THE CORRELATION EFFECTS ON SERVICE CONTROL POINT RESPONSE TIME

JYHI-KONG WEY
Network Planning Laboratory, Telecommunication Laboratories, Directorate General of Telecommunications, Ministry of Transport and Communications, and Institute of Computer and Information Science, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.

LIR-FANG SUN
Network Planning Laboratory, Telecommunication Laboratories, Directorate General of Telecommunications, Ministry of Transportation and Communications, Taiwan, R.O.C.

AND

WEI-PANG YANG*
Institute of Computer and Information Science, National Chiao Tung University, Hsinchu 300, Taiwan, R.O.C.

SUMMARY

As the centralized database for the integration across multiple wireless tiers and wireline access, traffic design considerations for SCP performance measurement are of great importance in the personal communications era. By neglecting the effect of disk access time, the SCP response time R includes the SCP processing time P and signalling link delay L only. A bivariate normal distribution has been proposed for modelling (P, L) such that some statistical estimations of L given P can be conveniently obtained in different combination of SCP processing load and link utilization. Further, the correlation effects of (P, L) on R are investigated. After a Tukey one degree of freedom test with one observation of per treatment ($n = 1$) under different normalized processing times and correlations, the two-factor ANOVA model becomes an interaction model without pure error effects due to the computed F^* values being significantly greater than the critical $F(0.95; 1, 11)$. Besides, rejection threshold criteria of SCP response time with minimum loss rate (0.01 per cent) of messages are proposed to ensure a good service quality of SCP.

KEY WORDS: correlation effects; IN; overload control; response time; SCP

1. INTRODUCTION

An intelligent network (IN) is a large and complex telecommunication system. It consists of many distributed elements such as service switching points (SSPs), service control points (SCPs), service management system (SMS), and service creation environment (SCE). As the service logic and customer data are stored, the SCP is the brain of an IN. A desired SCP is an on-line, fault-tolerant, and real-time database system. Design considerations for SCP performance measurement are of great importance, especially while the SCP is considered as a centralized database for the integration across multiple wireless tiers and wireline access in the personal communications era.

Traffic congestion management is an essential procedure of SCP in order to guarantee some desired performance under unpredictable and changing traffic conditions. An SCP receives the traffic (i.e. query messages) from SSPs and is expected to respond to those messages within agreed time-out values. If an SCP response message does not arrive before the timer expires, the SSP will initiate some failure actions. In addition, the SCP also takes measurements from average response time, lost calls by the SCP due to excessive delays, and some specific performance index for preventing congestion. Therefore, the congestion threshold of SCP is defined to be the most severe overload level indicated by the measurements.

Upon overload occurring, the SCP has two traffic regulation approaches, non-selective ACG (automatic code gap) control and selective ACG control, to throttle the traffic. These two approaches are both application level ACG control to selectively screen excess traffic from the signalling network. Essentially, an ACG restrictive control approach employed in the SCP is a back-pressure mechanism in order to guarantee that no SSPs will initiate more queries than the SCP can absorb. There is a trade-off relationship between the regulation level of the SSPs traffic and the improvement of IN performance.

Recently, there have been many traffic regulation approaches employed in the high speed network. However, these congestion control approaches distributively regulate each source within its allowable rate that is impractical for an...

* To whom all correspondence should be sent.

CCC 1074-5351/95/060365-08
© 1995 by John Wiley & Sons, Ltd.

Received November 1994
Revised August 1995
SCP. Since the SCP is a brain of the IN, it itself is a traffic regulation centre. The SCP should regulate the network traffic autonomously and in a timely manner.

The SCP response time as well as the propagation time between SSP and SCP will directly affect the service quality of an IN call. Since the propagation time is approximately a constant value, the SCP response time consequently becomes the major factor affecting the service quality. The eventual target to ensure a good service quality of SCP is a good response time measurement indicator to detect an abnormal performance and a rejection threshold of SCP response time to throttle the expired messages.

In this paper, the SCP response time will be statistically studied. In Section 2, features of response time components will be introduced. In Section 3, a bivariate normal distribution will be proposed for modelling the response time components so as to investigate the correlation effects on SCP response time. In Section 4, rejection threshold criteria of SCP response time will be proposed as an SCP congestion management threshold for ensuring a good service quality of SCP. Finally, some important conclusions will be given and discussed.

2. RESPONSE TIME COMPONENTS

The requirement for SCP is real-time, high availability and fault tolerance. For this stringent performance requirement, the SCP response time should be controlled efficiently and accurately. Clearly, SCP response time is defined as the time interval from the moment when the last bit of a query-related message enters the SCP, to the moment when the last bit of a response message leaves the SCP. The SCP response time \(R \) includes the SCP processing time \(P \), disk access time \(D \), and signalling delay link \(L \) as described below.

2.1. SCP processing time

The SCP processing time is decomposed into platform processing time and application processing time. We consider the SCP processing time as a unit here and define it as the time interval from the moment when the last bit of a message enters the SCP, to the moment when the last bit of a message is placed on the transmission buffer of the signalling link, excluding the time taken to perform any disk access. The SCP processing time \(P \) is assumed to be normally distributed with the probability density function (p.d.f.) given by

\[
f_P(p) = \frac{1}{\sigma_P \sqrt{2\pi}} e^{-\frac{(p-\mu_P)^2}{2\sigma_P^2}}, \quad p \geq 0
= 0, \text{ elsewhere.}
\]

Bellcore proposed the means and the 95th quantiles of an SCP processing time at 40 and 80 percent of maximum SCP capacity. Accordingly, the standard deviations of processing time can be estimated as summarized in Table I.

2.2. Disk access time

Most conventional database systems are disk resident. For real-time constraints in telecommunication applications, disk data may be cached into memory for fast access. Obviously, the access time for main memory is orders of magnitude less than for disk storage. In the response of SCP to SSP, all service logic programs (SLPs) and the related data are memory resident. This means that the SCP is designed as a main memory database system with the related data residing permanently in main physical memory. Therefore, no disk access time will affect the SCP response time. However, if the multiple disk access is required in the processing of query-related messages, then each disk access is assumed to be 30 ms or less.

2.3. Signalling link delay

We assume each SS7 (signalling system number 7) link with 64 kb/s link speed operating under a steady-stage traffic load. A non-pre-emptive priority queuing discipline is used to examine delay characteristics of the signalling message traffic. The signalling link delay is defined as the time interval from the moment when the last bit of an SCP response message is transmitted to the outgoing signalling link to the moment when the last bit of this message is transmitted to the outgoing signalling link. Again, the signalling link delay is assumed to be normally distributed, with the p.d.f. given by

\[
f_L(l) = \frac{1}{\sigma_L \sqrt{2\pi}} e^{-\frac{(l-\mu_L)^2}{2\sigma_L^2}}, \quad l \geq 0
= 0, \text{ elsewhere.}
\]

The signalling link delay is decomposed into the message queuing delay and the message emission delay. Since the queuing delay is a function of link utilization and the message length distribution, emission delay is a function of the signalling link speed and the message length distribution. The signalling link delay objectives calculated using the M/G/1 queuing formula for link delay at 0-4 and 0-8 Erlangs of link utilization for 279 octets' message at 64 kb/s

<table>
<thead>
<tr>
<th>Percentage of maximum SCP capacity</th>
<th>(\mu_P, \text{ ms})</th>
<th>(\sigma_P, \text{ ms})</th>
<th>95th quantile, ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>150</td>
<td>18-24</td>
<td>180</td>
</tr>
<tr>
<td>80</td>
<td>180</td>
<td>21-88</td>
<td>216</td>
</tr>
</tbody>
</table>
of link speed20 can be estimated as summarized in Table II.

3. CORRELATION EFFECTS

As mentioned above, a conventional analysis of response time components is based on the normally independent distribution for each variable. This assumption implies that the SCP response time is normally distributed and the variance of SCP response time is the sum of the variances of the response time components, \(\text{Var}(R) = \text{Var}(P) + \text{Var}(L) + \text{Var}(D) \). However, the value of the correlation coefficient between response time components is positive. For instance, a long query message results in long processing time and produces a long response message to the signalling link. For a main memory SCP system, there is no disk access time, then we have

\[R = P + L, \quad \text{and} \quad E[R] = E[P] + E[L] \quad (1) \]

The variance of \(R \), \(\text{Var}(R) = \text{Var}(P) + \text{Var}(L) + 2\text{Cov}(P, L) \)

\[= \sigma_P^2 + \sigma_L^2 + 2\rho\sigma_P\sigma_L \]

where \(\rho = \rho_{P,L} \).

3.1. Modelling the SCP response time

Let the two-dimensional random variable \((P, L) \) have the joint probability density function

\[f_{P,L}(p,l) = \frac{1}{2\pi\sigma_P\sigma_L\sqrt{1-\rho^2}} \exp \left[-\frac{1}{2(1-\rho^2)} \left(\frac{(p-\mu_P)^2}{\sigma_P^2} - 2\rho \frac{(p-\mu_P)(l-\mu_L)}{\sigma_P\sigma_L} + \frac{(l-\mu_L)^2}{\sigma_L^2} \right) \right] \quad (2) \]

where \(0 < \rho < \infty, 0 < l < \infty, \sigma_P > 0, \sigma_L > 0 \) and \(|\rho| < 1 \).

Equation (2) is called a bivariate normal distribution. Then, the marginal distributions of SCP processing time \(P \) and signalling link delay \(L \) are univariate normal distributions. Further, we have

\[\mu_{L|P=p} = \mu_L + \frac{(p\rho_L)}{\sigma_P}(p-\mu_P) \]

and variance \(\sigma_{L|P=p}^2 = \sigma_L^2(1-\rho^2) \).

By Theorem 1, we have the conditional p.d.f.

\[f_{L|P}(l|p) = \frac{1}{\sigma_L\sqrt{2\pi(1-\rho^2)}} \exp \left[-\frac{1}{2} \frac{(l-\mu_L-\rho\sigma_L(p-\mu_P))^2}{\sigma_L^2(1-\rho^2)} \right] \quad (3) \]

For \(1 - \alpha = 0.95 \), we have \(z_{1-\alpha} = 1.645 \) and the 95th quantile of \(L \) at given \(P = p \) can be estimated by

\[l_{0.95} = 1.645\sigma_L \sqrt{(1-\rho^2)} + \mu_L + \rho\sigma_L \frac{(p-\mu_P)}{\sigma_P} \]

If \(\Psi = \{ V, 0.4 \text{ Erlangs of link utilization} \} \) and \(\Omega = \{ W, 0.8 \text{ Erlangs of link utilization} \} \) for 279 octets message at 64kb/s of link speed

\[\Psi = \{ V, 0.4 \text{ Erlangs of link utilization} \} \]

\[\Omega = \{ W, 0.8 \text{ Erlangs of link utilization} \} \]

Estimation of the 95th quantile of \(L \) given \(P = p \) is plotted against \(\rho \), as shown in Figure 1. It appears that the SCP capacity has no effect on predicted quantiles. However, the correlation does have some effect on the predicted 95th quantiles of \(L \) given \(P = p \) with an increment about 25 per cent under high link utilization conditions.

Further, the conditional mean

\[\mu_{L|P=p} = \mu_L + \rho\sigma_L \frac{(p-\mu_P)}{\sigma_P} \]

is plotted against \(p \) under various \(\rho \) values, as shown in Figure 2. Here, the two horizontal lines are exactly the Bellcore values. It is found that the conditional mean of \(L \) is a monotonic increasing linear function of correlation coefficient, especially under high link utilization.

3.2. Independence of response time components

By conventional analysis with an assumption of stochastic independence of \(P \) and \(L \), we have

Table II. The signalling link delay based on Bellcore's data

<table>
<thead>
<tr>
<th>Link utilization, Erlangs</th>
<th>(\mu_L, \text{ms})</th>
<th>(\sigma_L, \text{ms})</th>
<th>(\cdot 95\text{-th quantile, ms})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>47</td>
<td>25.53</td>
<td>89</td>
</tr>
<tr>
<td>0.8</td>
<td>107</td>
<td>99.69</td>
<td>271</td>
</tr>
</tbody>
</table>
Theorem 2. If \((P, L)\) has a bivariate normal distribution, then \(P\) and \(L\) are independent if and only if \(P\) and \(L\) are uncorrelated.

By Theorem 2, it can be observed that if \(\rho = 0\), the joint density of equation (2) becomes the product of two univariate normal distributions. Thus \(E[R] = E[P] + E[L]\) and \(\text{Var}(R) = \text{Var}(P) + \text{Var}(L)\). Therefore, SCP response time based on Bellcore's data can be estimated as summarized in Table III.

3.3. Correlation effects of response time components

Table III. SCP response time based on Bellcore's data

<table>
<thead>
<tr>
<th>(\Psi)</th>
<th>(\Omega)</th>
<th>(\mu_R = \mu_P + \frac{\sigma_R}{\sqrt{\sigma_P^2 + \sigma_L^2}})</th>
<th>(\cdot95) quantile, ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V)</td>
<td>(V)</td>
<td>197</td>
<td>31.38</td>
</tr>
<tr>
<td>(V)</td>
<td>(W)</td>
<td>257</td>
<td>101.35</td>
</tr>
<tr>
<td>(W)</td>
<td>(V)</td>
<td>227</td>
<td>33.62</td>
</tr>
<tr>
<td>(W)</td>
<td>(W)</td>
<td>287</td>
<td>102.07</td>
</tr>
</tbody>
</table>

By Theorem 1, the values of \(E[L|P = p]\) are
affected by \(\rho \) and normalized SCP processing time \(P \). With one observation of \(E[L | P = p] \) per treatment \((n = 1)\) under different normalized processing times and correlations as shown in Table IV, the interactions cannot be included in the two-factor ANOVA (analysis of variance) model.

However, by the Tukey one degree of freedom test for interactions, the computed \(F^* \) values are significantly greater than the critical \(F(0.95; 1, 11) \) due to SSPE (pure error sum of squares) being relatively close to zero. Therefore, the two-factor ANOVA becomes an interaction model without pure error effects as shown in Table IV.

If \(\rho = 0 \), Equation (4) is reduced to equation (1) with results given in Table III. If \(\rho \neq 0 \), \(E[R] \) is a linear function of \(\rho \). Computations of \(E[R] \) are plotted against \(\Psi \times \Omega \) and different \(\rho \) values as shown in Figure 3. It is found that \(E[R] \) is a monotonic increasing linear function of \(\rho \). The effect of the link utilization on \(E[R] \) is similar to that of \(\rho \).

Table IV. One observation of \(E[L | P = p] \) per treatment \((n = 1)\)

<table>
<thead>
<tr>
<th>Normalized (P) (factor A)</th>
<th>Correlation (\rho) (factor B)</th>
<th>(0.00)</th>
<th>(0.25)</th>
<th>(0.50)</th>
<th>(0.75)</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>((j = 1))</td>
<td>((j = 2))</td>
<td>((j = 3))</td>
<td>((j = 4))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.0)</td>
<td>(47.00)</td>
<td></td>
</tr>
<tr>
<td>(0.5)</td>
<td>(47.00)</td>
<td>(50.19)</td>
<td>(53.38)</td>
<td>(56.57)</td>
<td>(51.78)</td>
<td></td>
</tr>
<tr>
<td>(1.0)</td>
<td>(47.00)</td>
<td>(53.38)</td>
<td>(59.77)</td>
<td>(66.15)</td>
<td>(56.57)</td>
<td></td>
</tr>
<tr>
<td>(1.5)</td>
<td>(47.00)</td>
<td>(56.57)</td>
<td>(66.15)</td>
<td>(75.72)</td>
<td>(61.36)</td>
<td></td>
</tr>
<tr>
<td>(2.0)</td>
<td>(47.00)</td>
<td>(59.77)</td>
<td>(72.53)</td>
<td>(85.30)</td>
<td>(66.15)</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>(47.00)</td>
<td>(53.38)</td>
<td>(59.76)</td>
<td>(66.14)</td>
<td>(56.57)</td>
<td></td>
</tr>
</tbody>
</table>

Table V. Two-factor interaction model without pure errors

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>SS</th>
<th>d.f.</th>
<th>MS</th>
<th>Computed (F^*)</th>
<th>Critical (F)</th>
<th>Conclusions</th>
</tr>
</thead>
</table>
| (a) ANOVA table after Tukey one degree of freedom test for \((V \times V, W \times V)\) | \begin{align*}
\text{Normalized } P & = 916.81 \quad 4 \quad 229.2 \\
\rho & = 1018.50 \quad 3 \quad 339.5 \\
\text{Interactions} & = 509.32 \quad 12 \quad 42.4 \\
\text{Total} & = 2,444.63 \quad 19
\end{align*} | \begin{align*}
F(0.95; 4, 12) & = 3.26 \quad \text{reject } Ho(A) \\
F(0.95; 3, 12) & = 3.49 \quad \text{reject } Ho(B)
\end{align*}

| (b) ANOVA table after Tukey one degree of freedom test for \((V \times W, W \times W)\) | \begin{align*}
\text{Normalized } P & = 13,976 \quad 4 \quad 3494 \\
\rho & = 15,529 \quad 3 \quad 5176 \\
\text{Interactions} & = 7,765 \quad 12 \quad 647 \\
\text{Total} & = 37,270 \quad 19
\end{align*} | \begin{align*}
F(0.95; 4, 12) & = 3.26 \quad \text{reject } Ho(A) \\
F(0.95; 3, 12) & = 3.49 \quad \text{reject } Ho(B)
\end{align*}

4. RESPONSE TIME THRESHOLD

4.1. Threshold derivation

It is clear that the signalling link delay can be predicted by given SCP processing time. If the estimated response time \(R \) is over a threshold, the message will be discarded. Elsewhere, the message will be placed on the transmission buffer of the signalling link. Therefore, it is required to estimate rejection thresholds so as to prevent expired messages from being sent across the network.

Assume that the SCP will lose one message from 10,000 messages received. By assuming that \(F_{R}(r) \geq (1 - \alpha) \) with \(\alpha = (1/10,000) \), we have

\[
Pr(P + L \leq r) \geq (1 - \alpha)
\]

According to the probability theory with \(r = p + l \), equation (5) can be reduced to

\[
Pr(P \leq p)Pr(L \leq l | P \leq p) \geq (1 - \alpha) \Rightarrow \frac{1}{\alpha} \leq F(.) \leq 1,
\]

we have

\[
F_{R}(p) \geq (1 - \alpha) \text{ and } F_{L,p}(l | p) \geq (1 - \alpha)^{\frac{1}{2}}
\]

Therefore, the \((1 - (\alpha/2))\)th quantiles can be derived and given as follows:

\[
\begin{align*}
p' & = z_{1-\frac{\alpha}{2}} \sigma_{p} + \mu_{p} \\
l' & = z_{1-\frac{\alpha}{2}} \sigma_{L} \sqrt{(1 - p^{2})} + \mu_{L} + \rho \sigma_{L} \frac{p - \mu_{p}}{\sigma_{p}}
\end{align*}
\]

with rejection threshold criteria of \(p \geq p' \) and \(l \geq l' \).

Theorem 3. Let two random variables \((P, L)\) have a joint p.d.f. in equation (2) and satisfy the
properties of Theorem 1 and Theorem 2, then SCP response time can be calculated by equation (4). In addition, under the recommended service quality of SCP, we have two criteria: by criterion \(p' \) in equation (6), the processed message will be discarded in advance, and by criterion \(l' \) in equation (6), the signalling link delay time can be precalculated for predicting the response time, so that the processed message will be discarded.

Some rejection thresholds for SCP response time components have been estimated, and are summarized in Table VI. Therefore the SCP response time components can be predetermined for the SCP performance design so as to ensure the service quality of SCP even with the worst condition of SCP processing load and link utilization. Therefore, an expired message can be prevented from being sent across the network.

4.2. Numerical example

According to the investigation of statistical properties of the SCP response time, we demonstrate a preliminary analysis as follows. Let \(T \) be the agreed time-out value in seconds between an SSP and the SCP, \(\lambda \) be the arrival rate in messages per second, \(S \) be the mean service time in seconds per message, \(I \) be the traffic intensity, where \(I = \lambda S \), and \(\tau \) be the reflection time, \(\tau = T - \text{threshold value} \).

A reflection time is the time for adaptive, timely traffic regulation control. Observing the value of \(\tau \), it is easy to find that the larger value of \(\tau \) regulates the traffic more instantly.

As a numerical analysis, let \(T = 2000 \) ms, \(I = 0.8 \), and \(r' = 919.62 \) ms, we have \(\tau = T - r' = 1080.38 \) ms. Therefore, this reflection time \(\tau \) can regulate the congestion traffic.

Table VI. Estimation of rejection thresholds

<table>
<thead>
<tr>
<th>Response time components</th>
<th>Rejection criteria</th>
<th>Rejection thresholds estimated for threshold (\alpha = (1/10,000)), (z_{1-\frac{\alpha}{2}} = 3.891)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P) (\rho \geq r')</td>
<td>(W \times W P \rho = 0-00: \ p' = 265.14) ms</td>
<td>(W \times W P \rho = 0-25: \ p' = 265.14) ms</td>
</tr>
<tr>
<td>(L \mid P = r) (l \geq l')</td>
<td>(W \times W P \rho = 0-00: \ l' = 494.89) ms</td>
<td>(W \times W P \rho = 0-25: \ l' = 579.55) ms</td>
</tr>
<tr>
<td>(R) (r \geq r')</td>
<td>(W \times W P \rho = 0-00: \ r' = 760.03) ms</td>
<td>(W \times W P \rho = 0-25: \ r' = 844.69) ms</td>
</tr>
</tbody>
</table>

Again, by Theorem 2 the message can be detected and discarded due to the excess of \(p' = 265.14 \) ms. In this case, the reflection time \(\tau = T - p' = 1734.86 \) ms and \(\phi = 654.318 \) per cent. This dramatically increasing rate shows the effectiveness of our rejection threshold for traffic regulation.

5. CONCLUSIONS

A bivariate normal distribution has been proposed for modelling the SCP processing time \(P \) and signal-
It is found that ling link delay predicted 95th quantiles utilization condition. Further, the correlation effects observation of enable us to ensure values being significantly greater than the critical under different normalized processing times and correlations, the interactions cannot be included in the two-factor ANOVA model. However, this two-factor ANOVA model becomes an interaction model without pure error effects after the Tukey one degree of freedom test due to the computed F values being significantly greater than the critical $F(0.95; 1, 11)$. Finally, the rejection threshold criteria of R proposed to detect an abnormal performance and to throttle the expired messages will be enable us to ensure a good service quality of SCP.

Acknowledgement

The authors would like to thank Dr. John Fox and referee for their helpful suggestions and comments.

References

Author’s biographies:

Jyhi-Kong Wey was born in Tainan, Taiwan, Republic of China on 7 December 1958. He is a Ph.D. candidate in the institute of computer and information science at National Chiao Tung University. He received the B.S. and M.S. degrees in statistics from National Cheng Kung University and National Cheng Kung University in 1981 and 1983, respectively. Since 1985, he has been with the Network Planning Lab., Telecommun. Labs./MOTC for implementation of SS7 protocols and intelligent network technologies. Currently, he participates in research on PCS and mobile communication systems. His research interests include network architecture, communication protocols, nomadic communications, object modelling, and distributed database systems. He is a student member of IEEE and ACM.

Lir-Fang Sun was born in Taipei, Taiwan, Republic of China on 24 December 1952. She received the B.S. and M.S. degrees in computer science from Tamkang University and National Chiao Tung University in 1975 and 1981, respectively, and the Ph.D. degree in Electrical Engineering from National Taiwan University in 1988. From December 1977 to June 1982, she was with Switching Systems Lab., Telecommun. Labs./MOTC for implementation of PABX prototype and PEX-250. From 1982 to 1984, she was a senior software designer in C400 auto-dial project. From 1984 to 1989, she was the project leader of new telephone services project in Network Planning Lab., TL/MOTC. From 1989 to 1991, she visited AT&T Bell Labs. in Chicago as a technical staff for interworking of SS7 with SCESS. Since 1991, she has been in charge of the IN project in the Networking Planning Lab., TL/MOTC. She was assigned to be the director of Labor Safety and Health Dept., TL/MOTC from November 1992, and was voted to be the chairman of TP SIG, OSI Working Group/ROC from December 1992. Her research interests include switching systems, telecommunication databases, distributed systems, software engineering, and protocol design and testing.

Wei-Pang Yang was born in Hualein, Taiwan, Republic of China on 17 May 1950. He received the B.S. degree in mathematics from National Taiwan Normal University in 1974, and the M.S. and Ph.D. degrees from the National Chiao Tung University (NCTU) in 1979 and 1984, respectively, both in computer engineering. Since August 1979, he has been on the faculty of
J.-K. Wey, L.-F. Sun and W.-P. Yang

the Department of Computer Engineering at NCTU. In
the academic year 1985–1986, he was awarded the
National Postdoctoral Research Fellowship and was a vis-
iting scholar at Harvard University. From 1986 to 1987,
he was the Director of the Computer Center of NCTU.
In August 1988, he joined the Department of Computer
and Information Science at NCTU, and acted as the Head
of the Department for one year. Then he went to IBM
Almaden Research Center in San Jose, California for
another one year as visiting scientist. From 1990 to 1992,
he was the Head of the Department of Computer and
Information Science again. He was assigned to be the
Deputy Director of the Electrical and Information Center
from 1994. His research interests include database theory,
database security, object-oriented database, image data-
base and Chinese database systems.