A FAST ELLIPSE/CIRCLE DETECTOR USING GEOMETRIC
SYMMETRY

CHUN-TA HO and LING-HWEI CHEN
Department of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan
30050, Republic of China

(Received 24 November 1993; in revised form 3 June 1994; received for publication 28 June 1994)

Abstract—Through the use of a global geometric symmetry, a fast ellipse/circle detector is proposed in this
paper. Based on the geometric symmetry, the proposed method first locates candidates of ellipse and circle
centers. In the meantime, according to these candidate centers, all feature points in an input image are
grouped into several subimages. Then, for each subimage, by using geometric symmetry again, all ellipses
and circles are obtained. The method significantly reduces the time required to evaluate all possible
parameters without using edge direction information. Experimental results are given to show the correctness
and effectiveness of the proposed method.

2. PROPOSED METHOD

The proposed method consists of two phases: symmetric center location and parameter estimation. In
Phase 1, we will locate the candidates of ellipse and circle centers and classify the feature points in an input
image into different subimages according to these candidate centers. In Phase 2, for each subimage, based
on the geometric symmetry of ellipses and circles all ellipses and circles will be extracted. Before describing
these two phases in detail, we will first introduce some theorems which will be used in the proposed method.

2.1. Properties for ellipses and circles

Theorem 1. Let E be an ellipse or circle that is scanned
from left to right and top to bottom (rightward). Assume
that each horizontal scan line HS intersects E at XL and
XR. Let XM be the midpoint of XL and XR. Then
each XM lies on the same straight line l, which will be
Fig. 1. The two symmetric axes generated by horizontal and vertical scanning transform: (a) the middle point X_Ma of X_L and X_R lies on the same straight line L_v. (b) The middle point Y_Mb of Y_T and Y_B lies on the same straight line L_h.

This theorem has been proven by Yin and Chen.\(^{17}\) Note that in the sequel, $X_R(X_L)$ will be referred to as the symmetric point of $X_L(X_R)$ relative to I_v.

Theorem 2. Let E be an ellipse or circle that is scanned from top to bottom and left to right (downward). Assume that each vertical scan line V_S_i intersects E at Y_T_i and Y_B_i. Let Y_M_i be the midpoint of Y_T_i and Y_B_i. Then each Y_M_i lies on the same straight line L_h, which will be referred to below as the symmetric horizontal axis [see Fig. 1(b)]. The proof of Theorem 2 is similar to that of Theorem 1. In the sequel, $Y_T_i(Y_B_i)$ will be referred to as the symmetric point of $Y_B_i(Y_T_i)$ relative to L_h.

Theorem 3. Let E be an ellipse or a circle and let I_v, I_h be its two symmetric axes generated by rightward and downward scanning. Then the cross-point of I_v and I_h is the center of E.

Proof. Without loss of generality, suppose that the center point of E is $(0,0)$. Then E can be expressed by the following equation:

$$dx^2 + exy + fy^2 = 1.$$

Consider the horizontal scanning line $Y = 0$. This line will intersect E at $X_L(-1/\sqrt{d},0)$ and $X_R(1/\sqrt{d},0)$, and the middle point X_M of X_L and X_R is $(0,0)$. Similarly, the vertical scanning line $X = 0$ will intersect E at $Y_T(0,1/\sqrt{f})$ and $Y_B(0,-1/\sqrt{f})$, and the midpoint Y_M of Y_T and Y_B is $(0,0)$. Since $(0,0)$ is on E, it follows that E is an ellipse.
A fast ellipse/circle detector

A fast ellipse/circle detector

Fig. 3. Boundary point A and its symmetric point C relative to the center of ellipse E and their symmetric points relative to the symmetric vertical and horizontal axes of E form two parallelograms with their vertexes on the ellipse: (a) AB1CD1, (b) AB2CD2.

both line l_v and l_h, $(0, 0)$ must be the cross-point of l_v and l_h.

Note that if the center of ellipse (or circle) E is (x_0, y_0) and E is translated by $(-x_0, -y_0)$, for any point A(x, y) on the translated E, its symmetric point C(-x, -y) relative to (0,0) should also be on the translated E (see Fig. 2).

Theorem 4. Let E be an ellipse or a circle with center $(0, 0)$, A be a point on E, and C be the symmetric point of A relative to $(0,0)$. Let B_1 and D_1 be the symmetric points of A and C relative to l_v, respectively. Let B_2 and D_2 be the symmetric points of C and A relative to l_h, respectively. Then the quadrangles AB_1CD_1 and AB_2CD_2 are parallelograms (see Fig. 3).

Proof. Let the coordinates of A be (u, v). Then C will be on E with coordinates $(-u, -v)$. Since B_1 is the symmetric point of A relative to l_v, B_1 will be on the same horizontal scanning line as A and have the coordinates (u', v). Similarly, D_1 will have the coordinates $(u', -v)$. Since the symmetric point SB(-u', -v) of B_1 relative to $(0,0)$ is on E and the scanning line $Y = -v$ can intersect E at only two points, SB will be D_1 or C. Since $u' \neq u$, SB must be D_1 and $u'' = -u$. Thus the lengths of line segments AB_1 and CD_1 are both $|u' - u|$ and the quadrangle AB_1CD_1 is a parallelogram. In a similar way, we can prove that AB_2CD_2 is also a parallelogram.

Note that if E is a circle or an ellipse without rotation, B_1 and B_2 will be the same point, D_1 and D_2 are also the same.

2.2. Phase 1: symmetric center location

In this subsection, based on Theorems 1–3 above, we will present the first phase of the proposed method, in which all possible centers of circles and ellipses will be located.

Let f be an input image. Before applying the proposed method, we first use an edge extractor to find the boundary points of objects in f and store the result on an image F. Then Phase 1 is carried out. First F is classified into several subimages by a horizontal scanning transform procedure, described as follows.

2.2.1. Horizontal scanning transform procedure

Initialize a blank image G

Scan F from left to right and top to bottom

For each boundary point (i, j) on F

If there exists another boundary point (k, j) on F

then for each such a point (k, j), set

$u = (i + k)/2$

$G(u, j) = 1$

End (scan)

Apply Hough transform to G to extract all lines in G

Consider each extracted line to be a candidate symmetric vertical axis of an ellipse or a circle

For each extracted line l_v

Group all symmetric points in F relative to l_v into a subimage F_h.

By Theorem 1, we know that if there exists an ellipse (or a circle) E in image F, through the above procedure, each point in the left part of E must produce one point, which is on the symmetric vertical axis l_v of E, in image G. Thus, after the above procedure, many points on l_v should appear in G. Based on this fact, by applying Hough transform to G, we can extract l_v. Also, all points in E must be put in the same subimage. Note that ellipses with different symmetric vertical axes will be put in different subimages, which will facilitate the detection later.

Next, a vertical scanning transform is applied to each F_h produced by the above procedure, as described below.

2.2.2. Vertical scanning transform procedure

Initialize a blank image G

Scan F_h from top to bottom and left to right

For each boundary point (i, j)

If there exists another boundary point (i, k) in the same vertical scanning line

then for each point (i, k), set

$u = [(j + k)/2]$

$G(i, u) = 1$

End (scan)

Apply Hough transform to G to extract all lines in G

Consider each extracted line to be a candidate sym-
Fig. 4. An illustration of the symmetric center location phase. (a) A synthetic image. (b) A candidate symmetric vertical axis I_v is extracted by applying the horizontal scanning transform to (a). (c) The corresponding symmetric boundary points relative to I_v. (d) A candidate symmetric horizontal axis I_h is extracted by applying the vertical scanning transform to (c). (e) The corresponding symmetric boundary points relative to I_h. (f) The crosspoint of I_h and I_v is the center of the ellipse.

metric horizontal axis of an ellipse or a circle
For each extracted line I_h
Group all symmetric points in F_h relative to I_h
into a subimage F_{hv}.
Consider the cross point of I_h and I_v to be a
candidate center of an ellipse or a circle.

Note that if there exists an ellipse E in F with
symmetric axes I_h and I_v, then through the above two
procedures, I_h and I_v will be extracted and all points in
E will be put in the same subimage. Furthermore, by
Theorem 3, we know that the cross-point of I_h and I_v
must be the center of E. Based on this fact, each
cross-point of the lines I_h and I_v can be considered to be a
candidate center of an ellipse or a circle.

In Fig. 4 an example is given to illustrate the sym-
metric center location phase. Applying the horizontal
scanning transform procedure to Fig. 4(a), one candi-
date symmetric vertical axis I_v is extracted and shown
in Fig. 4(b), the corresponding symmetric boundary
points with respect to I_v are shown in Fig. 4(c). Figure
4(d) shows a candidate symmetric horizontal axis I_h
extracted by applying the vertical scanning transform
procedure to Fig. 4(c). Figure 4(e) shows the corres-
ponding symmetric boundary points with respect to I_h.
The crosspoint of I_h and I_v is considered to be a candi-
date for the center of the ellipse, as shown in Fig. 4(f).

2.3. Phase 2: parameter estimation
In Phase 2, based on the result of Phase 1 and
Theorems 3–4, the remaining three parameters (a: half-
length of the major axis, b: half-length of the minor
axis, θ: the orientation angle) for each ellipse or the
single parameter (radius) for a circle in each subimage
F_{hv} will be found. Initially, the proposed method es-
establishes an array $AR(a, b, \theta)$ with $AR(a, b, \theta) = 0$ for each entry (a, b, θ). Then, for each subimage F_h, corresponding to a candidate symmetric center $O(x_0, y_0)$, each point A in F_h is checked to see if its symmetric point C relative to O exists in F_h. If it does, then B_1 and D_1, the points in F_h that are symmetric to A and C, respectively, with respect to l, are located. B_2 and D_2, the points symmetric to A and C with respect to l, are located. Then the two quadrangles AB_1CD_1 and AB_2CD_2 are checked to see whether they are parallelograms (by testing if the length of AB_1 equals that of CD_1 and if the length of AD_2 equals that of B_2C). If they are, points $A, C, B_1, B_2, O_1,$ and D_2 are considered to lie on an ellipse. Then $A, B_1,$ and B_2 are shifted $(-x_0, -y_0)$ to move the ellipse center to $(0, 0)$.

Since an ellipse with center $(0, 0)$ can be expressed by equation (1), by substituting the coordinates of the shifted $A, B_1,$ and B_2 into equation (1), we can obtain three equations with three unknown parameters (d, e, f). Thus once these three parameters (d, e, f) are solved, the three parameters (a, b, θ) for the ellipse can be obtained by the following formulas:

\[
\theta = \frac{\tan^{-1} \left[e/(d - f) \right]}{2}
\]
\[
a = \sqrt{\frac{1}{(d \times \cos^2 \theta + e \times \sin \theta \times \cos \theta + f \times \sin^2 \theta)}}
\]
\[
b = \sqrt{\frac{1}{(f \times \cos^2 \theta - e \times \sin \theta \times \cos \theta + d \times \sin^2 \theta)}}.
\]

The (a, b, θ) obtained is then considered to be a set of possible parameters for an ellipse and the corresponding entry $AR(a, b, \theta)$ is increased by one. After all points in F_h are processed, a local peak-finding algorithm is applied to AR, and the peaks found are considered to be the parameters of ellipses.

Note that if the detected shape is a circle (i.e. $a = b$, $\theta = 0$) or an ellipse with $\theta = 0$, we will find that $B_1 = B_2$, as mentioned previously, and the above procedure cannot be used to solve for the parameters. In this situation, the shifted circle or ellipse with center $(0, 0)$ can be expressed by

\[dx^2 + fy^2 = 1.\] (3)

To solve (d, f), for point $A(x, y)$, take each point A' (see Fig. 5) in F_h with

\[A' = (x', x) \quad \text{if } |x'| < |y|\]
\[A' = (y, y') \quad \text{otherwise}.
\]

By substituting the coordinates of the shifted A and A' into equation (3), we can solve (d, f). After we have (d, f), the parameters (a, b) can be obtained by

\[a = \sqrt{\frac{1}{d}}\]
\[b = \sqrt{\frac{1}{f}}.
\]

The obtained parameters (a, b) are then considered to be a set of possible parameters for an ellipse without any orientation or a circle. The remaining steps are similar to the procedure used for an ellipse with orientation except that array $AR(a, b)$ is replaced by $AR_1(a, b)$.

3. Experimental Results

This section presented the results of experiments in which the proposed method was applied to several images. Figure 6(a) shows a synthetic image including four objects: two overlapping ellipses, a circle, and an ellipse without orientation. In the symmetric center location phase, four symmetric centers were extracted and their corresponding symmetric boundary points were put into four different subimages, as shown in Fig. 6(b)–(e). The parameter estimation phase was then applied to each subimage to find the remaining parameters. Figure 6(f) presents the final result super-
imposed on the original image with a set of two orthogonal-cross line segments standing for the major and minor axes of the ellipses. Figure 7(a) shows a real image including a circle, an ellipse, and some other types of objects. Figure 7(b) shows the result of boundary extraction. Applying the proposed method to Fig. 7(b) yielded two subimages corresponding to the two centers, as shown in Fig. 7(c)-(d). The final result is shown in Fig. 7(e). From these experimental results, we can see that separated and partially occluded ellipses (circles) can be located successfully. For comparison purposes, we also apply the Tsuji method\(^2\) to Fig. 7(a). By using a SUN SPARC-10 workstation, the running time for our method is 7.9 s, and for the Tsuji method is 8.9 s. The proposed method is little faster than the Tsuji method. But the Tsuji method needs the edge direction information, it is a hard work to get accurate edge direction in a noisy image.

Figure 8(a) shows another synthetic image including four ellipses: (1) intact, (2) intermittent, (3) with 12.5\%
Fig. 7. Results of applying the proposed method to a real image. (a) A real image. (b) The result of boundary extraction. (c) and (d) The results of applying symmetric center location phase to (b); two subimages with their corresponding symmetric centers are obtained. (e) The final result of the proposed method.
Fig. 8. Results of applying the proposed method to defective ellipses. (a) Four ellipses: intact, intermittent, 12.5% defect and 25% defect. (b) Three ellipses are detected, the ellipse with 25% defect is not located.

defect, (4) with 25% defect. The detecting results are shown in Fig. 8(b). From this figure, we can see that ellipse with 25% defect is not detected. This is due to that many points on the boundary of the ellipse cannot be used to form parallelograms of the type employed in Phase 2. In general, if the defectiveness of an ellipse exceeds 25%, the proposed method may not work well.

4. CONCLUSION

In this paper, we have proposed a fast method for locating circles and ellipses. The symmetry of ellipses and circles is used as a basis for classifying boundary points into several subimages, each of which is then treated separately. In Phase 2, because we again take advantage of global geometric symmetry, for each boundary point A, we only need to evaluate one set of parameters \((a, b, \theta)\) of an ellipse that possibly passes through A. Since the edge direction is not used, the estimation accuracy will not be lost. Thus, the proposed method is faster and more precise than existing Hough-based algorithms for ellipse and circle detection. In addition, the proposed method is simple and easy to implement.

Acknowledgment—We would like to acknowledge the generous support by the National Science Council of R.O.C. under contract NSC-82-0408-E-009-425. In addition, we would also like to express our appreciation to the referees for their many valuable suggestions that greatly improved the readability and interest of this paper.

REFERENCES

About the Author—CHUN-TA HO received the B.S. degree in Computer and Information science from National Chiao Tung University, Taiwan, in 1991. Since then, he has been a Ph.D. student at the Institute of Computer and Information science at National Chiao Tung University. His current research interests include image processing and pattern recognition.

About the Author—LING-HWEI CHEN received the B.S. degree in mathematics and the M.S. degree in applied mathematics from National Tsing Hua University, Taiwan, in 1975 and 1977, respectively, and Ph.D. degree in computer engineering from National Chiao-Tung University, Taiwan, in 1987. From 1977 to 1979, she worked as a research assistant in Chung-Shan Institute of Science and Technology, Taiwan. From 1979 to 1981, she worked as a research associate at Electronic Research and Service Organization, Industry Technology Research Institute, Taiwan. From 1981 to 1983, she worked as an engineer at the Institute of Information Industry, Taiwan. She joined the Department of Computer and Information Science at National Chiao Tung University in 1987 and is currently a professor there. Her current research interests include image processing and pattern recognition.