A 2.4/5.7-GHz dual-band dual-conversion low-IF downconverter is demonstrated using 0.35 μm SiGe heterojunction bipolar transistor (HBT) technology. The first image signal is shifted away from the IF band by a complex Weaver architecture while the second image signal is eliminated by a complex Hartley architecture. The downconverter achieves a 45/44-dB image-rejection ratio of the first image (IRR₁) and a 50/48-dB image-rejection ratio of the second image (IRR₂) for 2.4/5.7-GHz modes, respectively, when IF frequency ranges from 20 to 40 MHz.

Introduction

A low-IF receiver is widely used [1]-[3] because this architecture can avoid dc offset and flicker noise problems. Series capacitors can be cascaded at the output to block the dc component in a low-IF receiver while choosing a proper IF band beyond the flicker noise corner can directly escape from the flicker noise problem. In addition, a dual-conversion downconverter alleviates the burden of a high-frequency LO signal generation.

In this paper, a 2.4/5.7-GHz dual-band low-IF downconverter for WLAN 802.11 a/g applications is demonstrated. This work combines the Weaver architecture [4]-[5] and Hartley architecture [6]. The former is a complex dual-conversion system, while the latter consists of a complex mixer and a complex filter, such as a polyphase filter (PPF) [7]-[8] or an active complex band-pass filter [3], [9]-[11].

Circuit Design

Figure 1 shows the block diagram of the 2.4/5.7-GHz dual-band dual-conversion low-IF downconverter consisting of a first-stage single-quadrature complex mixer and a second-stage double-quadrature complex mixer. A single-quadrature complex mixer includes two real mixers with either a quadrature RF or LO input while the other is kept differential. A double-quadrature complex mixer includes four real mixers with both LO and RF signals being quadrature. A Gilbert mixer consists of two current-steering differential amplifiers and thus employing SiGe HBTs in the Gilbert mixer has the advantages of lower LO power and higher conversion gain. A high conversion gain is
helpful to suppress the noise contribution of the following stages, especially the cascaded polyphase filter, to reach a better dynamic range. In addition, Gilbert mixers with output in-phase/anti-phase connections are utilized to realize an addition/subtraction function in the current domain for the complex mixing operation in the second downconversion. The IF buffer amplifier is employed to facilitate 50-Ω measurements.

In this work of a 2.4/5.7-GHz dual-band system, \( f_{RFH} = f_{IML} = 5.7 \) GHz, \( f_{RFL} = f_{IMH} = 2.4 \) GHz. Thus, \( f_{LO2} = 1.62 \) GHz, \( f_{LO1} = 2.5 \times f_{LO2} = 4.05 \) GHz, and \( f_{IF2} = 30 \) MHz.

**Experimental Result**

Figure 4 shows the die photo of the 2.4/5.7-GHz dual-band dual-conversion low-IF downconverter and the die size is 1.7×1.4 mm\(^2\). Figure 5 shows the conversion gain (CG) and the noise figure (NF) of 2.4/5.7-GHz bands with a supply voltage of 3 V. The CG is 11/10 dB and the NF is 19/18 dB for 2.4/5.7-GHz band, respectively, when the IF frequency is below 100 MHz. The downconverter reaches the peak gain when LO\(_1\) power is 13 dBm and LO\(_2\) power is 5 dBm.

**Figure 4.** Die photo of the SiGe HBT 2.4/5.7-GHz dual-band dual-conversion low-IF downconverter.
Figure 5. Conversion gain and noise figure of the SiGe HBT 2.4/5.7-GHz dual-band dual-conversion low-IF downconverter.

Figure 6. Image rejection ratios of the first/second image signals at (a) 2.4-GHz mode (b) 5.7-GHz mode of the SiGe HBT 2.4/5.7-GHz dual-band dual-conversion low-IF downconverter.

Figure 7. Power performance at 2.4/5.7 GHz mode of the SiGe HBT 2.4/5.7-GHz dual-band dual-conversion low-IF downconverter.
The image-rejection ratios (IRRs) for 2.4/5.7 GHz band are 45/44 dB for the first image and 50/48 dB for the second image as shown in Fig. 6 (a) and (b), respectively. The IRR\textsubscript{1} is flat due to the one-way frequency shifting. Compared with the IRR\textsubscript{1}, the IRR\textsubscript{2} response is a narrow band from 20 to 40 MHz due to the frequency response of the four-section poly-phase filter following the second-stage mixers. Figure 7 shows the power performance of both 2.4/5.7-GHz bands. The IP\textsubscript{1dB} is -16/-15 dBm and the IIP\textsubscript{3} is -3/-2 dBm for 2.4/5.7-GHz band when IF=30 MHz. The output waveforms of both I/Q channels are shown in Fig. 8 and this figure shows a 0.1-dB magnitude mismatch and a 0.7° phase error. Besides, the LO\textsubscript{1}/LO\textsubscript{2}-to-RF isolation and the RF-to-IF isolation are shown in Fig. 9(a) and (b), respectively. LO\textsubscript{1}/LO\textsubscript{2}-to-RF isolation is better than 65/36 dB while the RF-to-IF isolation is better than 62 dB for both 2.4/5.7-GHz modes. The performance is summarized in Table I.

![Figure 8](image8.png)  
**Figure 8.** Output I/Q waveforms of the SiGe HBT 2.4/5.7-GHz dual-band dual-conversion low-IF downconverter.

![Figure 9](image9.png)  
(a) LO\textsubscript{1}/LO\textsubscript{2}-to-RF isolation (b) RF-to-IF isolation of the SiGe HBT 2.4/5.7-GHz dual-band dual-conversion low-IF downconverter.

**Conclusion**

A 2.4/5.7-GHz dual-band dual-conversion low-IF downconverter is demonstrated using 0.35 μm SiGe HBT technology. Both differential-quadrature LO\textsubscript{1} and LO\textsubscript{2} signals are generated by a two-section polyphase filter. An 11/10-dB conversion gain and a
19/18-dB noise figure for 2.4/5.7-GHz mode are achieved in this work. Moreover, the IRR_1/IRR_2 are better than 45/50 dB at 2.4-GHz mode while a 44/48-dB IRR_1/IRR_2 is achieved at 5.7-GHz mode when the designed IF band is 20 to 40 MHz.

**TABLE I.** Performance Summary.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Frequency (GHz)</td>
<td>2.4/5.7</td>
</tr>
<tr>
<td>LO Frequency (GHz) ( [f_{LO1}/f_{LO2}] )</td>
<td>4.05/1.62</td>
</tr>
<tr>
<td>Conversion Gain (dB)</td>
<td>11/10</td>
</tr>
<tr>
<td>Single-Sideband Noise Figure (dB)</td>
<td>19/18</td>
</tr>
<tr>
<td>Image-Rejection Ratio of the First Image (dB)</td>
<td>45/44</td>
</tr>
<tr>
<td>Image-Rejection Ratio of the Second Image (dB)</td>
<td>50/48</td>
</tr>
<tr>
<td>( I_{P1dB} ) (dBm)</td>
<td>-16/-15</td>
</tr>
<tr>
<td>( I_{IP3} ) (dBm)</td>
<td>-3/-2</td>
</tr>
<tr>
<td>IF Bandwidth (MHz)</td>
<td>20-40</td>
</tr>
<tr>
<td>Supply Voltage (V)</td>
<td>3</td>
</tr>
<tr>
<td>Chip Size (mm²)</td>
<td>1.7×1.4</td>
</tr>
<tr>
<td>Technology</td>
<td>0.35-( \mu )m SiGe HBT</td>
</tr>
</tbody>
</table>

**Acknowledgments**

This work is supported by National Science Council of Taiwan, Republic of China under contract numbers NSC 98-2221-E-009-033-MY3, NSC 98-2221-E-009-031 and NSC 98-2218-E-009-008-MY3, NSC 98-2120-M-009-010, and by MoE ATU Program under contract number 95W803. The authors would like to thank National Chip Implementation Center (CIC) for technical support.

**References**