Spectral radius and degree sequence of a graph
Chia-an Liu *, Chih-wen Weng

Department of Applied Mathematics, National Chiao Tung University, Taiwan, ROC

Abstract

Let G be a simple connected graph of order n with degree sequence d_1, d_2, ..., d_n in non-increasing order. The spectral radius ρ(G) of G is the largest eigenvalue of its adjacency matrix. For each positive integer ℓ at most n, we give a sharp upper bound for ρ(G) by a function of d_1, d_2, ..., d_ℓ, which generalizes a series of previous results.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a simple connected graph of n vertices and m edges with degree sequence d_1 ⩾ d_2 ⩾ ... ⩾ d_n. The adjacency matrix A = (a_{ij}) of G is a binary square matrix of order n with rows and columns indexed by the vertex set VG of G such that for any i, j ∈ VG, a_{ij} = 1 if i, j are adjacent in G. The spectral radius ρ(G) of G is the largest eigenvalue of its adjacency matrix, which has been studied by many authors.

The following theorem is well-known [6, Chapter 2].

Theorem 1.1. If A is a nonnegative irreducible n × n matrix with largest eigenvalue ρ(A) and row-sums r_1, r_2, ..., r_n, then

\[\rho(A) \leq \max_{1 \leq i \leq n} r_i \]

with equality if and only if the row-sums of A are all equal.
In 1985 [1, Corollary 2.3], Brauldi and Hoffman showed the following result.

Theorem 1.2. If \(m \leq k(k - 1)/2 \), then
\[
\rho(G) \leq k - 1
\]
with equality if and only if \(G \) is isomorphic to the complete graph \(K_n \) of order \(n \).

In 1987 [8], Stanley improved Theorem 1.2 and showed the following result.

Theorem 1.3.
\[
\rho(G) \leq -1 + \sqrt{1 + 8m}
\]
with equality if and only if \(G \) is isomorphic to the complete graph \(K_n \) of order \(n \).

In 1998 [3, Theorem 2], Yuan Hong improved Theorem 1.3 and showed the following result.

Theorem 1.4.
\[
\rho(G) \leq \sqrt{2m - n + 1}
\]
with equality if and only if \(G \) is isomorphic to the star \(K_{1,n-1} \) or to the complete graph \(K_n \).

In 2001 [4, Theorem 2.3], Hong et al. improved Theorem 1.4 and showed the following result.

Theorem 1.5.
\[
\rho(G) \leq \frac{d_n - 1 + \sqrt{(d_n + 1)^2 + 4(2m - nd_n)}}{2}
\]
with equality if and only if \(G \) is regular or there exists \(2 \leq t \leq n \) such that \(d_1 = d_{t-1} = n - 1 \) and \(d_t = d_n \).

In 2004 [7, Theorem 2.2], Jinlong Shu and Yarong Wu improved Theorem 1.1 in the case that \(A \) is the adjacency matrix of \(G \) by showing the following result.

Theorem 1.6. For \(1 \leq \ell \leq n \),
\[
\rho(G) \leq \frac{d_\ell - 1 + \sqrt{(d_\ell + 1)^2 + 4(\ell - 1)(d_1 - d_\ell)}}{2}
\]
with equality if and only if \(G \) is regular or there exists \(2 \leq t \leq \ell \) such that \(d_1 = d_{t-1} = n - 1 \) and \(d_t = d_n \).

Moreover, they also showed in [7, Theorem 2.5] that if \(p + q \geq d_1 + 1 \) then Theorem 1.6 improves Theorem 1.5 where \(p \) is the number of vertices with the largest degree \(d_1 \) and \(q \) is the number of vertices with the second largest degree. The special case \(\ell = 2 \) of Theorem 1.6 is reproved [2].

In this research, we present a sharp upper bound of \(\rho(G) \) in terms of the degree sequence of \(G \), which improves Theorem 1.2 to Theorem 1.6.
Theorem 1.7. For 1 ≤ ℓ ≤ n,
\[\rho(G) ≤ φ_\ell := \frac{d_\ell - 1 + \sqrt{(d_\ell + 1)^2 + 4 \sum_{i=1}^{\ell-1} (d_i - d_\ell)}}{2}, \]
with equality if and only if G is regular or there exists 2 ≤ t ≤ ℓ such that d_1 = d_\ell = n - 1 and d_t = d_n.

This result improves Theorem 1.5 and Theorem 1.6 since φ_n is exactly the upper bounds in Theorem 1.5 and is at most the upper bound appearing in Theorem 1.6. Additionally, generalized from this research, a similar upper bound of the spectral radius in terms of the average 2-degree sequence of a graph will be presented in [5].

Notice that the number φ_\ell defined in Theorem 1.7 is at least d_\ell. The sequence φ_1, φ_2, ..., φ_n is not necessary to be non-increasing. We show that this sequence is first non-increasing and then non-decreasing, and determine its lowest value in Section 3.

2. Proof of Theorem 1.7

Proof. Let the vertices be labeled by 1, 2, ..., n with degrees d_1 ≥ d_2 ≥ ... ≥ d_n, respectively. For each 1 ≤ i ≤ ℓ - 1, let x_i ≥ 1 be a variable to be determined later. Let \(U = diag(x_1, x_2, ..., x_{\ell-1}, 1, 1, ..., 1) \) be a diagonal matrix of size n × n. Then \(U^{-1} = diag(x_1^{-1}, x_2^{-1}, ..., x_{\ell-1}^{-1}, 1, 1, ..., 1) \).

Let B = U^{-1}AU. Notice that A and B have the same eigenvalues.

Let r_1, r_2, ..., r_n be the row-sums of B. Then for 1 ≤ i ≤ ℓ - 1 we have
\[
\begin{align*}
 r_i &= \sum_{k=\ell+1}^{n} x_k a_{ik} + \sum_{k=1}^{\ell-1} \frac{1}{x_i} a_{ik} = \frac{1}{x_i} \sum_{k=1}^{n} a_{ik} + \frac{1}{x_i} \sum_{k=1}^{\ell-1} (x_k - 1) a_{ik} \\
 &≤ \frac{1}{x_i} d_i + \frac{1}{x_i} \left(\sum_{k=1, k \neq i}^{\ell-1} x_k - (\ell - 2) \right),
\end{align*}
\]
and for ℓ ≤ j ≤ n we have
\[
\begin{align*}
 r_j &= \sum_{k=1}^{\ell-1} x_k a_{jk} + \sum_{k=\ell}^{n} a_{jk} = \sum_{k=\ell}^{n} a_{jk} + \sum_{k=1}^{\ell-1} (x_k - 1) a_{jk} \\
 &≤ d_\ell + \left(\sum_{k=1}^{\ell-1} x_k - (\ell - 1) \right).
\end{align*}
\]

For 1 ≤ i ≤ ℓ - 1 let
\[
x_i = 1 + \frac{d_i - d_\ell}{φ_\ell + 1} ≥ 1,
\]

where φ_\ell is defined in Theorem 1.7. Then for 1 ≤ i ≤ ℓ - 1 we have
\[
\begin{align*}
 r_i &≤ \frac{1}{x_i} d_i + \frac{1}{x_i} \left(\sum_{k=1, k \neq i}^{\ell-1} x_k - (\ell - 2) \right) = φ_\ell,
\end{align*}
\]
and for \(\ell \leq j \leq n \) we have
\[
r_j \leq d_\ell + \left(\sum_{k=1}^{\ell-1} x_k - (\ell - 1) \right) = \phi_\ell.
\]

Hence by Theorem 1.1,
\[
\rho(G) = \rho(B) \leq \max_{1 \leq i \leq n} \{ r_i \} \leq \phi_\ell.
\]
(2.4)

The first part of Theorem 1.7 follows.

The sufficient condition of \(\phi_\ell = \rho(G) \) follows from the fact that
\[
\phi_\ell \leq \frac{d_\ell - 1 + \sqrt{(d_\ell + 1)^2 + 4(\ell - 1)(d_1 - d_\ell)}}{2}
\]

and applying the second part in Theorem 1.6.

To prove the necessary condition of \(\phi_\ell = \rho(G) \), suppose \(\phi_\ell = \rho(G) \). Then the equalities in (2.1) and (2.2) all holds. If \(d_1 = d_\ell \), then \(d_1 = \phi_1 = \phi_\ell = \rho(G) \), and \(G \) is regular by the second part of Theorem 1.1. Suppose \(2 \leq t \leq \ell \) such that \(d_{t-1} > d_t = d_\ell \). Then \(x_i > 1 \) for \(1 \leq i \leq t - 1 \) by (2.3). For each \(1 \leq i \leq \ell - 1 \), the equality in (2.1) implies that \(d_{jk} = 1 \) for \(1 \leq k \leq t - 1 \), \(k \neq i \). For each \(\ell \leq j \leq n \), the equality in (2.2) implies that \(a_{jk} = 1 \) for \(1 \leq k \leq t - 1 \) and \(d_j = d_\ell \). Hence \(n - 1 = d_1 = d_{t-1} > d_t = d_\ell = d_n \).

We complete the proof. \(\square \)

3. The sequence \(\phi_1, \phi_2, \ldots, \phi_n \)

The sequence \(\phi_1, \phi_2, \ldots, \phi_n \) is not necessarily non-increasing. For example, the path \(P_n \) of \(n \) vertices has \(2 = d_1 = d_{n-2} > d_{n-1} = d_n = 1 \), and it is immediate to check that if \(n \geq 6 \) then \(\phi_1 = \phi_2 = 2 < \sqrt{n - 1} = \phi_{n-1} = \phi_n \).

Clearly that for all \(1 \leq s < t \leq n \), \(d_s = d_t \) implies that \(\phi_s = \phi_t \). However, \(\phi_s = \phi_t \) does not imply \(d_s = d_t \). For example, in the graph with degree sequence \((4, 3, 3, 2, 1) \), one can check that \(\phi_4 = \phi_5 = 3 \) but \(d_4 > d_5 \).

Recall that \(d_s = d_{s+1} \) implies \(\phi_s = \phi_{s+1} \) for \(1 \leq s \leq n - 1 \). The following proposition describes the shape of the sequence \(\phi_1, \phi_2, \ldots, \phi_n \).

Proposition 3.1. Suppose \(d_s > d_{s+1} \) for \(1 \leq s \leq n - 1 \), and let \(\geq \in \{ >, = \} \). Then
\[
\phi_s \geq \phi_{s+1} \iff \sum_{i=1}^{s} d_i \geq s(s - 1).
\]

Proof. Recall that
\[
\phi_s = \frac{d_s - 1 + \sqrt{(d_s + 1)^2 + 4 \sum_{i=1}^{s-1} (d_i - d_s)}}{2}.
\]

The proposition follows from the following equivalent relations step by step:
\[
\phi_s \geq \phi_{s+1} \iff d_s - d_{s+1} + \sqrt{(d_s + 1)^2 + 4 \sum_{i=1}^{s-1} (d_i - d_s)}
\]
and deleting the common term $d_s - d_{s+1}$. Notice that if $2s - (d_s + 1) < 0$ in (3.1) then in the case that $\geq s = n$, all statements fails, and in the case that $\geq s > n$ the left hand side of (3.1) is at least $d_s + 1$, which is greater than $|2s - (d_s + 1)|$, so the equivalent relation in the next step holds. □

Corollary 3.2. Let $3 \leq \ell \leq n$ be the smallest integer such that $\sum_{i=1}^{\ell} d_i < \ell(\ell - 1)$. Then for $1 \leq j \leq n$ we have

$$\phi_j = \min\{\phi_k \mid 1 \leq k \leq n\}$$

if and only if $d_j = d_\ell$, or $d_j = d_{\ell-1}$ with $\sum_{i=1}^{\ell-1} d_i = (\ell - 1)(\ell - 2)$.

Proof. From Proposition 3.1, $\sum_{i=1}^{\ell} d_i = (\ell - 1)(\ell - 2)$ implies $\phi_{\ell-1} = \phi_\ell$. Also, clearly that $d_j = d_\ell$ implies $\phi_j = \phi_\ell$. We show that $\phi_\ell = \min\{\phi_k \mid 1 \leq k \leq n\}$ in the following.

For $1 \leq s \leq \ell - 1$, from Proposition 3.1 we have $\phi_s \geq \phi_{s+1}$ since $\sum_{i=1}^{s} d_i \geq s(s - 1)$. For $\ell - s \leq n - 1$, notice that $\sum_{i=1}^{\ell} d_i < t(t - 1)$ implies $d_s < t - 1$, and hence $\sum_{i=1}^{\ell} d_i < t(t - 1) + (t - 1) < t(t + 1)$. From Proposition 3.1 we have $\phi_\ell \leq \phi_{\ell+1} \leq \cdots \leq \phi_n$ since $\sum_{i=1}^{\ell} d_i < \ell(\ell - 1)$. The result follows. □

Acknowledgment

This research is supported by the National Science Council of Taiwan, ROC, under the project NSC 99–2115–M–009–005–MY3.

References