Why mixtures of hydrazine and dinitrogen tetroxide are hypergolic?

Ke-Yu Lai, Rongshun Zhu, M.C. Lin

1 Department of Chemistry, Emory University, Atlanta, GA 30322, USA
2 Center for Interdisciplinary Molecular Science, National Chiao Tung University, Hsinchu 300, Taiwan

Abstract

The reactions of \(\text{N}_2\text{H}_4 \) with \(\text{N}_2\text{O}_4 \) isomers have been investigated at the G2M(CC3)//B3LYP/6-311+G(3df,2p) level. The results show that the reactions of \(\text{N}_2\text{H}_4 \) with sym-\(\text{N}_2\text{O}_4 \) (D\(_2\)h), cis-\(\text{ONONO}_2 \) (C\(_s\)), and NO\(_2\) have to overcome 14.2, 10.6, and 7.6 kcal/mol barriers, respectively. However, \(\text{N}_2\text{H}_4 \) can react spontaneously with trans-\(\text{ONONO}_2 \) (C\(_s\)) and cis-\(\text{ONONO}_2 \) (C\(_1\)) to produce HONO\(_2\) + H\(_2\)NN(H)NO with the near gas-kinetic rate constant, \(4 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \) above 250 K. The H\(_2\)NN(H)NO thus formed can rapidly fragment to give reactive N\(_2\)H\(_3\) radical with rate constant \(> 1 \times 10^7 \text{ s}^{-1} \) at 1000 K, which is fast enough to initiate the hypergolic chain reactions with NO\(_2\) and N\(_2\)O\(_4\).

1. Introduction

The hydrazine (\(\text{N}_2\text{H}_4 \)) and dinitrogen tetroxide (\(\text{N}_2\text{O}_4 \)) reaction system is widely used as liquid propellants of the spacecrafts and the rockets [1–3]. The liquid fuel (\(\text{N}_2\text{H}_4 \)) and the liquid oxidizer (\(\text{N}_2\text{O}_4 \)) have been stored separately in isolated containers initially at 100–325 psia and 20–26 °C conditions [4–6]; the reaction ignites spontaneously producing a large amount of flame and gases when the two high-pressure reagents are ejected and mixed in the engine. There were some NASA reports in 1960’s [4,7–10] which discussed the applications and the phenomenon of the spontaneous reaction of \(\text{N}_2\text{H}_4 \) and \(\text{N}_2\text{O}_4 \); most of the previous studies focused on the engine design or mixing ratios of the two reactants. In 1965, Weiss [7] studied this reaction by infrared spectroscopy, but not enough information was provided to explain the mechanism of the hypergolic process due to the complexity of the reaction. To date, the mechanism of the hypergolic process is still unsolved, despite the great practical importance of this propellant system. Structurally, the \(\text{N}_2\text{O}_4 \) molecule is known to have different conformers, the commonly known sym-\(\text{N}_2\text{O}_4 \) with D\(_{2h}\) symmetry and asymmetric ONONO\(_2\) with cis- and trans-structures. The concentration of ONONO\(_2\) isomers has been estimated to be in the range of 0.05% of \(\text{N}_2\text{O}_4 \) [11]. The major goal of this Letter is to elucidate how the hypergolic reaction occurs and what are the roles of symmetric and asymmetric isomers of \(\text{N}_2\text{O}_4 \) in the hypergolic initiation reaction? Our computational strategy is to search for the elementary reactions with high exothermicities and low activation barriers which allow the chemistry to take off hypergolicly.

2. Computational methods

All ab initio calculations were performed by using the Gaussian 03 suite of programs [12]. The equilibrium geometries, including reactants, intermediates (IMs), transition states (TSs), and products, were optimized by using the density functional theory (DFT) with the hybrid B3LYP functionals [13–16] in conjunction with the 6-311++G(3df,2p) basis set with polarized and diffuse functions. The zero-point energy (ZPE) and the harmonic vibrational frequency were also determined by the same method. All stationary points are identified for local minima (without any imaginary frequency) and transition states (each with one imaginary frequency). The intrinsic reaction coordinate (IRC) calculations [17] were used to confirm that transition states connect between designed intermediates. More accurate single-point energies were refined by the G2M (CC3) method [18].

Rate constants for the low-energy channels and product fragmentation have been predicted by the Rice–Ramsperger–Kassel–Marcus (RRKM) theory implemented in the Variflex code [19]. The minimum energy paths (MEPs) representing the barrierless association of \(\text{N}_2\text{H}_4 \) with trans-ONONO\(_2\) (C\(_s\)) and cis-ONONO\(_2\) (C\(_1\)) and direct dissociation of H\(_2\)NN(H)NO are obtained by calculating the potential energy curves along the reaction coordinates (the N–N bonds in the complexes IM1c and IM1d see Figure 2 and in the product H\(_2\)NN(H)NO see Figure S2), where the N–N bond lengths are stretched from the equilibrium values of 1.874, 2.033, and 1.331 Å to 5.072, 4.533, and 5.131 Å with an interval step size of 0.2 Å, other geometric parameters are fully optimized. The dissociation curve can be fitted to the Morse potential function \(E(R) = D_e [1 - \exp (-\beta(R - R_e))]^2 \), which is employed to approximate the MEP path for the variational transition state in the rate calculation. In the above equation, \(R \) is the reaction coordinate (i.e., the distance between the two bonding atoms; \(R(N-N) \)), \(D_e \) is the bond energy.
excluding zero-point energy and \(k_0\) is the equilibrium value of \(R\) (1.874, 2.033, and 1.331 Å). The computed potential energies can be fitted reasonably to the Morse potential function with the parameter \(β = 1.886, 2.220,\) and 1.265 Å\(^{-1}\), respectively. The calculated dissociation curves are shown in Figure S1 of Supplementary information. The numbers of states for the tight transition states are evaluated according to the rigid-rotor harmonic-oscillator assumption. For those paths involving hydrogen atom transfers, Eckart tunneling effects [20,21] were taken into account in the rate constant calculation.

3. Results and discussion

Besides sym-N$_2$O$_4$, many experimental studies [11,22–33] revealed the existence of asymmetric N$_2$O$_4$ isomers but their geometries are not well characterized. Previous ab initio calculations predicted the possible geometries of trans-ONONO$_2$ (C$_2$-symmetry) [34,35], cis-ONONO$_2$ (C$_s$-symmetry) [36], and cis-ONONO$_2$ (C$_1$-symmetry) [37]; therefore, we have also considered these isomeric reactions with N$_2$H$_4$. In addition, since sym-N$_2$O$_4$ can easily dissociate to two NO$_2$ with only 12.7 kcal/mol dissociation energy [38], the mechanism of NO$_2$ interacting with N$_2$H$_4$ is also calculated in this Letter. The geometries of all reactants and products including selective bond lengths, angles, and Mulliken charges are shown in Figure S2 of Supplementary information.

3.1. N$_2$H$_4$ + NO$_2$ (C$_2^+$) reaction

The major path of the potential energy profile for the N$_2$H$_4$ + NO$_2$ reaction is shown in Figure 1a; the detailed potential energy profile and the geometries for the key intermediates and transitions states are displayed in Figures S3–S4 of Supplementary information. For the most favorite channel (Figure 1a), the reaction of N$_2$H$_4$ with NO$_2$ forms a loose complex (IM1a) with 2.5 kcal/mol endothermicity. The final products, N$_2$H$_3$ + cis-HONO with slight endothermicity can produce a product side complex IM3a which can further dissociate to N$_2$H$_4$ + trans-ONONO$_2$. The hydrogen abstraction reaction via TS2a needs to overcome 4.2 kcal/mol barrier to produce IM1b of the products (trans-HONO and H$_2$NN(H)NO), via a five-member ring TS1b lying above the reactants by 7.0 kcal/mol association energy, which can readily transform to IM2a via TS1a.

The maximum rate constant for this lowest-energy-barrier path in the N$_2$H$_4$ + NO$_2$ reaction, can be represented as \(k_0 = 5.36 \times 10^{-24} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\) from 250 to 2500 K, with a relatively low value \(k_4 = 1.06 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\) at 1000 K.

3.2. N$_2$H$_4$ + N$_2$O$_4$ (D$_{2h}$) reaction

The major path for this reaction is shown in Figure 1b. The initial complex, IM1b with 7.0 kcal/mol association energy, can transform to a more stable IM2b of the products (trans-HONO and H$_2$NN(H)NO$_2$) via a five-member ring TS1b lying above the reactants by 14.2 kcal/mol, which is 3.9 kcal/mol higher than that of the analogous N–H abstraction by NO$_2$. For other reaction paths, the energy barriers are higher than 20 kcal/mol; their potential energy profiles and details of geometries are shown in Figure S5–S6 of Supplementary information. The rate constant of the lowest-energy-barrier reaction path (Figure 1b) can be represented as: \(k_0 = 2.30 \times 10^{-22} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\) from 250 to 2500 K; the reaction is too slow to help the chain initiation process.

3.3. N$_2$H$_4$ + ONONO$_2$ reactions

The trans-ONONO$_2$ (C$_s$) and non-planar cis-ONONO$_2$ (C$_1$) isomers have similar structures with the ON–ONO$_2$ bond length of 1.621 and 1.685 Å, respectively. Experimental studies [26–30] indicate that the autoionization of these isomers forming ionic nitrosonium nitrate ([ON$^+$][NO$_3^-$]) occurs. In the N$_2$H$_4$ + trans-ONONO$_2$ reaction, the interaction between the two reactants forms a complex IM1c with 10.1 kcal/mol association energy, in which the ON–ONO$_2$ bond is lengthened to 2.286 Å, suggesting that N$_2$H$_4$ may induce the ionization of ON–ONO$_2$ to [ON$^+$][NO$_3^-$]; based on the Mulliken analysis, the charges on ON and NO$_3$ are 0.146e and –0.768e, respectively. The NO$_3$ group can abstract one of the H atoms in N$_2$H$_4$ via a six-member ring TS1c with a negligible barrier (0.2 kcal/mol at the B3LYP level) to produce a product-side complex HONO$_2$–H$_2$NN(H)NO with a 25.8 kcal/mol exothermicity. The lowest energy channel of the N$_2$H$_4$ + trans-ONONO$_2$ (C$_s$) reaction is shown in Figure 2a, and the details of geometries are presented in Figure S7. It needs to be mentioned that at the B3LYP level, energy of TS1c is slightly higher than that of IM1c by 0.2 kcal/mol; however, at the G2M-CC3 level, TS1c is lower than IM1c by 2.7 kcal/mol. IRC result shows that IM1c can readily transform to the IM2c with a sharp slope, implying that IM1c is most likely to be metastable or unstable. Similar phenomenon also appears in IM1d and TS1d. The final products, HONO$_2$ and H$_2$NN(H)NO have 21.1 kcal/mol exothermicity. Due to the low energy of TS1c (lying below the reactants by 12.8 kcal/mol) and the smaller decomposition energy (4.6 kcal/mol) of IM2c, one can expect that the interaction of N$_2$H$_4$ with trans-ONONO$_2$ forms IM1c which readily produces final products; therefore, the collisional deactivation of IM2c can be reasonably ignored. The rate constant for this process has a negligible temperature dependence in the range of 250–2500 K and can be effectively expressed by \(k_c = 4.3 \pm 0.5 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\).

Due to the similar geometries and charge distributions of trans-ONONO$_2$ (C$_s$) and cis-ONONO$_2$ (C$_1$), the mechanism for N$_2$H$_4$ + cis-ONONO$_2$ (C$_1$) is expected to be similar to that of N$_2$H$_4$ + trans-ONONO$_2$ presented above. The lowest energy path is shown in Figure 2b, and the details of geometries are presented in Figure S8. The direct hydrogen abstraction reaction via TS1d (with a four-member ring structure) also produces the H$_2$NN(H)NO and HNO$_3$. The electronic energy of TS1d computed at B3LYP is 1.04 kcal/mol higher than IM1d; however, at the G2M (CC3) level, the energy of TS1d is lower than that of IM1d by 2.8 kcal/mol, again reflecting the negligibly small TS barrier for the ionic transformation.

It should be mentioned that at the G2M(CC3) level, the T1 diagnostics values in the CCSD(T) method are both 0.019 and 0.019 for the low-energy transition states (TS1c and T1d), which are lower than the proposed maximum value of 0.02 [39,40]. In the high-energy TS1a, TS2a and TS1b, the T1 values, 0.020, 0.028, 0.025, are close to the proposed maximum value of 0.02; these higher energy TS's are not important to the hypergolic initiation process. Other species in this system don't have spin contaminated problem. Similar to the above reaction, the reaction of N$_2$H$_4$ + cis-ONONO$_2$ (C$_s$) producing the same pair of products is very fast and the rate constant can be effectively expressed by \(k_c = 3.5 \pm 0.5 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\) in the temperature range of 250–2500 K with a negligible temperature dependence.

Interestingly, the geometry and charge distribution of cis-ONONO$_2$ (C$_s$) are noticeably different from those of trans-ONONO$_2$ and cis-ONONO$_2$ (C$_1$) isomers (see Figure S2); the reaction of N$_2$H$_4$ with cis-ONONO$_2$ (C$_s$) has to overcome as much as 10.6 kcal/mol of barrier to produce HONO + H$_2$NN(H)NO. The potential energy profile and the geometric parameters are shown in Figure S9. Apparently, this reaction channel cannot compete with the above two reactions; its rate constant was not calculated.
3.4. Unimolecular decomposition of H$_2$NN(H)NO

The exothermic reaction product, H$_2$NN(H)NO, from the reactions of N$_2$H$_4$ with trans-ONONO$_2$ and cis-ONONO$_2$ (C$_1$), was predicted to decompose to N$_2$H$_3$ and NO radicals readily without an intrinsic barrier. Calculated rate constant for the dissociation of H$_2$NN(H)NO to N$_2$H$_3$ + NO, with the energies predicted by the direct CCSD(T)/6-311++G(3df,2p) calculation can be expressed as

$$k_{\text{dis}} = 6.24 \times 10^{15} T^{-0.15} \exp\left(-17920/T\right) \text{sec}^{-1}$$

from 250 to 1500 K with $k_{\text{dis}} = 0.65$ and $3.74 \times 10^7 \text{ s}^{-1}$ at 500 and 1000 K, respectively. The reactive N$_2$H$_3$ radical formed by the decomposition can easily initiate chain reactions with NO$_2$ and N$_2$O$_4$ present in large concentrations. For example, the N$_2$H$_3$ + NO reaction is expected to produce N$_2$H$_3$O + NO and N$_2$H$_2$ + OH among other fragile products. N$_2$H$_3$O can readily produce H$_2$NNO + H and N$_2$H$_2$ + OH; all are potential chain propagators.

4. Conclusion

The reactions of N$_2$H$_4$ with trans-ONONO$_2$ (C$_s$) and cis-ONONO$_2$ (C$_1$) have been shown to play a very crucial role in the auto-ignition
reaction of mixtures of hydrazine and dinitrogen tetraoxide. Calculated results show that N₂H₄ can induce the ionization of trans-ONONO₂ (C₃) and cis-ONONO₂ (C₁) to [ON⁺][ONO₂⁻], which readily undergoes metathetical reaction to produce exothermic products, HONO₂ and H₂NN(H)NO; the latter can further decompose into N₂H₃ and NO radicals to initiate chain reactions by fast exothermic reactions, such as N₂H₃ + NO₂ and N₂H₃ + N₂O₄, giving H and OH chain carriers with the release of a large amount of energy. Similar reactions of substituted hydrazines such as CH₃NHNH₂ and (CH₃)₂NNH₂ are expected to react readily with the isomers of ONONO₂ to produce H and OH chain carriers for the known hypergolic reactions. The concentration of ONONO₂ isomers has been estimated to be in the range of 0.05% of N₂O₄ [11] which is very close to our computed value, 0.058%, based on the calculated equilibrium constant of N₂O₄ and ONONO₂ using the energies and geometric parameters predicted in this Letter. The variation of ONONO₂ concentration with temperature can be expressed as [ONONO₂] = 12.46 × exp (-2971/T) [N₂O₄] in the range of 200–800 K. The results suggest that the hypergolic chain initiation process as predicted can occur with a very high rate because of the high concentration of ONONO₂.

Acknowledgements

The authors are grateful to Taiwan’s National Center for High-performance Computing for the CPU, and Taiwan National Science Council for the research support to MCL for a Distinguished Visiting Professorship. RSZ thanks ONR for the support of this Letter at Emory University and KYL also acknowledges the help from Wen-Fei Huang and Shang-Ying Wu on rate constant prediction.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.cplett.2012.04.015.
References