A New Simplified Threshold-Voltage Model for n-MOSFET's with Nonuniformly Doped Substrate and Its Application to MOSFET's Miniaturization

Jiin-Jang Maa, Student Member, IEEE, and Ching-Yuan Wu, Member, IEEE

Abstract—The formulation, verification, and application of a new simplified 2-D threshold voltage model for n-MOSFET's with nonuniformly doped substrate profile are provided, in which the averaged normal field at the Si/SiO₂ interface in the active channel is quoted from a simplified solution of two-dimensional Poisson equation using the Green function technique. Starting with the expression of this average normal field, a simple threshold-voltage model for short-channel n-MOSFET's with nonuniformly doped substrate profile is explicitly expressed in terms of device structures and terminal voltages by considering parabolic source-drain boundary potentials. Moreover, the effects of the junction depth on the threshold voltage are examined in detail. It is shown that the DIBL effect cannot be completely eliminated by simply increasing the substrate doping concentration. Comparisons among developed model, 2-D numerical analysis, and experimental data have been made and the accuracy of the developed analytical model has been verified. In addition, a direct extension of our model to the case of uniformly doped substrates leads to a new constraint equation for device miniaturization.

NOMENCLATURE

- The thickness (capacity per unit area) of the gate oxide.
- The built-in potential between the source and the channel.
- The substrate-, gate-, and drain-to-source bias voltages, respectively.
- The threshold voltage.
- The device channel length.
- The vertical depth of the depletion region at the source (drain) end.
- The dielectric permittivity of silicon (oxide).
- The surface potential at the onset of strong inversion.
- The built-in potential at the bottom of the depletion region.
- The depletion width in the channel region.
- The depletion width in the channel region without considering any two-dimensional effect.
- The weighted surface potential.
- The weighted boundary potential at the bottom of the depletion region.
- The boundary potential at the source (drain) end.

I. INTRODUCTION

THE threshold voltage of MOSFET's, which has always been the major concern of device scaling, is closely related to device structure parameters (e.g., oxide thickness, junction depth, gate length, etc.) and terminal voltages. The increasing complexity of modern MOS device structure requires clear understanding on the behavior of threshold voltage, and many efforts have been devoted to the investigation of this electrical parameter.

Conventional long-channel theories were first challenged by the introduction of channel implantation in modern MOS devices [1]. Another challenge comes from the existence of source/drain diffusion islands. To physically interpret the short-channel effect, the roles of source/drain islands were first emphasized in the simplified Yau's charge-sharing scheme [2] for the threshold-voltage model with uniform substrate doping profile. The charge-sharing scheme had been improved by many authors (e.g., [3] and [4]), and the channel-length depen-
Poisson equation in this rectangular domain was solved and an infinite series of sine functions along the channel direction the derived potential distribution can be expressed in terms of edge of the depletion region in the substrate. With the aids of Green function solution technique, the two-dimensional case of uniformly doped substrates. Under some assumptions, MOSFET's with nonuniform substrate doping profile has attack the above problems is to directly solve the two-dimensional Poisson equation analytically [5]-[13]. Recently, a simplified threshold-voltage model for surface-channel MOSFET's with nonuniform substrate doping profile has been proposed by Lin and Wu [13], which is based on solving the deformation-approximated two-dimensional Poisson equation using the Green function solution technique. The effects due to short channel, depletion-width broadening (increase of substrate depletion width with the two-dimensional effects), and charge screening (insensitivity of threshold voltage to substrate bias for short-channel devices) can be described by this model. The expression for the average normal field at the oxide/semiconductor interface obtained in [13] will be utilized to derive an explicit form for the threshold voltage of n-MOSFET's in this paper. The resulting equations for the threshold voltage are mainly composed of structure parameters and terminal voltages. To compensate the errors caused by the assumptions made on the boundary potentials, a parametric approach is adopted and the behavior of the drain-induced barrier lowering (DIBL) effect [14] is analyzed in detail simultaneously.

The major problem in device scaling is to explore the shrinkage law for device. The constant-field strategy [15], [16] was proposed to scale the physical dimensions and potentials of MOSFET's with uniformly doped substrate, while keeping the field pattern in the scaled devices unchanged. One [15] or two [16] scaling factors were introduced to cover the scaling of all the parameters. Basically, the constant-field scaling strategy plays some roles as the device operation is governed by the electric field. As this is not the case, this strategy contributes nearly nothing to miniaturization consideration. Based on detailed observation from the subthreshold behavior of MOSFET's, Brews et al. [17] proposed an empirical law which serves as a constraint on the relations of device structures to guarantee the long-channel characteristics for scaled devices. Recently, an improved miniaturization guide was proposed by Ng et al. [18]. In this paper, we'll extend our model to the case of uniformly doped substrates. Under some assumptions, a constraint relation similar to those developed by Brews et al. and Ng et al. can be derived.

II. MODEL FORMULATION AND DISCUSSIONS

The cross-section view of a conventional n-MOSFET is shown in Fig. 1, in which the dashed curve indicates the edge of the depletion region in the substrate. With the aids of Green function solution technique, the two-dimensional Poisson equation in this rectangular domain was solved and the derived potential distribution can be expressed in terms of an infinite series of sine functions along the channel direction (i.e., x-axis in Fig. 1) [13]. By differentiating the above two-dimensional potential distribution with respect to y at y = 0, we can compute the normal electric field at the Si/SiO2 interface $E_S(x)$. Further simplification was made by averaging the field pattern $E_S(x)$ by the corresponding eigenfunction. Consequently, the averaged surface normal field E_S is

$$E_S = \frac{q}{\varepsilon_s} \int_0^y \frac{N_A'(y) \sinh k_1(y_d - y)}{\sinh k_1 y_d} dy + \frac{q}{\varepsilon_s} \int_0^y \frac{N_G'(y) \sinh k_1 y}{\sinh k_1 y_d} dy \quad (1)$$

with $k_1 = \pi/L$. The average normal field at the depletion edge has been neglected in (1). $N_A'(y)$ and $N_G'(y)$ are the effective doping distributions viewed from the interface and the bottom of the depletion edge in the channel region, respectively, and are written as

$$N_A'(y) = N_A(y) - \frac{\varepsilon_s}{2q} \left[\Psi_S(y) + \Psi_D(y) - 2\Psi(x, 0) \right]$$

and

$$N_G'(y) = N_G(y) - \frac{\varepsilon_s}{2q} \left[\Psi_S(y) + \Psi_D(y) - 2\Psi(x, y_d) \right]. \quad (2a)$$

Because of the existence of $\Psi_S(y)$ and $\Psi_D(y)$, both $N_A'(y)$ and $N_G'(y)$ are less than the originally implanted profile, $N_A(y)$. The weighting function of $N_A'(y)$ in (1) (i.e., $\sinh k_1(y_d - y)/\sinh k_1 y_d$) indicates that the charge controllability of gate voltage decreases rapidly along the depth as $y_d \approx L$, due to the exponential behavior of this weighting function. This effect is denoted as the "charge-screening" effect in [13]. Experimentally, the charge-screening effect is demonstrated by the weak substrate sensitivity of short-channel MOS devices. On the other hand, the second term on the RHS of (1) is related to the depletion-width broadening effect since y_d is determined by $N_A'(y)$. Shorter channel length and/or larger drain voltage will result in further deviation of $N_A'(y)$ from $N_A(y)$. Since the surface potential depends on $N_A'(y)$, a larger y_d is necessary to achieve the same surface potential as the two-dimensional effects are more pronounced.
For surface-channel devices, the threshold voltage \(V_{TH} \) can be simply expressed by
\[
V_{TH} = V_{FB} + \overline{\Psi(x, 0)_{inv}} + \frac{\varepsilon_s E_S}{C_{ox}}. \tag{3}
\]
Note that (3) is a direct result of Gauss law. Equations (1) and (2) are then substituted into (3) for threshold computation. The boundary potentials used for the shaded rectangle in Fig. 1 are
\[
\Psi_{Sm}(y) = (V_{BI} - V_{BS}) \left(1 - \frac{y}{y_{JD}}\right)^2 + V_{BS}, \quad \text{for } 0 \leq y \leq y_{JS} \tag{4a}
\]
\[
\Psi_{Dm}(y) = (V_{BI} + V_{DS} - V_{BS}) \left(1 - \frac{y}{y_{JD}}\right)^2 + V_{BS}, \quad \text{for } 0 \leq y \leq y_{JD} \tag{4b}
\]
where the parabolic source/drain boundary potentials are used and the two average potentials are expressed by
\[
\overline{\Psi(x, 0)_{inv, m}} = \phi_{inv} \tag{4c}
\]
and
\[
\overline{\Psi(x, y_{JD})_{m}} = \phi_{y_{JD}} + V_{BS}. \tag{4d}
\]
Note that the subscript \(m \) means that these terms are assumed in our model. Observation from 2-D numerical analysis, it shows that the parabolic potentials, \(\Psi_{Sm}(y) \) and \(\Psi_{Dm}(y) \), are good enough as long as the drain voltage \(V_{DS} \) is small. As \(V_{DS} \) is large, the “field-retrograde” effect [11] will occur. To take this effect into consideration, a piece-wise parabolic boundary potential at the drain side can be assigned [11], [12]. However, a careful inspection on (1) and (2) shows that the detail form of \(\Psi_D(y) \) is not the major concern, but is its integration. For simplicity, we adopt the parabolic potentials for \(\Psi_{Sm}(y) \) and \(\Psi_{Dm}(y) \). The error due to the ignorance of the field retrograde effect can be corrected by other considerations as will be discussed later.

Combination of (1)–(4) gives
\[
V_{TH} = V_{FB} + \phi_{inv} + \frac{Q_{Beff}}{C_{ox}} - \Delta V_{TH} + L.T. \tag{5}
\]
where
\[
Q_{Beff} = q \int_0^{y_{JD}} N_A(y) \sinh k_1 y_{JD} - y + \sinh k_1 y_{JD} \overline{N_A(y)G(y)dy} \tag{6}
\]
is the effective depletion charge density per unit area controlled by the gate; \(\Delta V_{TH} \) is the effective reduction of the threshold voltage due to the two-dimensional effects and is written as
\[
\Delta V_{TH} = \varepsilon_s \frac{T_{ox}}{L} \left(\frac{\beta_S V_{BI} + \beta_D(V_{BI} + V_{DS})}{\varepsilon_s k_1 y_{JD} - 1]\sinh k_1 y_{JD} \right)
\]
\[
\times \left[\frac{\beta_S + \beta_D - 1}{V_{BS} - \phi_{inv}}\right] \tag{7}
\]
where \(\beta_S \) and \(\beta_D \) are the integration results of the parabolic terms of \(\Psi_{Sm}(y) \) and \(\Psi_{Dm}(y) \), respectively, i.e.,
\[
\beta_S = k_1 \sinh k_1 y_{JD} \int_0^{y_{JD}} \left(1 - \frac{y}{y_{JD}}\right)^2 G(y) dy \tag{8a}
\]
and
\[
\beta_D = k_1 \sinh k_1 y_{JD} \int_0^{y_{JD}} \left(1 - \frac{y}{y_{JD}}\right)^2 G(y) dy. \tag{8b}
\]
The final term of (5) sums up all of the deviations resulting from the approximations made on the boundary potentials. \(L.T. \) is the abbreviation of “Lost Terms” and consists of four components:
\[
L.T. = \frac{1}{2} \frac{\varepsilon_s}{C_{ox}} \int_0^{y_{JD}} [\Psi_{Sm}(y) - \Psi_s(y)]G(y) dy
+ \frac{1}{2} \frac{\varepsilon_s}{C_{ox}} \int_0^{y_{JD}} [\Psi_{Dm}(y) - \Psi_D(y)]G(y) dy
+ \left[\frac{\varepsilon_s}{C_{ox}} \frac{\pi}{L} \frac{\gamma}{\sinh k_1 y_{JD}} - 1\right] \tag{9}
\times (\overline{\Psi(x, 0)_{inv}} - \phi_{inv})
+ \left[\frac{\varepsilon_s}{C_{ox}} \frac{\pi}{L} \frac{\gamma}{\sinh k_1 y_{JD}} - 1\right]
\times \overline{\Psi(x, y_{JD}) - (\phi_{y_{JD}} + V_{BS})}.
\]

Obviously, the RHS of (9) includes the deviations of the boundary potentials from source, drain, surface, and the bottom boundaries in sequence. The parabolic potential \(\Psi_{Sm}(y) \) will not cause significant error since the source is generally grounded. Besides, the deeper charges in the substrate hardly affect the potential at the surface. Therefore, the last term in (9) can be neglected. Consequently, \(L.T. \) is mainly contributed by the inaccuracy of drain and surface boundary potentials. It can be understood that the term \((\overline{\Psi(x, 0)_{inv}} - \phi_{inv}) \) produces a shift of the threshold voltage and is nearly independent of the external voltages. Further simplification can be made by noting the relation between (8b) and the term \((\overline{\Psi_{Dm}(y) - \Psi_D(y)}) \). We have discussed that the field retrograde effect can be described by a piece-wise parabolic potential for \(\Psi_D(y) \). The term \((\overline{\Psi_{Dm}(y) - \Psi_D(y)}) \) is also parabolic under this consideration. Equation (8b) can then be used to replace the second term on the RHS of (9). A fitting parameter \(a \) is introduced to compensate the integration deviation. As a consequence, \(L.T. \) is eventually approximated by
\[
L.T. \simeq \frac{\pi}{2} \frac{\varepsilon_s}{C_{ox}} \frac{T_{ox}}{L} \frac{\beta_D(1 - a)}{\sinh k_1 y_{JD}} V_{DS} \tag{10}
\]
where the behavior of \(a \) requires conscientious investigation.

To eliminate the uncertainty of channel profile, we compare the above equations with the threshold voltages extracted from numerical simulation data. The simulator used here is a conventional 2-D drift-diffusion MOS simulator SUMMOS (SubMicron MOSFET) [19]. To simulate the implanted profile, the SUMMOS uses the Gaussian functions:
\[
N_A(y) = \sum_i \Phi_i \exp \left[-\frac{(y - T_{ox} + R_{pi})^2}{2A^2_{R_{pi}}}\right] + N_{AB} \tag{11}
\]
where \(\Phi_i \), \(R_{pi} \), and \(A^2_{R_{pi}} \) are the dose, range, and straggling of the \(i \)-th implantation, respectively. Table I lists the structure parameters used to evaluate our model. For convenience, the device described in Table I is called Device A and the cylindrical junction curvature is assumed. To speed up the
computation efficiency, the Gaussian profile is transformed into the equivalent step one and the lower part of Table I shows the corresponding parameters. The filled circles and the plus signs shown in Fig. 2 are the V_{TH}'s determined from the numerical $I-V$ data by the method described in [13].

The magnitude of a is then extracted by comparing our model with the numerical V_{TH}'s. Fig. 3 illustrates the variation tendency of a with the ratio R_j/L extracted from the data points in Fig. 2 and several physical features are revealed. It is noted that the source/drain islands are excluded from the shaded rectangle in Fig. 1. Special considerations are necessary to incorporate the effect of R_j into the analytic model. Previous discussions on the boundary potentials imply that the ambiguities of $\Psi_{Sm}(y)$ and $\Psi_{Dm}(y)$ will blur the effect of R_j on V_{TH}. It must be precisely corrected by the behavior of a. In Fig. 3, the slightly random distribution of a's values in the range of small R_j/L is due to the negligible threshold reduction. For devices with long channel and shallow S/D junction depth (i.e., R_j/L is small), the effect of V_{DS} on V_{TH} is small and hence a is more sensitive to the soft fluctuations occurred in V_{TH} determination. At some fixed V_{DS}, a tends to saturate as R_j/L is large. It tells us that the strength of the short-channel effect will not expand infinitely with R_j. As R_j is deep enough, the loss of flux due to further increase of R_j will not be experienced by gate, because those charges additionally terminated by the source/drain islands are deep in the substrate and have nearly no contribution to the surface potential. Furthermore, when the DIBL effect is significant, a increases with $|V_{BS}|$ [2]. According to the interpretation of the charge-sharing scheme [2], the relative gate flux loss will increase with the boundary ratio of the shaded rectangle in Fig. I (i.e., y_d/L). The increase of a with y_d also recommends that the term L_T is dominated by the second term on the RHS of (9). It has been reported that the depth of the region with the field retrograde effect, which is denoted by y_d, is nearly independent of V_{BS} [12], [13]. The physical reason is attributed to the charge screening effect [13]. As $y \geq y_d$, the deviation term $\Delta \Psi_{Dm}(y) - \Psi_D(y)$ is negligible. Roughly speaking, we have

$$f_d \int_{0}^{y_d} [\Psi_{Dm}(y) - \Psi_D(y)] G(y) \, dy \approx f_d \int_{0}^{y_d} \Psi_D(y) G(y) \, dy$$

(12)

The increase of y_d and hence a reduces the deviation ratio and L_T is reduced correspondingly.

The data points plotted in Fig. 3 are extracted from Device A with different R_j's. It's interesting to note that the data points with different R_j's under the same V_{BS} locate on a universal curve. It strongly implies that a is mainly related to R_j. An empirical equation can be used to fit the data points, which reads

$$a = a_0 \left(\frac{R_j}{L} \right)^m.$$

(13)

The solid curves in Fig. 3 are the results of (13). The power n represents the sensitivity of the DIBL effect to R_j and $n = 0.80$ is used in Fig. 3. A similar power relation has been obtained by Ng et al. [18] with a value of 0.7, which is close to our result. The pre-factor a_0 includes the V_{BS}-dependence of a. A good approximation is made by expressing a_0 in terms of the one-dimensional depletion depth y_{do}. Besides, we note that a linear relation is sufficient to describe the behavior of a_0. Consequently, a_0 is written as

$$a_0 = m y_{do} + a_{00}.$$

(14)

$a_{00} = 0.317$ and $m = 0.785/\mu m$ are found. In (14), y_{do} is multiplied by m to improve the accuracy of our model.

![Fig. 2. Comparison between the results of our analytic model (---) and the threshold voltages extracted from numerical simulation (+). The device structure and parameters used for simulation are described in Table I.](image-url)
Table punchthrough effect which is not considered in our model.

To demonstrate the existence of the nonvanishing a_{00} means that the DIBL effect cannot be completely eliminated by simply increasing the channel doping concentration. For convenience, we define the magnitude of the DIBL effect to be

$$k = \left| \frac{dV_{TH}}{dV_{DS}} \right|$$

To show the existence of the nonvanishing a_{00}, Fig. 4 shows the variation of the DIBL factor k extracted from numerical simulations (filled circles) with uniform substrate doping concentration N_{AB} for simplicity, in which $R_j = 0.25 \mu m$ and $L = 0.40 \mu m$ are used. The magnitude of k decreases with N_{AB} as expected, while it tends to level off as N_{AB} is high. Clearly, the finite value of k as N_{AB} is high is accounted for by the nonvanishing a_{00}. Therefore, a_{00} plays an important role as the device miniaturization issues are concerned. The physical picture revealed by a_{00} is the perpetual charge sharing by V_{DS}. Fig. 4 shows the result calculated by our model (solid curve) and the agreement is good. Note that a larger deviation in the low-doping region is observed due to the fact that the threshold reduction in this region is dominated by the punchthrough effect which is not considered in our model. Beyond this region, the deviation is small and this means that m and a_{00} are independent of the channel profiles.

Equations (10), (13), and (14) are then substituted into (5) to calculate the threshold voltage, and the solid and dashed curves in Fig. 2 are the calculation results. It is shown that our model agrees with the numerical data excellently and the error caused by the approximated boundary potentials is successfully corrected by the parameter a.

Our model can also be applied to LDD MOSFET's by simply replacing the heavily doped R_j by the lightly-doped R_j. Fig. 5 shows comparisons between the measured V_{TH}'s and our model, in which the test devices are fabricated by the 0.5-μm technology with the oxide thickness of 110 \AA and R_j of 0.18 μm. Fig. 5(a) is the channel profile extracted from the threshold-voltage versus substrate-bias curve of a long-channel device by the nonlinear optimization algorithm in [21]. The effects of channel length and V_{DS} are shown in Fig. 5(b). Quite good agreements are obtained.

III. APPLICATION TO MOSFET MINIATURIZATION

From the previous section, the accuracy of the developed threshold-voltage model has been verified by either numerical analyses or experimental data of short-channel n-MOSFET's. The miniaturization of n-MOSFET's based on the constraint of the drain-induced barrier lowering effect (e.g., $k \leq 20$ mV/V) can be carried out by using our model through computer iteration. Due to the complicated coupling effects, a simple relation among the various structure parameters, which describes the shrinkage rule of each parameter after scaling, cannot be easily deduced from the complete model without further approximation. However, as the magnitude of the DIBL effect is small (e.g., $k \leq 20$ mV/V), the charge-screening effect and the depletion-width broadening effect discussed in Section II can be neglected. Eventually, the depletion width y_d is not affected by any two-dimensional effect under our assumptions and can be replaced by y_d. The threshold-voltage model can be further simplified to be

$$V_{TH} = V_{FB} + \phi_{inv} + \frac{Q_D(y_d)}{C_{ox}} - \Delta V_{TH}$$

where $Q_D(y_d)$ is the depletion-charge density per unit area within y_d, and, and

$$\Delta V_{TH} = \frac{\pi^2}{2} \frac{\epsilon_S}{\epsilon_{ox}} \frac{T_{ox}}{L} y_d [f_S V_{BI} + f_D(V_{BI} + \alpha V_{DS}) - (f_S + f_D) V_{BS}].$$
According to (17) and (19), the DIBL factor is
\[k \approx \frac{\pi^2}{2} \frac{e_S}{\varepsilon_{ox}} \frac{R_j}{L} \frac{R_j}{L} \text{ } f_D. \]
(20)

The strength of the DIBL effect can be treated as an important performance benchmark for device scaling [18]. As shown by (20), the DIBL factor is proportional to \(\alpha_0 f_D \times (T_{ox}/L) \times (y\text{do}/L) \times (R_j/L)^n \) under the long-channel assumption. Eq. (20) can be rearranged to be
\[L_{\text{min}} = M[\alpha_0 T_{ox} R_j y\text{do} f_D]^{1/(2+n)} \]
(21a)

where
\[M \equiv \left(\frac{\pi^2 \epsilon_S}{k^2 \varepsilon_{ox}} \right)^{1/(2+n)} \]
(21b)

is a unitless constant as \(k \) is specified. Note that (21) is valid for nonuniformly doped profile. Since the implant profiles (e.g., double implants) of practical n-MOSFET's need at least six implant parameters, the computer iteration is required for \(y\text{do} \) in (21) if the implant profiles in the substrate are known. In order to demonstrate the application of the scaling rule for MOSFET miniaturization, the uniform substrate doping is assumed in the following figures for simplicity. This treatment is similar to those of the constant-field strategy and the empirical laws developed by Brews et al. [17] and Ng et al. [18].

Fig. 6 illustrates the dependence of the DIBL factor \(k \) on the term \(\alpha_0 f_D \times (T_{ox}/L) \times (y\text{do}/L) \times (R_j/L)^n \). The numerical data points in Fig. 6 begin to deviate significantly from the analytic curve as the assumptions made to derive (16) are violated, i.e., the long-channel approximation is no longer valid. Consequently, a departure point can be defined to represent the lower limit of channel length below which the long-channel behavior can be maintained. As shown in Fig. 6, the short-channel characteristics become dominant as \(k > 20 \text{ mV/V} \). Therefore, \(k = 20 \text{ mV/V} \) is a reasonable criterion to distinguish the device performance. For example, for devices with \(N_{AB} = 2 \times 10^{17}/\text{cm}^3, T_{ox} = 10 \text{ nm}, \) and \(R_j = 0.10 \mu\text{m}, \) \(L_{\text{min}} = 0.26 \mu\text{m} \) is obtained with \(M = 10.64 \). It is clearly seen that (21) acts as a miniaturization guide, as the empirical law developed by Brews et al. [17] does. It’s important to note that (21) considers only the DIBL effect. Other requirements may impose other constraints on \(L_{\text{min}} \) for the development of a complete design guide. Equation (21) relates the minimum channel length to the three basic structure parameters: \(T_{ox}, R_j, \) and \(N_{AB} \). The term \(y\text{do} \) in (21) indicates the requirement of high substrate concentration to achieve device miniaturization. On the other hand, the considerations such as the substrate sensitivity and the parasitic source-to-substrate capacitance play the competing roles for this requirement.

To verify the validity of (21), numerical simulation and experimental data are taken for comparisons. \(L_{\text{min}} \) is determined by the method described in Fig. 6 and \(k = 20 \text{ mV/V} \) is used. For numerical simulation, devices with gate oxide thicknesses ranging from 6 to 100 nm, junction depths from 35 nm to 0.8 \(\mu\text{m} \), and uniform substrate doping concentrations from \(3 \times 10^{15}/\text{cm}^3 \) to \(2 \times 10^{17}/\text{cm}^3 \) were tested. The test devices were fabricated on (100) silicon wafers and the starting material was p-type wafer with the base impurity concentration...
MAA AND WU et al.: NEW SIMPLIFIED THRESHOLD-VOLTAGE MODEL

Fig. 6. Determination of minimum channel length L_{min} by means of DIBL parameter a and its corresponding equations correct the errors from the ignorance of the field-retrograde effect [11]. The generating mechanisms shows that the major deviation results plus signs are extracted from the numerical simulation and the analysis. The solid curve is predicted by our analytic model with long-channel length and high temperature annealing process was followed to predicted by (21). It means that for devices with $L > 3\mu m$. The channel profile was nearly flat to about 1.2 μm depth from the surface. Hence, uniform substrate doping could be assumed of about $3 \sim 5 \times 10^{15}$ cm$^{-3}$. Ion implantation was used to adjust the substrate doping concentration and the energy was 80 keV and the dose varied from 7×10^{13} to 3×10^{14}/cm2. A long and high temperature annealing process was followed to achieve uniform profile near the surface. The thermal budget was 800°C for 50 min and 1100°C for 590 min. The resulted channel profile was nearly flat to about 1.2 μm depth from the surface. Hence, uniform substrate doping could be assumed and the effective doping concentration was determined from the substrate sensitivity of long-channel MOS devices. Gate oxides with three different thicknesses were grown for 10, 14, and 20 nm and the gate material was n$^+$-polysilicon. The source/drain islands are formed by arsenic implantation with 80 keV and 5×10^{16}/cm2, and the subsequent annealing for 120 min at about 850°C was carried out and the junction depth is about 0.2 μm.

Fig. 7 summarizes the above verification data, in which the plus signs are extracted from the numerical simulation and the filled circles are from experimental devices. These points fall on a straight line with a slope of 1/2.8 on a log-log plot as predicted by (21). It means that for devices with $k \leq 20$ mV/V, the punchthrough effect is not significant and hence excellent accuracy can be obtained by our model. Comparisons among various constraint equations will be presented elsewhere [22].

IV. CONCLUSION

A new simplified analytic model for the threshold voltage of n-MOSFET’s is presented and verified. Given a set of boundary potentials, the averaged normal field derived by Lin and Wu [13] at the Si/SiO$_2$ interface is successfully applied to the formulation of our model. Careful study on the error-generating mechanisms shows that the major deviation results from the ignorance of the field-retrograde effect [11]. The parameter a and its corresponding equations correct the errors and reveal several physical pictures of the DIBL effect. The perpetual charge sharing effect is noted and described by the existence of the parameter a_0.

After the successful verification of our model, the DIBL effect is utilized to study the issues of MOSFET miniaturization. By extending our model to the case of uniformly doped substrates and neglecting the charge-screening effect and the depletion-width broadening effect, we derive a new constraint equation similar to the empirical law of Brews et al. [17]. Numerical and experimental verifications confirm the validity of the new constraint equation.

ACKNOWLEDGMENT

The authors would like to express special thanks to the Electronics Research and Service Organization (ERSO), Industrial Technology Research Institute (ITRI), Taiwan, Republic of China, for the fabrication of the test devices.

REFERENCES

Jin-Jang Maa (S'88), for a photograph and biography, please see p. 1268 of the July 1995 issue of this TRANSACTIONS.

Ching-Yuan Wu (M'72), for a photograph and biography, please see p. 1268 of the July 1995 issue of this TRANSACTIONS.