Bipolar switching characteristics of low-power Geo resistive memory

C.H. Cheng a,⁎, P.C. Chen b, S.L. Liu c, T.L. Wu c, H.H. Hsu c, Albert Chin c, F.S. Yeh a

a Department of Electronics Engineering and Institute of Electronics Engineering, National Tsing-Hua Univ., Hsinchu, Taiwan, ROC
b Department of Engineering and System Science, National Tsing-Hua Univ., Hsinchu, Taiwan, ROC
c Department of Electronics Eng., National Chiao-Tung Univ., Hsinchu, Taiwan, ROC

ARTICLE INFO

Article history:
Received 15 October 2010
Received in revised form 3 April 2011
Accepted 10 April 2011
Available online 4 May 2011

The review of this paper was arranged by Dr. Y. Kuk

Keywords:
Resistive random access memory (RRAM)
Germanium oxide (GeO2)

1. Introduction

As continuously scaling down the size of flash non-volatile memory (NVM) to sub-30 nm [1,2], the number of stored carriers becomes fewer that degrade the data retention and cycling endurance significantly [1]. The resistive random access memory (RRAM) [3–11] has a simple metal–insulator–metal (MIM) structure and bistable resistance states, which is a promising candidate beyond flash memory. Besides, the RRAM has a small cell size, large memory window for multiple level cell (MLC) operation and three-dimensional integration capability. To reach the needed bistable resistance states, non-stoichiometric transition metal-oxides have been used. Good memory device performances have been reported using NiO [3,4], HfO2 [5] and ZrO2 [6], ZnO [7], CeO2 [8], WO3 [9], Cu-doped MoOx (Cu–MoOx) [10], and perovskite-type SrTiO3 [11] transition metal-oxides. In most cases, the high work-function Pt electrode was used in these devices to reach a stable switching behavior and lower down the leakage current, but it is difficult to pattern by Pt reactive-ion etching (RIE). Besides, these devices suffer the penalty of high forming power and high set/reset currents of >100 μA, even using expansive noble Pt metal. Recently, the low-power RRAMs with the low current of <10 μA have been reached in GeO2/SrTiO3 and GeO2/HfON RRAM devices [12,13], but the effect of buffered GeO2 is still not clear.

In this study, we fabricated an ultra-low power RRAM device using covalent-bond GeO2 dielectric and low-cost Ni electrode. Very low 2 μW set power, ultra-low 130 pW reset power, more than 1 order of magnitude resistance window and stable data retention at 85 °C were simultaneously reached in the cost-effective Ni/GeO2/TaN RRAM device.

2. Experimental procedure

The covalent-bond GeO2 RRAM devices were fabricated on standard Si wafers. To permit VLSI backend integration, the process began with depositing a 200 nm thick SiO2 layer on Si substrate. Then the 100-nm-thick TaN was deposited by a sputter system with a fixed Ar/N2 ratio of 5% as the bottom electrode. After that, the 7-nm-thick amorphous Ge and 8-nm-thick GeO2 were deposited by e-gun evaporation on bottom TaN. Finally, a 25-nm-thick Ni metal was evaporated and patterned via a metal mask as the top electrode. Similar high work-function Ni electrode was also used for DRAM MIM capacitors. The fabricated devices were characterized by C–V and I–V using HP4284A precision LCR meter and HP4156C semiconductor parameter analyzer, respectively. All the I–V characteristics given in this study were measured at a sweep rate of 10 ms/V.

3. Results and discussion

Fig. 1a shows the I–V switching characteristics of Ni/GeO2/TaN RRAM with different GeO2 thickness of 8 and 12 nm. The RRAM with 8-nm-thick GeO2 shows very small set current of 0.5 μA at 4 V and ultra-low reset current of ~0.17 nA at ~0.75 V. The asymmetric bipolar switching is attributed to the different work-function between top Ni (5.1 eV) and bottom TaN (4.6 eV) elec-
trodes. During set, a positive voltage is applied to top Ni and cause a high current flow. Since similar increasing current is also found in SiO₂ MOS capacitors by stress-induced leakage current (SILC) effect, the switching in RRAM may be related to electrons injection from low work-function bottom TaN to create defects and current conduction in GeOₓ. This is quite different from the metallic filament switching in metal-oxide RRAM, since no metal exists in GeOₓ. The RRAM with thicker 12 nm GeOₓ shows a larger resistance window, a close set current of \(I_{\text{set}} \approx 0.5 \) μA by self-compliance, and a much lower reset current of \(I_{\text{reset}} \approx 5.4 \) pA at \(V_{\text{reset}} \approx 0.68 \) V. The current variation during self-compliance may be due to electron trapping and de-trapping via GeOₓ bulk defects. The dependence of GeOₓ thickness on resistance window and set/reset currents indicate that the current conduction is related to bulk defects. In Fig. 1b, we can observe that the set and reset behaviors are dependent on different device sizes. From the device with large area of 31400 μm², the applied voltage of 8 V to form low-resistance state (LRS) is required and then recover to high-resistance state (HRS) by a voltage of \(V_{\text{reset}} \approx 2.5 \) V which much larger than that of small-area device (11,300 μm²). Meanwhile, the apparently higher set and reset currents contributed by defect-related size effect explain the importance of defect control in resistive GeOₓ device again.

To understand the resistance switching phenomenon in covalent-bond Ni/GeOₓ/TaN RRAM, we have plotted the measured \(\ln(I) \) and \(\ln(I/V) \) as the function of \(V^{1/2} \). As shown in Fig. 2, good

Fig. 1. Swept I–V curves of Ni/GeOₓ/TaN RRAM with different (a) film thickness and (b) area dimension. The arrows indicate the bias sweeping direction.

Fig. 2. I–V curves of HRS and LRS by fitting with Schottky emission and Poole–Frenkel conduction mechanism, respectively.

Fig. 3. Swept I–V curves of Ni/GeOₓ/TaN and Ni/a-Ge/GeOₓ/TaN RRAMs.

Fig. 4. The XPS spectra of: (a) Ge 3d and (b) O 1s core level in GeOₓ.
To further explore the conduction mechanism, we fabricated the Ni/amorphous-Ge(a-Ge)/GeO/Poldeposited RRAM device. The I−V switching characteristics and schematic diagram (inset) are shown in Fig. 3. The bilayer a-Ge/GeO switch exhibits the current-compliance LRS current of 1 μA, small set voltage of 1.6 V and large HRS/LRS ratio of >3 orders of magnitude. However, the current-compliance LRS current is also accompanied by a close reset current, which much larger than that of GeO RRAM. The switching mechanism can be supposed that the injected electrons hop via vacancies in a-Ge/GeO case due to excess vacancies near top Ni electrode. This experiment confirms the importance of unique GeO for self-compliance current and ultra-low reset current during set/reset operations.

The defects and chemical states of GeO were further examined by X-ray photoelectron spectroscopy (XPS). Fig. 4a and b show the XPS spectra of Ge 3d and O 1s core level in GeO film. The Ge 3d spectrum with triple deconvoluted peaks are assigned to the different oxidation state compounds of Ge^{4-}, Ge^{3+} (3d_{5/2}) and Ge^{4+} (3d_{3/2}), indicating the existence of non-stoichiometric GeO and oxygen vacancies in the matrix. Similar oxygen vacancies are also observed by O 1s spectrum with a slight shift of peak to lower binding energy GeO. These oxygen vacancies in GeO may form conductive paths for electron hopping transport during set operation.

To investigate high-temperature switching behaviors of GeO RRAM, the I−V characteristic at 100 °C was measured, shown in Fig. 5a. The current-compliance LRS current of 0.1 μA and forward bias of 1.7 V are applied for the set operation. The decreased set voltage and the ultra-low setting energy (0.17 μW) can be ascribed to occurrence of multi-conductive paths for electron hopping at high temperature 100 °C. Furthermore, the hopping paths still can be ruptured by a small reset current of ~8 nA at ~0.6 V. The stable set and reset characteristics may be due to the resistance switching controlled by bulk-limited hopping conduction, even at the high temperature of 100 °C. In addition, the bipolar resistance switching also can be indentified by C−V curves, shown in Fig. 5b. The different capacitance densities at HRS and LRS explain that the free electrons hop along multiple conductive defects center and then affect interface charges, responsible for C−V characteristics.

In Fig. 6a, an increasing trend of current is measured for both HRS and LRS states. A still large HRS/LRS resistance window, greater than one order of magnitude, is still obtained at 125 °C. The increasing HRS current with temperature is predicted well by Schottky emission mechanism [14] with higher thermal energy to overcome the Schottky barrier. The increasing LRS current with increasing temperature shows a negative temperature coefficient that is opposite to the metallic filament conduction in metal-oxide RRAM [3]. Such negative temperature coefficient was found previously in highly defective Silicon (Si) via hopping conduction mechanism [15]. Fig. 6b shows the retention characteristics of Ni/GeO/TaN RRAM at elevated temperature of 85 °C. Stable HRS/LRS memory window is measured with retention time to 9 × 10^3 s.
4. Conclusions

We have demonstrated an ultra-low power and cost-effective Ni/GeO$_x$/TaN RRAM. The low current at LRS is ruled by Poole–Frenkel conduction with electrons hopping via defect traps, which is also responsible for the low self-compliance current. This covalent-bond GeO$_x$ as a host film or stacked layer should have the potential for future RRAM NVM application.

Acknowledgement

This work was supported in part by National Science Council of Taiwan.

References