30

In macrophages, the SREBP2-coinduced miR-33a targets ABCA1, which impairs reverse cholesterol transport.5,6 An antigomir against miR-33 decreases atherosclerosis in LDL receptor–null mice, with a concomitant increase in the level of high-density lipoprotein.33 Inhibition of miR-33 also increases the level of high-density lipoprotein and lowers that of very LDL triglycerides in nonhuman primates.34 In line with SREBP2 induction, OS-induced miR-33a targets ABCA1 in ECs (Figure 1). Given that cholesterol crystals are an inflammasome inducer,6 disturbed flow patterns should increase the cholesterol level, which arguably synergizes with SREBP2 to activate NLPR3 inflammasome. Conversely, the atheroprotective flow patterns should induce liver X receptors and hence upregulate ABCA1 to facilitate reverse cholesterol transport.35 Civelek et al36 reported no site-specific differences in endothelial ABCA1 expression between susceptible and protected sites of swine arteries. However, our published work showed that ABCA1 level is lower in the mouse aortic arch compared with thoracic aorta.35 The possible reason for the discrepancy is the different species and diets used in the 2 studies. Given that hypercholesterolemia significantly increased ABCA1 expression in swine endothelium, it might be difficult to detect a site-specific difference in endothelial ABCA1 expression.

The intracellular and extracellular levels of sterols intricately regulate SREBP2, which in turn modulates cellular cholesterol homeostasis.4 Significantly, excessive amounts of 25-HC do not prevent OS induction of SREBP2 (Figure 1G), suggesting that the mechanotransduction mechanism overrides that of the cholesterol-sensing system, leading to sustained SREBP2 activation. Thus, the disturbed flow–activated SREBP2 appears to disrupt cholesterol homeostasis in its activation of inflammasome. This argument can explain the synergism between atheroprone flow and hyperlipidemia in inducing atherosclerosis.

The endoplasmic reticulum stress/unfolded protein response is activated in ECs by atheroprone flow in vitro17 and is upregulated in endothelium of swine atheroprone sites in vivo.18 We have

Table 2. Serum Lipid Profile of EC-SREBP2(N) and Their Wild-Type Littermates Fed an Atherogenic Diet

<table>
<thead>
<tr>
<th>Serum Lipids</th>
<th>Wild-Type, mg/dL (n=5)</th>
<th>EC-SREBP2(N), mg/dL (n=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cholesterol</td>
<td>161±6*</td>
<td>176±30</td>
</tr>
<tr>
<td>Triglyceride</td>
<td>56±13</td>
<td>59±11</td>
</tr>
<tr>
<td>LDL</td>
<td>16±4</td>
<td>12±2</td>
</tr>
<tr>
<td>VLDL</td>
<td>105±31</td>
<td>107±20</td>
</tr>
<tr>
<td>HDL</td>
<td>62±36</td>
<td>68±20</td>
</tr>
</tbody>
</table>

EC indicates endothelial cell; HDL, high-density lipoprotein; LDL, low-density lipoprotein; SREBP2, sterol regulatory element binding protein 2; and VLDL, very-low-density lipoprotein.

*All values are expressed as mean±SD averaged from the number of animals as indicated.
previously shown that the unfolded protein response chaperone ATF6 inhibits SREBP2 activity by binding to SREBP2 in liver cells under glucose deprivation.43 This inhibitory effect does not involve ATF6 regulation of SREBP2 maturation, that is, cleavage. In contrast, OS affects SREBP2 cleavage (Figure 1A). Support for the 2 distinct mechanisms of SREBP2 regulation comes from experiments showing that ATF6 and SREBP2 were coinduced in ECs under OS and that ATF6 knockdown by siRNA did not affect SREBP2 induction by OS (data not shown).

Among mechanosensitive signaling molecules, Akt and adenosine monophosphate–activated protein kinase regulate the endothelial phenotypic changes responding to atheropron and atheroprotective flow, respectively.39 Akt positively regulates SREBP240 through direct phosphorylation and transcriptional activation via mTORC1. On the other hand, adenosine monophosphate–activated protein kinase inhibits SREBP-1c and -2 activities through Ser372 phosphorylation, which inhibits SREBP cleavage, nuclear translocation, and transcriptional activity.41 Thus, the disturbed flow–activated Akt is likely involved in SREBP2 activation in atheroprotective areas, whereas SREBP2 suppression in athero-resistant areas is mediated at least in part by adenosine monophosphate–activated protein kinase. Thus, adenosine monophosphate–activated protein kinase activators such as statin and metformin may play a beneficial role similar to that of atheroprotective flow in phosphorylating SREBP2.

SREBP-1a is involved in the lipopolysaccharide-stimulated IL-1\(\beta\) production through activation of NLRP1a inflammasome in macrophages.19 The SREBP1 promoter region also contains an SRE binding site, which can be regulated by SREBP2.42 The OS-induced SREBP2 should also act as SREBP2, because ECs transfected with Ad-SREBP2(N) showed an increased expression of SREBP1 (Figure VIII in the online-only Data Supplement). However, we did not find increased levels of NLRP1a in ECs from EC-SREBP2(N)-Tg mice (Figure VIII in the online-only Data Supplement). Most, if not all, NLRP3 activators upregulate NOXs, with concurrent elevation of the short-lived ROS, so NOX-mediated redox signaling is involved in NLRP3 inflammasome activation.20,21 Nevertheless, NOXs are not necessary for inflammasome activation in hematopoietic cells because immune cells deficient in NOXs show normal or hyperactive activation of inflammasome.43,44 In contrast, our data in Figure 3 suggest that SREBP2 transactivation of NOX2 is necessary for inducing NLRP3 inflammasome in ECs. Although the molecular basis of the discrepancies between macrophages and ECs remains unknown, SREBP2 induction of NOX2 is implicated in endothelial biology in that the major enzymatic product of NOX2 is ROS.45

As summarized in Figure 8, we demonstrated that athero-prone flow, like endogenous damage- and pathogen-associated molecules such as cholesterol crystals and lipopolysaccharide, induces NLRP3 inflammasome in endothelium via SREBP2 activation. This increased innate immunity in endothelium synergizes with hyperlipidemia to result in the focal nature of atherosclerosis.

Sources of Funding

This work was supported in part by National Institutes of Health grants HL89940 and HL105318, National Natural Science Foundation of China grant 81270349, National Science Council of the Republic of China (NSC 101-2311-B-009-003-MY3 and NSC 100-2627-B-009-002) and UST-UCSD I-RiCE Program (NSC 101-2911-I-009-101).

Disclosures

None.

References

SUPPLEMENTAL MATERIALS

Supplemental methods

Isolation of Primary Mouse Lung Endothelial Cells

Isolation of primary mouse lung endothelial cells were performed as described previously. Monoclonal rat anti-mouse CD31 antibody from BD Transduction Laboratory was covalently coupled to pre-washed Dynabeads® sheep anti-rat IgG during an overnight incubation. Lung tissue was excised, aseptically minced into 1 mm x 2 mm squares, digested with collagenase A at 37 °C with gentle agitation for 45 min, triturated 12 times with a 30-cc syringe, and passed through a 70-µm disposable cell strainer (BD Falcon) into a 50 mL conical centrifuge tube. The cell suspension was then centrifuged at 400 × g for 8 min at 4 °C, and the pellet was resuspended in 2 mL of medium. Anti-CD31 coated beads were added to the cell suspension, mixed, and incubated for 10 min at room temperature. The bead-bound cells were isolated with a magnet, resuspended in growth medium M199, and plated on collagen-coated T75 flasks. At the following day, the flasks were washed with media to remove loosely adherent cells.

Immunoblotting

Cells or tissue samples were lysed with a buffer containing 10 mM Tris, pH 7.4, 100 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM NaF, 20 mM Na4P2O7, 2 mM Na3VO4, 0.1% sodium dodecylsulfate, 0.5% sodium deoxycholate, 1% Triton X-100, 10% glycerol, 10 mg/ml leupeptin, 60 mg/ml apro tinin, and 1 mM phenylmethanesulfonfyl fluoride (PMSF). The extracted proteins were resolved by using either a 8% or 15% SDS-PAGE gel, followed by transfer to a polyvinylidene difluoride membrane (Bio-Rad) prior to immunoblotting.
Real-time PCR

Total RNA was isolated with use of TRIzol reagent (Invitrogen). Quantitative real-time PCR (qRT-PCR) with the TaqMan miRNA assay kit (Applied Biosystems) was used to measure the level of miR-33. The quantitative PCR (qPCR) was performed with an iQ SYBR Green Supermix (Bio-Rad) using iCycler Real-time PCR Detection System (Bio-Rad). The primer sequences are in the Supplemental Table section.

Primer Sequences Used in CHIP assay

Primers used for detection of the binding of SREBP2 to the three SREBP2 binding sites (SRE1, SRE2, SRE3) in the human NOX2 promoter were as follows: forward sequence (SRE1) 5'-TTGCCTGGAAACATGATTGCCA-3’, and the reverse sequence 5’-CCAGAGCAGTTGTTACTTGCC-3’, and forward sequence (SRE2) 5’-ACCAGCATGCCCACAAACACATGA-3’, and the reverse sequence 5’-TCAGGGAGCGTGGAGGAGA-3’, and forward sequence (SRE3) 5’-CTACAGGTCGCCACCACCATG-3’, and the reverse sequence 5’-CTTTGGCCATGATGAACCACATGT-3’. Primers used for detection of the binding of SREBP2 to the SREBP2 binding sites in the human NLRP3 promoter were as follows: forward sequence 5’-AAGATCCAGGTTCAGGCAATGAGC-3’, and the reverse sequence 5’-AGGTGCTGAAGCCTAGAGAAGCA-3’.

Measurement of ROS Production

After adenovirus infection, cells were exposed to 10 µM cell-permeable 2’,7’-dichlorodihydrofluorescein diacetate (H2DCFDA) (Invitrogen), and ROS fluorescence
was measured with use of a Perkin Elmer Victor 2 1420 multi-label counter at 485-nm excitation and 535-nm emission. MitoSOX (Molecular Probes) was used as a live cell-permeable and mitochondrial localizing superoxide indicator. After adenovirus infection, cells were exposed to 2.5 µM MitoSOX for 30 min at 37 °C. Fluorescence intensity was measured using BD Biosciences FACSCanto II flow cytometer. For each analysis, 10,000 events were recorded. The data was analyzed using FCS Express analysis software (De Novo Software).

EC-SREBP2(N) Transgenic Mice

The SacI/BamHI fragment of HA-SREBP2(N) from pCMV5-HA-SREBP2(N) was inserted into the EcoRV site of a pBluescriptIIKS vector containing an SV40 polyA signal. The SalI/XhoI fragment of the vascular endothelial-cadherin (VE-cadherin) promoter was then subcloned into the SalI site of the above-mentioned construct to yield pKSIICAD-BP2N2pA. The transgene was released by SalI/NotI double digestion followed by purification. Fertilized embryos from the hybrid strain CB6, an F1 hybrid between a BalbC and C57BL/6J mouse, were microinjected with the transgene at the UCSD transgenic mouse core facility. DNA from tails of the offspring was isolated and subjected to polymerase chain reaction (PCR). Mice with high levels of transgene incorporation were crossbred with C57BL/6J mice for two additional generations.

Vasodilatation Assay

The animal experimental protocols were approved by the Institutional Animal Care and Use Committee of University of California, Riverside. The middle cerebral arteries from
wild-type and EC-SREBP2(N)-Tg mice were isolated. For the flow-induced vasodilatation, the isolated mouse arteries were mounted on two glass cannulae in a perfusion myograph chamber connected to the SoftEdge Acquisition Subsystem (Living Systems, Burlington, VT). The vessel chamber was perfused with warmed physiological salt solution containing 130 mM NaCl, 10 mM HEPES, 6 mM glucose, 4 mM KCl, 4 mM NaHCO$_3$, 1.8 mM CaCl$_2$, 1.18 mM KH$_2$PO$_4$, 1.2 mM MgSO$_4$, and 0.025 mM EDTA, pH 7.4. Images of carotid arteries were obtained by a video camera attached to a Nikon TS100 inverted microscope. A video dimension analyzer (Living System) was used to measure the external diameter of arteries, and data were collected by use of BioPac MP100 hardware and Biopac AcqKnowledge software (BioPac, Goleta, CA). The arteries were maintained at an intraluminal pressure of 100 mmHg for the duration of each experiment, and then equilibrated for 30 min before extraluminal administration of 40-80 mM KCl (Sigma). After maximal constriction, flow, endothelium-dependent acetylcholine (ACh), and endothelium-independent sodium nitroprusside (SNP) vasodilating agents were applied. The vessel diameter changes were then recorded.

Endothelial Monocyte Adhesion Assay

Monocyte adhesion to HUVEC monolayers was determined by using a CytoSelect Adhesion Assay Kit (Cell Biolabs). HUVECs were transfected with control siRNA, NOX2 siRNA, or NLRP3 siRNA, then infected with Ad-SREBP2(N) or Ad-null for 24 hr. The infected cells were also treated with or without caspase-1 inhibitor Z-YVAD-FMK (2 µM) for 24 hr. THP1 monocytes (1 × 105 cells/well) were labeled with LeukoTracker and incubated for 30 min at 37 °C. To quantify monocyte adhesion, a Perkin Elmer Victor 2 1420
multi-label counter was used to measure fluorescence of lysed cells at 480-nm excitation and 520-nm emission.

Histology

The whole hearts were harvested, fixed in 4% paraformaldehyde in PBS overnight and, stepwise, dehydrated in 30%, 50%, 70%, 90% and 100% ethanol, each for 30 min. Tissues were subsequently incubated in xylene for 30 min at room temperature and embedded in paraffin at 55 °C. Five-µm cross sections were prepared and stained with Hematoxylin and eosin.

En face immunostaining

Mouse aortas were fixed and excised for determination of SREBP2, NOX2 and NLRP3 levels in the intima by en face immunostaining. Rabbit anti-SREBP2 (Abcam), mouse anti-NOX2 (BD Transduction Laboratory), and goat anti-NLRP3 (Abcam) were used as primary antibody at 1:100 dilution and incubated at 4 ºC overnight. Anti-rabbit TRITC, anti-mouse Alexa Fluor 488, and anti-goat FITC were used as secondary antibody. Slides were mounted with Prolong antifade reagent. Images were acquired using Leica TCS SP5 confocal microscope (Leica Microsystems, Wetzlar, Germany), with immersion lenses HC PL APO 20X / 0.75 IMM and pinhole [airy] 1.24.
Supplemental Table

Table S1. Real-time PCR Primer Sequences

<table>
<thead>
<tr>
<th>Name</th>
<th>Species</th>
<th>Type</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>SREBP2</td>
<td>Homo sapiens</td>
<td>Forward</td>
<td>CCCTGGGAGACATCGACGA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>CGTTGCACTGAAGGTTCCA</td>
</tr>
<tr>
<td>SREBP2</td>
<td>Mus musculus</td>
<td>Forward</td>
<td>GCGTTCTGGAGACCATGGA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>ACAAAAGTTGCTCTGAAAAACAAATCA</td>
</tr>
<tr>
<td>SREBP1</td>
<td>Homo sapiens</td>
<td>Forward</td>
<td>ACTTCCCTGGCCTATTGACC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>GGCATGGACGGGTACATCTT</td>
</tr>
<tr>
<td>SREBP1</td>
<td>Mus musculus</td>
<td>Forward</td>
<td>GCAGCCACCATCTAGCCTG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>CAGCAGTGATCTTGCTTGGAT</td>
</tr>
<tr>
<td>HMG-CoA synthase</td>
<td>Homo sapiens</td>
<td>Forward</td>
<td>GGTCACGCTTTGTCGGCGAAGGA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>TGGCCAGCAAGCTCTGATTCCA</td>
</tr>
<tr>
<td>HMG-CoA reductase</td>
<td>Homo sapiens</td>
<td>Forward</td>
<td>TGTTGGAGTGGCAGGACCCTT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>CTGGCACCTCACCAAGACTAT</td>
</tr>
<tr>
<td>Squalene synthase</td>
<td>Homo sapiens</td>
<td>Forward</td>
<td>CTGGTGCGCTTCCGGATCGG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>ACTGCGTTGCGCATTTCCC</td>
</tr>
<tr>
<td>LDLR</td>
<td>Homo sapiens</td>
<td>Forward</td>
<td>TCACCAAGCTCTGGGGCGACG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>GTAGCCGTCCTGGTTGGCA</td>
</tr>
<tr>
<td>IL-1β</td>
<td>Homo sapiens</td>
<td>Forward</td>
<td>AGGCACAAGGCACAACAGGCTG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td>GTCCTGGAAGGAGCATTCTATCTGT</td>
</tr>
<tr>
<td>Gene</td>
<td>Species</td>
<td>Direction</td>
<td>Forward</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>IL-1β</td>
<td>Mus musculus</td>
<td>Forward</td>
<td>ATGAGAGCATCCAGCTTTCAA</td>
</tr>
<tr>
<td>Caspase 1</td>
<td>Homo sapiens</td>
<td>Forward</td>
<td>CTTCCCTTCCAGCTCCTCAGGCA</td>
</tr>
<tr>
<td>Caspase 1</td>
<td>Mus musculus</td>
<td>Forward</td>
<td>AGGCATGCCGTGGAGAGAAACA</td>
</tr>
<tr>
<td>ASC</td>
<td>Homo sapiens</td>
<td>Forward</td>
<td>CAGCCAAGCGGCGCTGCACTTTAT</td>
</tr>
<tr>
<td>ASC</td>
<td>Mus musculus</td>
<td>Forward</td>
<td>AGACATGGGCTTACAGGA</td>
</tr>
<tr>
<td>NLRP1</td>
<td>Homo sapiens</td>
<td>Forward</td>
<td>CCAGCCCGCATAGCCGTACC</td>
</tr>
<tr>
<td>NLRP1a</td>
<td>Mus musculus</td>
<td>Forward</td>
<td>AGGCTCTTTACCTCTTTCTA</td>
</tr>
<tr>
<td>NLRP1c</td>
<td>Mus musculus</td>
<td>Forward</td>
<td>GAATCTTTTACTCCCACCAGC</td>
</tr>
<tr>
<td>NLRP3</td>
<td>Homo sapiens</td>
<td>Forward</td>
<td>TGCCGGGCGCTTTTTCAGT</td>
</tr>
<tr>
<td>NLRP3</td>
<td>Mus musculus</td>
<td>Forward</td>
<td>TGTGAGAAGCAGGTTACTCTT</td>
</tr>
<tr>
<td>NOX1</td>
<td>Homo sapiens</td>
<td>Forward</td>
<td>CTGCCCTCTGTGGCTGCAA</td>
</tr>
<tr>
<td>Gene</td>
<td>Species</td>
<td>PCR Direction</td>
<td>Primer Sequence</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>---------------</td>
<td>------------------</td>
</tr>
<tr>
<td>NOX1</td>
<td>Mus sapiens</td>
<td>Reverse</td>
<td>AGGCAGATCATATAGGCCACC</td>
</tr>
<tr>
<td>NOX2</td>
<td>Homo sapiens</td>
<td>Forward</td>
<td>GCTGGGGATGAATCTCAGGCCA</td>
</tr>
<tr>
<td>NOX4</td>
<td>Homo sapiens</td>
<td>Forward</td>
<td>ACCCGGCTCTGGGTAGCAGCA</td>
</tr>
<tr>
<td>p22phox</td>
<td>Homo sapiens</td>
<td>Reverse</td>
<td>CCCAGTGGTACTTTGGTGGC</td>
</tr>
<tr>
<td>p40phox</td>
<td>Homo sapiens</td>
<td>Forward</td>
<td>TTGACCRCATGGCAGCTCC</td>
</tr>
<tr>
<td>p47phox</td>
<td>Homo sapiens</td>
<td>Forward</td>
<td>CGTACCGCCATTCCTAGC</td>
</tr>
<tr>
<td>p22phox</td>
<td>Mus musculus</td>
<td>Reverse</td>
<td>GCGGTCATGTACTTCTGTC</td>
</tr>
<tr>
<td>p40phox</td>
<td>Mus musculus</td>
<td>Reverse</td>
<td>GCTGCTCAAAGTCGCTCTCG</td>
</tr>
<tr>
<td>p47phox</td>
<td>Homo sapiens</td>
<td>Reverse</td>
<td>GAACCACAAACCAGCTCTCGC</td>
</tr>
<tr>
<td>Gene</td>
<td>Species</td>
<td>Direction</td>
<td>Forward Sequence</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>p47phox</td>
<td>Mus</td>
<td>Forward</td>
<td>TGGCACAAGGACAATCCATCGAC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse</td>
<td></td>
</tr>
<tr>
<td>p67phox</td>
<td>Homo</td>
<td>Forward</td>
<td>CCCACTCCCGGATTTGCTTC</td>
</tr>
<tr>
<td></td>
<td>sapiens</td>
<td>Reverse</td>
<td></td>
</tr>
<tr>
<td>p67phox</td>
<td>Mus</td>
<td>Forward</td>
<td>ACCTTGAAGCCTGGAGCGCCTA</td>
</tr>
<tr>
<td></td>
<td>musculus</td>
<td>Reverse</td>
<td></td>
</tr>
<tr>
<td>MCP-1</td>
<td>Homo</td>
<td>Forward</td>
<td>CGCTCAGCCAGATGCAATCAATGC</td>
</tr>
<tr>
<td></td>
<td>sapiens</td>
<td>Reverse</td>
<td></td>
</tr>
<tr>
<td>MCP-1</td>
<td>Mus</td>
<td>Forward</td>
<td>TTAAAAACCTGGATCGGAACCAA</td>
</tr>
<tr>
<td></td>
<td>musculus</td>
<td>Reverse</td>
<td></td>
</tr>
<tr>
<td>VCAM-1</td>
<td>Homo</td>
<td>Forward</td>
<td>TGTCATGTTGCCCCCAGAGATACA</td>
</tr>
<tr>
<td></td>
<td>sapiens</td>
<td>Reverse</td>
<td></td>
</tr>
<tr>
<td>VCAM-1</td>
<td>Mus</td>
<td>Forward</td>
<td>AGTTGGGGATTCGGTTGTTCT</td>
</tr>
<tr>
<td></td>
<td>musculus</td>
<td>Reverse</td>
<td></td>
</tr>
<tr>
<td>ICAM-1</td>
<td>Homo</td>
<td>Forward</td>
<td>GTGTCCTGTATGGCCCCCGACT</td>
</tr>
<tr>
<td></td>
<td>sapiens</td>
<td>Reverse</td>
<td></td>
</tr>
<tr>
<td>ICAM-1</td>
<td>Mus</td>
<td>Forward</td>
<td>GCTACCATCACGTGTATTTCG</td>
</tr>
<tr>
<td></td>
<td>musculus</td>
<td>Reverse</td>
<td></td>
</tr>
<tr>
<td>E-selectin</td>
<td>Homo</td>
<td>Forward</td>
<td>GTGACATGCAGGGCCGTCCG</td>
</tr>
<tr>
<td></td>
<td>sapiens</td>
<td>Reverse</td>
<td></td>
</tr>
<tr>
<td>E-selectin</td>
<td>Mus</td>
<td>Forward</td>
<td>CCAATCTGAAACATTCACCGAGT</td>
</tr>
<tr>
<td>Gene</td>
<td>Species</td>
<td>Forward</td>
<td>Reverse</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>β-actin</td>
<td>Homo sapiens</td>
<td>CATGTACGTGGCTATCCAGGC</td>
<td>CTCCTTAATGTCACGCACGAT</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Mus musculus</td>
<td>AGGCCGGTGCTGAGTATGTC</td>
<td>TGCCTGCTTCACCACCTTCT</td>
</tr>
</tbody>
</table>
Figure S1

A

- **PS**
 - Cholesterol (fold change)
 - Ad-null: +
 - Ad-REBP2(N): -
 - Ad-null: -
 - Ad-SREBP2(N): +
 - **SREBP2 mRNA Relative Expression**
 - Ad-null: +
 - Ad-REBP2(N): -
 - Ad-null: -
 - Ad-SREBP2(N): +
 - Ctrl RNA: +
 - pre-miR33: -

B

- **PS**
 - Cholesterol (fold change)
 - Ctrl RNA: +
 - pre-miR33: -

C

- **OS**
 - Cholesterol (fold change)
 - Ctrl RNA: +
 - SREBP2 siRNA: -

D

- **OS**
 - Cholesterol (fold change)
 - Ctrl RNA: +
 - anti-miR33: -
Figure S2

A

mRNA Expression Level (Relative to Control)

Ad-null | Ad-SREBP2(N) 2.5 MOI | Ad-SREBP2(N) 5 MOI

Wild-type EC | SREBP2(N)-Tg EC

B

mRNA Expression Level (Relative to Control)

Wild-type EC | SREBP2(N)-Tg EC
Figure. S3

[Image of a Western blot showing protein levels for pro-Caspase-1, Caspase-1 p20, pro-IL-1β, IL-1β p17, NOX2, and α-tubulin under different conditions: Static and OS. The conditions are compared between Wild-type MEF and NOX2-/- MEF.]
Figure S4

A

TA

DAPI | NLRP3 | SREBP2

AA

B

TA

DAPI | NOX2 | SREBP2

AA

Figure. S5

A
- Wild-type
- SREBP2(N)-Tg

B
- Wild-type
- SREBP2(N)-Tg*

C
- Wild-type
- SREBP2(N)-Tg

Relaxation(%) vs Flow (µL/min)

Relaxation(%) vs Log[ACh]

Relaxation(%) vs Log[SNP]
Figure S6

A

Wild-type

EC-SREBP2(N)-Tg

B

Lesion area %

Wild-type

EC-SREBP2(N)-Tg

*
Figure S7

SREBP2 mRNA (Relative Level)

BMM EC

Wild-type EC-SREBP2(N) Tg

*
Figure. S8

A

mRNA Expression Level (Relative to Control)

- Ad-null
- Ad-SREBP2(N) 2.5 MOI
- Ad-SREBP2(N) 5 MOI

mRNA Expression Level

SREBP1, NLRP1, ASC, CASP-1, IL-1β

B

mRNA Expression Level (Relative to Control)

- Wild-type EC
- SREBP2(N)-Tg EC

mRNA Expression Level

SREBP1, NLRP1a, NLRP1c, ASC, CASP-1, IL-1β
Supplemental figure legends

Figure S1. SREBP2, but not miR-33, Is Required for OS-induced Cholesterol Accumulation in HUVECs. (A) Cholesterol and SREBP2 mRNA levels in cells infected with Ad-null or Ad-SREBP2(N) (2.5 MOI) and then exposed to PS. (B) Cholesterol and ABCA-1 levels in cells treated with control RNA or pre-miR33 (30 nM) and then exposed to PS. (C) Cholesterol and SREBP2 mRNA levels in cells transfected with 20 nM control RNA or SREBP2 siRNA and exposed to OS. (D) Cholesterol and ABCA-1 levels in cells transfected with control RNA or anti-miR33 (20 nM) and exposed to OS. The duration for PS and OS was 14 hr. Experiments were performed in triplicate and data are expressed as means ± SEM. Statistical significance was evaluated by using Mann-Whitney U test with exact method, where \(p < 0.05 \) is indicated by ‘*’.

Figure S2. SREBP2 Induces NOX Subunits in ECs. mRNA levels of NOX1, NOX4, p22 phox, p40 phox, p47 phox and p67 phox in (A) HUVECs infected with Ad-null (2.5 MOI) or Ad-SREBP2(N) (2.5 MOI and 5 MOI) and (B) lung ECs isolated from the wild-type or SREBP2(N)-Tg mice (n = 8/group). Experiments were performed in triplicate and data are expressed as mean ± SEM. Statistical significance was evaluated by using Mann-Whitney U test with exact method, where ‘*’ indicates \(p < 0.05 \).

Figure S3. OS-induced inflammasome is attenuated in NOX2\(^{-/-}\) mouse embryonic fibroblasts (MEFs). Representative immunoblot of pro-caspase-1, caspase-1 p20, pro-IL-1\(\beta\), IL-1\(\beta\) p17, and NOX2 in the wild-type and NOX2\(^{-/-}\) MEFs under static conditions or OS for 14 hr.
Figure S4 Elevated level of SREBP2, NOX2, and NLRP3 in the endothelium of the mouse aortic arch. Representative images of SREBP2 (red), NLRP3 (green), and nucleus (blue) in (A) and SREBP2 (red), NOX2 (green), and nucleus (blue) in (B) from thoracic aorta (TA) and aortic arch (AA) of C57/BL6 mice.

Figure S5. Overexpression of EC-SREBP2(N) Impairs the Endothelial-dependent Vascular Tone. The vasorelaxation responses of isolated middle cerebral arteries from EC-SREBP2(N)-Tg mice and their wild-type littermates were compared with respect to vasodilatation induced by flow (A), acetylcholine (ACh) (B), or sodium nitroprusside (SNP) (C). The results are presented as mean ± SEM. Statistical significance is evaluated by using two-way ANOVA analysis with Bonferroni post-hoc test (A) or F test of Log(EC$_{50}$) (B&C), where $p < 0.05$ is indicated by ‘*’. The results show that the vasodilation responding to flow and ACh, but not SNP, is impaired.

Figure S6. Early Atherosclerotic Lesions Develop in The Aortic Roots of EC-SREBP2(N)-Tg Mice. Histological sections stained with H&E of aortic roots from (A) male EC-SREBP2(N)-Tg mice (n = 6) and their wild-type littermates (n = 6) fed an atherogenic diet for 20 weeks and then were killed. Atherosclerotic lesions are indicated with an arrow. (B) Quantification of the percentage of lesion area for the wild-type mice and EC-SREBP2(N)-Tg mice. Statistical significance was evaluated by using Student’s t test, where $p < 0.05$ is indicated by ‘*’.

Figure S7. Low Expression of SREBP2(N) Transgene in The Bone Marrow Macrophages of EC-SREBP2(N)-Tg Mice. mRNAs were collected from bone marrow
macrophages (BMM) and EC of the wild-type littermates (n = 5) and EC-SREBP2(N)-Tg mice (n = 5). The level of SREBP2 mRNA was determined by RT-PCR with the use of primers for the transgene. Statistical significance was evaluated by using Mann-Whitney U test with exact method, where \(p < 0.05 \) is indicated by ‘*’.

Figure S8. SREBP2(N) Overexpression Induces SREBP1 and NLRP1c in ECs. mRNA levels of SREBP1, NLRP1a, NLRP1c, ASC, caspase-1 and IL-1\(\beta \) in (A) HUVECs infected with Ad-null (2.5 MOI) or Ad-SREBP2(N) (5 MOI) or in (B) lung ECs isolated from the wild-type or SREBP2(N)-Tg mice (n = 8/group). Experiments were performed in triplicates and data are expressed as mean ± SEM. Statistical significance was evaluated by using Mann-Whitney U test with exact method, where \(p < 0.05 \) is indicated by ‘*’.

Supplemental References
