The Service Industries Journal

Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/fsij20

Cost efficiency and the effect of mergers on the Taiwanese banking industry

Ya-Hui Peng assistant professor & Kehluh Wang associate professor

a Institute of Business Administration, Hsuan Chuang University, 48 Hsuan Chuang Road, Hsinchu, Taiwan, 300
b Graduate Institute of Finance, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan, 30010
Published online: 25 Jan 2007.

To link to this article: http://dx.doi.org/10.1080/0264206042000275172

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy,
Cost Efficiency and the Effect of Mergers on the Taiwanese Banking Industry

YA-HUI PENG and KEHLUH WANG

This study addresses the cost efficiency, economies of scale and scope of the Taiwanese banking industry, specifically focusing on how bank mergers affect cost efficiency. Adopting stochastic frontier analysis, we employ a translog cost function for efficiency estimation. Composite error terms are used to account for managerial inefficiency and environmental effects. Empirical results suggest that economies of scale and scope exist at small and medium-sized banks. Meanwhile, government-owned or -controlled banks are the most cost efficient. Non-performing loans increase the inefficiency of the banking sector by just under 10 per cent. Further analysis reveals that bank merger activity is positively related to cost efficiency. Mergers can enhance cost efficiency, even though the number of bank employees does not decline. The banks involved in mergers are generally small and were established after the banking sector was deregulated.

INTRODUCTION

The banking industry in Taiwan is highly regulated, and new entrants were prohibited until the Commercial Bank Establishment Promotion Decree was implemented in 1991. In 1990, Taiwan had 24 banks with 953 branches, some government owned and operated. Over 16 commercial banks were established in 1991 and 1992. By 1996, the total number of banks had reached 42, with 1,936 branch offices. The entry of new competitors,

Ya-Hui Peng is assistant professor at the Institute of Business Administration at Hsuan Chuang University, 48 Hsuan Chuang Road, Hsinchu, Taiwan 300. Kehluh Wang is associate professor at the Graduate Institute of Finance of National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan 30010.

ISSN 0264-2069 print/1743-9507 online
DOI: 10.1080/0264206042000275172 © 2004 Taylor & Francis Ltd.
combined with internationalisation and market liberalisation, has revolutionised the banking industry. One result of the changes has been increasing competition that reduces the quality of loan portfolios. According to a report by the Ministry of Finance, the interest spread declined from 3.05 per cent in 1991 to 2.76 per cent in 1996. Over the same period, the non-performing loan ratio increased from 0.93 to 3.68 per cent. Furthermore, the mean return on equity and return on assets in the banking industry drastically declined from 28.89 and 1.2 per cent in 1990 to 9.7 and 0.7 per cent, respectively, in 1996.

The Taiwanese government is encouraging mergers and acquisitions to solve the problems in the banking industry. Particularly, larger commercial banks have been persuaded to take over small credit institutions. From 1997 to 1999, 16 mergers occurred. The Bank Merger Act and the Bank Holding Company Act were announced in 2000 and 2001 to further facilitate transactions.

This study investigates the cost efficiency of various types of banks in Taiwan, and seeks to determine whether mergers and acquisitions among banking firms can improve productivity. Meanwhile, the impact of non-performing loans is considered as well. The operating efficiency of banks is crucial in a sound economic system, and mergers and acquisitions are believed to be one way to improve it. In addition to examining whether merged banks are more cost efficient as expected by the government, this study also seeks to determine whether newly established banks are more efficient than older banks, or vice versa, and discusses its implementation to merging activity. Results of this study are important for bank managers, investors, policy makers and multinational banks interested in acquiring local banks.

Many bank mergers have occurred over recent years, stimulating considerable academic interest. Prager and Hannan [1999] show that deposit rates fall at banks involved in mergers that increase market concentration. However, the results are inconclusive for mergers that do not significantly change market concentration [Simons and Stavins, 1998]. For Taiwanese mergers, while market share usually increases after mergers, no effect on pricing has been observed [Chen and Chen, 2002]. Cornett and Tehranian [1992] and Rhoades [1998] report an improvement in both bank profitability and market value, although other investigators do not [Berger and Humphrey, 1992; Akhavein, Berger and Humphrey, 1997; Hannan and Wolken, 1989; Pilloff, 1996].

Meanwhile, the impact of mergers on bank efficiency has also been discussed substantially in the literature. The empirical results reveal little or no efficiency improvement for US mergers in the 1980s. Berger and Humphrey [1992] examine 60 large mergers in the 1980s and find no efficiency improvement. Pilloff [1994] studies 48 mergers from 1982 to 1991 and finds that the
value-weighted abnormal return and efficiency change are small. DeYoung [1997] finds that mergers between equally sized banks yield smaller-than-average cost efficiency improvements.

However, the results for mergers in the 1990s are mixed. Rhoades [1998] studied mergers of large US institutions and found efficiency gains in most cases. Resti [1998] analyzed 67 Italian bank mergers and found that mergers of equally sized banks yield substantial efficiency gains. Berger [1998] reported that if the participating banks are less efficient than their peers prior to consolidation, then substantial efficiency gains are predicted. His result holds for both large and small banks. Lang and Welzel [1999] considered the cost effects of 283 small-scale mergers among German cooperative banks. Positive economies of scale and scope are realised only when merged banks close some branches. German cooperative bank mergers show no evidence of efficiency gains. Vennet [1996] studied 500 takeovers among European financial institutions and found that merger gains depend on the characteristics of the deal. Cross-border acquisitions and domestic mergers of equally sized banks generate significant cost efficiency improvement. Evidence from mergers of Australian trading banks between 1986 and 1995 proves that acquiring banks are more efficient than target banks [Avkiran, 1999].

In addition to cost efficiency, some studies have addressed the influence of loan quality on bank efficiency measurement. Bernstein [1996] considered the loan quality effect while estimating the translog cost function. He found that banks with poorer loan quality have higher costs, but the direct influence is small. Berger and DeYoung [1997] also review the loan quality problem, and consider the intertemporal relationship between loan quality and cost efficiency. Their results are ambiguous on the question of whether problem loans should be considered in estimates of efficiency.

The Commercial Bank Establishment Promotion Decree of 1991 dramatically altered the market structure of the Taiwanese banking industry. Chen and Yeh [2000] employed a non-parametric approach to measure the relative operating efficiency of 34 Taiwanese commercial banks. Notably, they found that government-owned banks are less efficient than other banks, with a slightly higher Malmquist Index. Huang and Huang [2002] formulated a behavioural model under uncertainty to estimate total factor productivity in the Taiwanese banking industry. They showed no significant improvement in either total factor productivity or cost efficiency. Interestingly though, their result reveals that government-owned banks are more cost efficient than other banks. Since the problem of low quality loans is exacerbated by market competition, Li, Hu and Liu [2002] used the input distance function approach to elucidate the effect of non-performing loans on efficiency. Ou, Lee and
Young [2002] also tried to determine the relationship between bank asset quality and operating performance. This study first examines the empirical measurement of cost efficiency in the Taiwanese banking industry. The stochastic frontier model and a translog cost function are used to estimate cost structure and cost efficiency. The model also takes into account the impact of low-quality loans on output measurement. Unlike the estimates from the model of Bernstein [1996], this approach allows the direct impact of low-quality loans on costs to be estimated. Second, this study seeks to clarify the efficiency, overall economies of scale and scope of different bank sizes and organisational types. Analytical results indicate that the size of a bank affects economies of scale and scope and that government-owned or -controlled banks enjoy greatest cost efficiency. Finally, the relationship between cost efficiency and merger activity is examined. Results of this study reveal that bank mergers significantly improve cost efficiency. This finding is consistent with the findings of Shaffer [1993], Vennet [1996] and Akhavein, Berger and Humphrey [1997].

The remainder of this article is organised as follows. The next section formulates the shadow cost frontier that applies a translog function for efficiency estimation. We then present and analyse empirical results. A final section draws conclusions.

METHODOLOGY

Model Specification

There are several methods to study the efficiency and performance of commercial banks. The ratio approach uses financial indicators of the banking industry to evaluate production efficiency via factor analysis, one-way ANOVA, correlation analysis and cluster analysis. The nonparametric programming approach employs a mathematical programming model to measure the technical efficiency frontier. The parametric approach is based on the production or cost function. The advantage of this approach is that it can include a stochastic error term to account for environmental uncertainties. However, it needs to choose an explicit production or cost function with strong distributional assumptions on the error term. Many studies have focused on estimating the cost frontier based on various assumptions concerning the error term. [Cebenoyan, Cooperman and Register, 1993; Kaparakis, Miller and Noulas, 1994].

This study employs the parametric method with the shadow cost frontier model to measure the operating efficiency of Taiwanese banking firms. The intermediation approach is used for the bank production process. Banking firms are assumed to transform deposits, raw materials or intermediate products into loans and investments as the outputs of the production system.
Since low-quality loans incur increased labour and administrative costs, loan output is quality adjusted. Total production cost comprises interest expenses on deposits and other operating costs of labour and capital. Consequently, the bank production process is assumed to involve a transformation of inputs (capital, labour and deposits) into outputs (loans and investments). The dual cost function can be represented as \(C = C(Y_i, P_j) \) where \(Y_i \) is the \(i \)th output, \(i = 1, 2 \), and \(P_j \) is the price of input \(j, j = 1, 2, 3 \).

In the model, outputs are measured in terms of the dollar value of the earning assets at the end of the fiscal year. \(Y_1 \) represents the loans and \(Y_2 \) the investments. Moreover, \(P_1 \) is the price of capital measured by the rentals on building, equipment and maintenance [Murray and White, 1983], and \(P_2 \) denotes the price of the labour calculated as the total salaries and benefits of each employee hour. Finally, \(P_3 \) represents the total annual interest expenses divided by average deposits and other borrowings.

Estimation of Cost Models

The shadow cost frontier approach assumes that all banks have the same underlying production frontier, which measures loans in terms of quality-adjusted units. Suppose a commercial bank produces an output vector from an input vector. The shadow cost approach postulates that various firm-specific production possibility frontiers can be pooled and represented by a single common frontier that applies to the quality-adjusted outputs \(Y^* \). The unobserved quality-adjusted outputs \(Y^* \) are related to the observed outputs \(Y \) and a quality indicator \(Z_Q \). That is, \(Y^* = Y^*(Y, Z_Q) \). Here, the quality indicator \(Z_Q \) denotes the non-performing loan ratio. The shadow cost frontier is defined as \(C^* = C^*(Y^*_i, P_j) \).

Following the stochastic frontier approach, we include a composite error term in the model. Consequently, the shadow cost frontier is represented as

\[
C = C^*(Y^*_i, P_j) + \varepsilon \quad \text{and} \quad \varepsilon = U + V
\]

where \(C \) denotes the observed cost, \(\varepsilon \), the composite error term, has two components, \(U \) and \(V \). \(U \) is the neutral cost-augmenting inefficiency. Since the managerial or controllable inefficiency only increases costs above the cost frontier, \(U \) is assumed to be a one-sided error term. The three commonly assumed distributions of \(U \) are the half-normal truncated at zero, the half-normal truncated at a non-zero point and the exponential [Stevenson, 1980]. However, the estimates based on these various distributions are not very different [Cowing, Reifschneider and Stevenson, 1983; Greene, 1990; Mester, 1996]. Most studies have assumed \(U \) to be half-normal and truncated at zero [Mester, 1996; Huang, Fu and Huang, 1999; Hao, Hunter and Yang,
This study follows, i.e., \(U \) is from a normal distribution with mean 0 and variance \(\sigma^2_U \), but is truncated from below at zero. \(V \) represents a two-sided random error, representing the fluctuations or uncontrollable factors that can either increase or decrease costs. Therefore, \(V \) is assumed normally distributed with mean 0 and variance \(\sigma^2_V \). \(U \) and \(V \) are distributed independently of each other [Huang, Fu and Huang, 1999].

Recent studies have suggested that the cost function of banking firms can be represented by a translog function [Hunter and Timme, 1986]. Moreover, the empirical translog model can be expressed as follows.

\[
\ln C = \alpha + \sum_{i=1}^{2} \beta_i \ln Y_i^* + \sum_{j=1}^{3} \gamma_j \ln P_j + \frac{1}{2} \sum_{i=1}^{2} \sum_{k=1}^{2} \beta_{ik} \ln Y_i^* \ln Y_k^* \\
+ \frac{1}{2} \sum_{j=1}^{3} \sum_{l=1}^{3} \gamma_{jl} \ln P_j \ln P_l + \sum_{i=1}^{2} \sum_{j=1}^{2} \rho_{ij} \ln Y_i^* \ln P_j + U + V \tag{2}
\]

The share equations are obtained from the partial derivatives of the above equation:

\[
S_j = \frac{\partial \ln C}{\partial \ln P_j} = \gamma_j + \sum_{i=1}^{3} \gamma_{jl} \ln P_l + \sum_{i=1}^{2} \rho_{ij} \ln Y_i^* + W_j \quad j = 1, 2, 3 \tag{3}
\]

where \(W_j \) are random error terms. The quality-adjusted loan output is defined as

\[
\ln Y_1^* = (1 + \delta_1 Z_Q) \ln Y_1 \tag{4}
\]

As non-performing loans are related with the loan outputs (\(Y_1 \)) only, the investment outputs (\(Y_2 \)) need not adjust. So \(\ln Y_2^* = \ln Y_2 \). Since high quality loans are less costly to produce than low quality loans, the coefficient \(\delta_1 \) is expected to be positive. Homogeneity and symmetry restrictions are imposed on the estimate of the cost function parameters.

Measures of Cost Efficiency

The residuals \(\varepsilon_i = U_i + V_i \) can be estimated from the parameters of the translog cost function. The variances \(\sigma^2_V \) and \(\sigma^2_U \) can be calculated by the method of...
moments [Olson, Schmidt and Waldman, 1980]:

\[\hat{\sigma}_U^2 = \left(\frac{m_3}{\sqrt{2/\pi}(4/\pi - 1)} \right)^{2/3} \]
(5)

\[\hat{\sigma}_V^2 = m_2 - \left(1 - \frac{2}{\pi} \right) \hat{\sigma}_U^2 \]
(6)

where \(m_2 \) and \(m_3 \) represent the second and third central moments of the residuals.

Jondrow et al. [1982] propose a method for estimating individual firm-specific inefficiency. This value can be defined as the conditional mean of \(U_i \) given the composite error \(\varepsilon_i = U_i + V_i \):

\[E(U_i|\varepsilon_i) = \mu_{i*} + \sigma_{*} \frac{\phi(\mu_{i*}/\sigma_{*})}{\Phi(\mu_{i*}/\sigma_{*})} \]
(7)

where \(\mu_{i*} = \varepsilon_i \sigma_U^2 / \sigma^2 \), and \(\sigma^2 = \sigma_U^2 + \sigma_V^2 \).

\(\phi() \) and \(\Phi() \) are the standard normal density function and the distribution function, respectively. According to Jondrow et al. [1982], if the logarithmic cost function is estimated, then the exponential of \(U_i \) represents the cost inefficiency. Battese and Coelli [1988] propose a method for estimating individual firm-specific efficiency, which can be expressed as follows.

\[E(e^{-U_i}|\varepsilon_i) = \frac{\Phi(\mu_{i*}/\sigma_{*} - \sigma_{*})}{\Phi(\mu_{i*}/\sigma_{*})} \exp \left(-\mu_{i*} + \frac{1}{2} \sigma_{*}^2 \right) \]
(8)

The model herein follows the approach of Battese and Coelli [1988]. Furthermore, the 100(1 – \(\alpha \)) per cent confidence interval for the individual efficiency is further computed following the method of Bera and Sharma [1999]. The estimates are

\[Lower = \mu_{i*} + \Phi^{-1} \left(\frac{\alpha}{2} + \left(1 - \frac{\alpha}{2} \right) \Phi \left(-\frac{\mu_{i*}}{\sigma_{*}} \right) \right) \sigma_{*} \]
(9)

\[Upper = \mu_{i*} + \Phi^{-1} \left(1 - \frac{\alpha}{2} \left(1 - \Phi \left(-\frac{\mu_{i*}}{\sigma_{*}} \right) \right) \right) \sigma_{*} \]
(10)

The lower bound (LB) and upper bound (UB) of the confidence interval are,

\[LB = \exp (-Upper) \]
(11)

\[UB = \exp (-Lower) \]
(12)
Economies of Scale

The overall economy of scale measures the elasticity of the total cost with respect to an output vector. An overall economy of scale exists when the average or marginal costs associated with increasing output are progressively decreasing. It is measured as the inverse of the sum of the cost elasticities:

$$SE = \left(\sum \frac{\partial \ln C}{\partial \ln Y_i^*} \right)^{-1} = \left(\sum E_{Y_i} \right)^{-1}$$ \hspace{1cm} (13)

where E_{Y_i} denotes the cost elasticity of the ith output. Overall economies (diseconomies) of scale exist if SE is greater (less) than one. Meanwhile, if SE equals one, constant returns to scale exist.

Economies of Scope

If a bank can produce two outputs together more cheaply than producing the same two outputs separately, then economies of scope exist. The relationship can be expressed as

$$C(Y_1, 0) + C(0, Y_2) > C(Y_1, Y_2).$$ \hspace{1cm} (14)

Following Panzar and Willig [1981], economies of scope can be measured by,

$$SC = \frac{[C(Y_1, 0) + C(0, Y_2) - C(Y_1, Y_2)]}{C(Y_1, Y_2)}. \hspace{1cm} (15)$$

Since the translog cost function cannot be used to estimate the cost when one or more outputs are zero, Huang, Fu and Huang [1999] present an alternative method for defining the economies of scope:

$$SC = \frac{[C(Y_1 - Y_1^m, Y_2^m) + C(Y_1^m, Y_2 - Y_2^m) - C(Y_1, Y_2)]}{C(Y_1, Y_2)} \hspace{1cm} (16)$$

where Y_1^m and Y_2^m are the minimum values of Y_1 and Y_2 in the sample. The zero value problem still exists for banks with minimum outputs Y_1 and Y_2, so only outputs that exceed the minimum values are considered here. Meanwhile, if SC is greater than zero, then overall economies of scope exist.

Cost Efficiency and Merger Activities

This study further examines the relationship between cost efficiency and merger activity. Many variables impact the efficiency of a bank [Mester, 1993; Kaparakis, Miller and Noulas, 1994; Hao, Hunter and
Yang, 2001]. This study employs a second-stage regression to identify the sources of cost efficiency:

\[
\text{eff} = f(\text{MERGE, TA, TA2, GROWTH, BTD, ETA, TDTD, NINTOP}) + \varepsilon \quad (17)
\]

where

- \text{eff} is the cost efficiency obtained from Equation 8.
- \text{MERGE} = 1 for banks involved in merger activity, otherwise 0
- \text{TA} = \text{total assets}
- \text{TA2} = \text{square of TA}
- \text{GROWTH} = \text{growth rate of bank assets over the preceding year}
- \text{BTD} = \text{ratio of number of branches to total deposits}
- \text{ETA} = \text{ratio of number of employees to total assets}
- \text{TDTD} = \text{ratio of time deposits to total deposits}
- \text{NINTOP} = \text{ratio of non-interest income to operating profits}

Since the efficiency measure is bounded between 0 and 1, censored (Tobit) regression is used to estimate the parameters. The variable \text{MERGE} specifies the impact of merger activity on bank cost efficiency. Bank size may influence cost efficiency so the variable \text{TA} is included as a control variable for scale bias on efficiency. To clarify whether an optimal bank size exists for cost efficiency in banks, the square of \text{TA}, \text{TA2}, is also considered. \text{GROWTH} is a measure of the operating performance, and \text{BTD} represents the expense behaviour. \text{ETA} captures the impact of the size of the labour force on cost efficiency. All these variables may affect cost efficiency. Moreover, if a bank has a high percentage of time deposits, its funds are at lower costs. Therefore, the variable \text{TDTD} is used to measure the effect of this deposit mix on cost efficiency, and its parameter is expected to be positive. The variable \text{NINTOP} is a proxy for the output mix effect. Its impact on cost efficiency can be either positive or negative, depending on whether the bank generates more service-based revenues or more lending revenues as input costs increase.

DATA DESCRIPTION

The study sample comprises 44 banks with a range of sizes and organisational types. Panel data from 1997 to 1999 were obtained from the financial reports of these sample banks and from the Financial Statistics Abstract published by the Ministry of Finance. Sixteen bank mergers occurred during the sample period. Appendix 1 lists the sample banks.

Table 1 provides the descriptive statistics of the related variables and shows significant variation between the merged and non-merged banks, and
Table 1
Descriptive Statistics of Sample Banks

<table>
<thead>
<tr>
<th>Category</th>
<th>Total assets</th>
<th>Total costs</th>
<th>Loans</th>
<th>Investments</th>
<th>Price of capital</th>
<th>Price of labour</th>
<th>Price of funds</th>
<th>Non-performing loans ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-merged banks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>405,592</td>
<td>25,030</td>
<td>287,265</td>
<td>51,485</td>
<td>0.01913</td>
<td>0.00042</td>
<td>0.01732</td>
<td>0.05071</td>
</tr>
<tr>
<td>SD</td>
<td>414,760</td>
<td>24,067</td>
<td>293,281</td>
<td>53,498</td>
<td>0.01081</td>
<td>0.00011</td>
<td>0.00976</td>
<td>0.04000</td>
</tr>
<tr>
<td>Merged banks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>276,042</td>
<td>15,938</td>
<td>188,379</td>
<td>45,075</td>
<td>0.01501</td>
<td>0.00033</td>
<td>0.01419</td>
<td>0.05310</td>
</tr>
<tr>
<td>SD</td>
<td>501,407</td>
<td>26,981</td>
<td>319,946</td>
<td>109,985</td>
<td>0.00669</td>
<td>0.00011</td>
<td>0.00609</td>
<td>0.03393</td>
</tr>
<tr>
<td>Government-owned or -controlled banks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>946,685</td>
<td>55,807</td>
<td>672,544</td>
<td>119,184</td>
<td>0.01627</td>
<td>0.00051</td>
<td>0.01256</td>
<td>0.05001</td>
</tr>
<tr>
<td>SD</td>
<td>503,373</td>
<td>28,099</td>
<td>348,360</td>
<td>83,424</td>
<td>0.00866</td>
<td>0.00004</td>
<td>0.00403</td>
<td>0.02375</td>
</tr>
<tr>
<td>Old privately-owned banks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>282,678</td>
<td>18,313</td>
<td>188,845</td>
<td>42,737</td>
<td>0.02152</td>
<td>0.00044</td>
<td>0.02050</td>
<td>0.07916</td>
</tr>
<tr>
<td>SD</td>
<td>189,206</td>
<td>11,424</td>
<td>111,121</td>
<td>39,085</td>
<td>0.01227</td>
<td>0.00013</td>
<td>0.01174</td>
<td>0.05879</td>
</tr>
<tr>
<td>New privately-owned banks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>172,086</td>
<td>11,254</td>
<td>124,295</td>
<td>21,517</td>
<td>0.01856</td>
<td>0.00035</td>
<td>0.01752</td>
<td>0.03919</td>
</tr>
<tr>
<td>SD</td>
<td>101,657</td>
<td>7,538</td>
<td>65,785</td>
<td>16,911</td>
<td>0.01029</td>
<td>0.00008</td>
<td>0.00951</td>
<td>0.02712</td>
</tr>
<tr>
<td>Total banking firms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>390,870</td>
<td>23,997</td>
<td>276,028</td>
<td>50,757</td>
<td>0.01866</td>
<td>0.00041</td>
<td>0.01696</td>
<td>0.05098</td>
</tr>
<tr>
<td>SD</td>
<td>425,323</td>
<td>24,476</td>
<td>296,812</td>
<td>61,897</td>
<td>0.01049</td>
<td>0.00011</td>
<td>0.00945</td>
<td>0.03924</td>
</tr>
</tbody>
</table>

Note: Total assets, costs, loans and investments are measured in millions of NT dollars.
across different organisational types. The merged banks are smaller, with average factor prices 20 per cent lower than those of the other banks. The majority of the merged banks are privately owned.

The government-owned or -controlled banks are relatively large in terms of total assets, while the new privately owned banks are much smaller. Consequently, the government-owned or -controlled banks dominate the banking industry in terms of loans and investments. The old privately owned banks have higher-than-average input prices. Notably, the government-owned or controlled banks have the highest labour costs, averaging 510 NT dollars per employee hour, compared to the industry average of just 410 NT dollars. However, the new privately owned banks face higher-than-average capital costs. Finally, the old privately owned banks face higher-than-average capital costs. Finally, the old privately owned banks have the poorest non-performing loan ratio of 7.9 per cent.

EMPIRICAL RESULTS

Parameter Estimates of the Cost Model

The cost system consists of the translog cost function and share equations. The seemingly unrelated regression method proposed by Zellner [1962] is used herein to estimate the parameters of the cost model. Appendix 2 lists the estimates of parameters in Equations 2 and 3. Most of the estimated parameters are positive and significantly different from zero. The adjusted R² is 98 per cent.

Estimation of Cost Efficiency

The coefficient of the quality index, \(\delta_1 \), is the focus of the stochastic shadow cost frontier approach. This approach derives the distortion of the output cost associated with output quality. \(\delta_1 \) is positive as expected. From Equation 4, the relationship between cost distortion and the quality index can be further explored:

\[
\frac{Y^*_1}{Y_1} = Y_1^{\delta_1 Z_Q} = I_{CD}
\]

\(I_{CD} \) represents the cost distortion as indicated by the quality index.

As shown in Table 2, the overall cost inefficiency due to non-performing loans is approximately 9.9 per cent of the total outstanding loans. The merged banks have a cost distortion 0.2 per cent lower than that of the non-merged banks. Meanwhile, the cost inefficiency is greater for old privately owned banks, at about 15 per cent, significantly higher than the industry average. Since \(\delta_1 Z_Q \) is less than one, \(\partial I_{CD}/\partial Y_1 > 0 \) and \(\partial^2 I_{CD}/\partial Y_1^2 < 0 \). Therefore, the cost of lower quality loans increases at a decreasing rate with respect to the total amount of loans.

Table 2 also summarises the cost efficiencies and confidence intervals across various types of banks. The merged banks are more cost-efficient,
<table>
<thead>
<tr>
<th>Bank types</th>
<th>I_{CD}</th>
<th>Cost efficiency</th>
<th>Upper bound</th>
<th>Lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-merged banks</td>
<td>1.0992 (0.0812)</td>
<td>0.9437 (0.0215)</td>
<td>0.9967 (0.0043)</td>
<td>0.8562 (0.0334)</td>
</tr>
<tr>
<td>Merged banks</td>
<td>1.0977 (0.0642)</td>
<td>0.9475 (0.0168)</td>
<td>0.9975 (0.0016)</td>
<td>0.8615 (0.0295)</td>
</tr>
<tr>
<td>Government-owned or -controlled banks</td>
<td>1.1068 (0.0541)</td>
<td>0.9487 (0.0167)</td>
<td>0.9976 (0.0016)</td>
<td>0.8636 (0.0294)</td>
</tr>
<tr>
<td>Old privately-owned banks</td>
<td>1.1537 (0.1186)</td>
<td>0.9344 (0.0216)</td>
<td>0.9957 (0.0042)</td>
<td>0.8410 (0.0321)</td>
</tr>
<tr>
<td>New privately-owned banks</td>
<td>1.0716 (0.0509)</td>
<td>0.9462 (0.0216)</td>
<td>0.9969 (0.0048)</td>
<td>0.8604 (0.0331)</td>
</tr>
<tr>
<td>Pooled sample</td>
<td>1.0991 (0.0792)</td>
<td>0.9441 (0.0210)</td>
<td>0.9968 (0.0041)</td>
<td>0.8568 (0.0329)</td>
</tr>
</tbody>
</table>

Note: The sample standard deviations are in parentheses.
implying that merging affects cost efficiency. This relationship is further elucidated by the regression analysis. Furthermore, the old privately owned banks perform worst, while the government-owned or -controlled banks enjoy high cost efficiency. The differences in cost efficiency and cost distortion across organisational types are also examined using the Kruskal-Wallis test. The results are statistically significant, as shown in Table 3.

Economies of Scale and Scope

As shown in Table 4, most Taiwanese banks exhibit economies of scale and scope, regardless of the organisational types. This study further decomposes the samples into three size categories – small, medium and large. Table 4 indi-
cates that increasing returns to scale exist for small and medium banks, while decreasing returns to scale exist for large banks. Thus, economies of scale are larger for smaller banks. This finding implies that size expansion can yield greater cost advantages for small banks than for large banks. Specifically, banks with assets of under 1,000 billion NT dollars may improve their cost efficiency by size expansion, possibly through mergers and acquisitions. The sample mean of SE (economies of scale) for merged banks is 1.2211, larger than 1.1529 for non-merged banks. The percentage of banks that operate with economies of scale is also larger for merged banks (93.3 per cent). Merged banks benefit more from the economies of scale than the non-merged banks. Since all banks have SC (economies of scope) values larger than zero, cost savings can be achieved from the joint production of loans and investments. However, large banks benefit more than small banks from economies of scope.

Relationship Between Cost Efficiency and Merger Activity

Table 5 summarises the descriptive statistics of variables used in the censored regression model Equation 17. The nonparametric Kruskal-Wallis test is used to check intertemporal improvement in cost efficiency during the sample period. Notably, the H statistic (2.6468) is below the critical value, implying that there is no significant difference in cost efficiency from 1997 to 1999.

Table 6 presents the estimates of the parameters in the regression model. All the variables except TA, TA^2, $GROWTH$ and $NINTOP$ markedly affect cost efficiency. The estimated coefficient of ETA (ratio of number of employees to total assets) is significantly negative. Mergers in Taiwan generally do not lead to large-scale layoffs. Such action can provoke employee protests and create political problems, which in turn may impede the approvals of mergers by the authorities. Consequently, cost efficiency decreases as the size of the labour force increases. The positivity of the influence of $TDTD$ (ratio of time deposits to total deposits) shows that banks with high proportions of time deposits

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std Dev.</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>eff</td>
<td>0.944122</td>
<td>0.021031</td>
<td>0.976674</td>
<td>0.850260</td>
</tr>
<tr>
<td>TA</td>
<td>390,870</td>
<td>425,323</td>
<td>2,074,455</td>
<td>43,569</td>
</tr>
<tr>
<td>$GROWTH$</td>
<td>0.123932</td>
<td>0.121097</td>
<td>0.533819</td>
<td>−0.110819</td>
</tr>
<tr>
<td>ETA</td>
<td>0.007274</td>
<td>0.002282</td>
<td>0.014247</td>
<td>0.002834</td>
</tr>
<tr>
<td>BTD</td>
<td>0.000260</td>
<td>0.000135</td>
<td>0.000768</td>
<td>0.000068</td>
</tr>
<tr>
<td>$TDTD$</td>
<td>0.750232</td>
<td>0.069555</td>
<td>0.865700</td>
<td>0.524200</td>
</tr>
<tr>
<td>$NINTOP$</td>
<td>2.379456</td>
<td>5.943318</td>
<td>65.473680</td>
<td>−1.735294</td>
</tr>
</tbody>
</table>

Note: TA is measured in million NT dollars.
enjoy higher cost efficiency because such funds are stable, manageable and much cheaper than other funds. The positive BTD (ratio of number of branches to total deposits) implies that this variable affects outputs more strongly than inputs. While branching can increase input expenses, it also expands the revenue base from the outputs.

With the effects of other variables controlled, a statistically significant relationship clearly exists between bank mergers and cost efficiency. Mergers can enhance cost efficiency, even though the number of employees does not decline. The banks involved are generally small and were established after the banking sector was deregulated. Since the banking industry remains highly regulated even after its deregulation, branching barriers persisted after 1991. New branches require special approval by the Ministry of Finance and normally no more than two new branches are permitted for each bank in a given year. This is an important constraint for banks that are considering aggressive expansion, especially for new banks with insufficient market coverage. Banks that take over other financial institutions may transfer newly acquired branches to other locations. Through mergers, these banks can quickly penetrate other market areas and thus make better use of their combined resources. This argument is also supported by the positive BTD parameter.

Since cost efficiency is derived not from closing branches or laying off personnel, merging obtains operational synergies relying on economies of scale and scope. As discussed in the earlier sections, smaller banks exhibit better economies of scale than larger banks, while larger banks enjoy better economies of scope than smaller banks. Consequently, size has a mixed effect on cost efficiency. However, branching privileges show that Taiwanese

Table 6

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coefficient</th>
<th>z-statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.942353</td>
<td>35.939070***</td>
</tr>
<tr>
<td>MERGE</td>
<td>0.010230</td>
<td>1.836319*</td>
</tr>
<tr>
<td>TA</td>
<td>1.93E-08</td>
<td>-1.157650</td>
</tr>
<tr>
<td>TA2</td>
<td>5.83E-15</td>
<td>0.681308</td>
</tr>
<tr>
<td>GROWTH</td>
<td>-0.007842</td>
<td>-0.867365</td>
</tr>
<tr>
<td>BTD</td>
<td>63.930260</td>
<td>3.060575***</td>
</tr>
<tr>
<td>ETA</td>
<td>-8.329762</td>
<td>-6.618873***</td>
</tr>
<tr>
<td>TDXTD</td>
<td>0.069533</td>
<td>2.438017**</td>
</tr>
<tr>
<td>NINTOP</td>
<td>-0.000305</td>
<td>-1.133296</td>
</tr>
</tbody>
</table>

*Note: Adjusted R² = 0.307836.
*Significant at 10%.
**Significant at 5%.
***Significant at 1%.
banks can probably enjoy greater economies of scope through mergers. Therefore, bank mergers are positively related to cost efficiency.

CONCLUSION

This work studies cost efficiency, economies of scale and economies of scope of the Taiwanese banking industry, and further elucidates the potential impact of bank mergers on cost efficiency. Adopting stochastic frontier analysis, this study employs a translog cost function with composite errors to explain managerial inefficiency and environmental effects. Furthermore, loan outputs are adjusted to account for non-performing loans. The sample period is from 1997 to 1999, which covers the main wave of bank mergers in Taiwan. The empirical results suggest that economies of scale and scope do exist, but depend on bank size. Further regression analysis reveals that merger activity significantly affects cost efficiency. The evidence also demonstrates variations in cost efficiency among different organisational types. Government-owned or -controlled banks enjoy the highest cost efficiencies, while old privately owned banks have the lowest cost efficiencies.

The Taiwanese government has always encouraged bank merger activity to promote economic stability. This study supports this policy. Although entry barriers were lifted following the deregulation of the banking sector, expansion via branching remains restricted. The opening of new branches requires special approval by the authorities. However, banks that take over other financial institutions are allowed to transfer the new branches to other locations. The branching privileges associated with mergers and acquisitions in Taiwan may explain the positive effect of merging on efficiency, despite the fact that the workforce is generally not reduced.

Though merged and non-merged banks in Taiwan have different sizes and organisational types, how these factors affect cost efficiency remains unsolved. This study only considers the cost side of mergers. A complete evaluation of the effects of mergers would have to consider also the revenue side (profit efficiency). All these are left for future studies.

ACKNOWLEDGEMENTS

The authors would like to thank Cliff J. Huang and two anonymous referees for their helpful comments and suggestions. Any remaining errors are the responsibility of our own. This research was supported in part by the National Science Council under Grant NSC 92-2416-H-009-017.
REFERENCES

APPENDIX 1

SAMPLE BANKS LISTED ACCORDING TO ORGANISATIONAL TYPE

<table>
<thead>
<tr>
<th>Organisational type</th>
<th>Name of banks</th>
<th>Total</th>
</tr>
</thead>
</table>
Government-owned or controlled banks
The Farmers Bank of China, Chiao Tung Bank, Bank of Taiwan, Land Bank of Taiwan, Taiwan Cooperative Bank, First Commercial Bank, Hua Nan Bank, Chang Hwa Bank, Bank of Kaohsiung, Taibebank, Bank of Taiwan Province

Old privately owned banks (established before 1991)

New privately owned banks (established after 1991)

APPENDIX 2
TRANSLOG COST FUNCTION ESTIMATES

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Estimate</th>
<th>t-Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>α</td>
<td>10.7192</td>
<td>7.7456***</td>
</tr>
<tr>
<td>$\ln Y_1^*$</td>
<td>β_1</td>
<td>-0.7924</td>
<td>-1.9346*</td>
</tr>
<tr>
<td>$\ln Y_2$</td>
<td>β_2</td>
<td>0.5841</td>
<td>1.7111*</td>
</tr>
<tr>
<td>$\ln P_1$</td>
<td>γ_1</td>
<td>0.2934</td>
<td>5.9599***</td>
</tr>
<tr>
<td>$\ln P_2$</td>
<td>γ_2</td>
<td>0.5788</td>
<td>9.6287***</td>
</tr>
<tr>
<td>$\ln P_3$</td>
<td>γ_3</td>
<td>0.1278</td>
<td>1.7898*</td>
</tr>
<tr>
<td>$(\ln Y_1^*)^2$</td>
<td>β_{11}</td>
<td>0.2470</td>
<td>3.0814***</td>
</tr>
<tr>
<td>$(\ln Y_2)^2$</td>
<td>β_{22}</td>
<td>0.1289</td>
<td>2.8901***</td>
</tr>
<tr>
<td>$(\ln Y_1^*) (\ln Y_2)$</td>
<td>β_{12}</td>
<td>-0.1448</td>
<td>-2.3629***</td>
</tr>
<tr>
<td>$(\ln P_1)^2$</td>
<td>γ_{11}</td>
<td>0.1449</td>
<td>26.9089***</td>
</tr>
<tr>
<td>$(\ln P_2)^2$</td>
<td>γ_{22}</td>
<td>0.0650</td>
<td>8.5648***</td>
</tr>
<tr>
<td>$(\ln P_3)^2$</td>
<td>γ_{33}</td>
<td>0.1580</td>
<td>13.4347***</td>
</tr>
<tr>
<td>$(\ln P_1)(\ln P_2)$</td>
<td>γ_{12}</td>
<td>-0.0211</td>
<td>-5.7934***</td>
</tr>
<tr>
<td>$(\ln P_1)(\ln P_3)$</td>
<td>γ_{13}</td>
<td>-0.1223</td>
<td>-19.4509***</td>
</tr>
<tr>
<td>$(\ln P_2)(\ln P_3)$</td>
<td>γ_{23}</td>
<td>-0.0388</td>
<td>-5.7169***</td>
</tr>
<tr>
<td>$(\ln Y_1^*)(\ln P_1)$</td>
<td>ρ_{11}</td>
<td>0.0052</td>
<td>0.9659</td>
</tr>
<tr>
<td>$(\ln Y_2^*)(\ln P_1)$</td>
<td>ρ_{21}</td>
<td>-0.0082</td>
<td>-1.7202*</td>
</tr>
<tr>
<td>$(\ln Y_1)(\ln P_2)$</td>
<td>ρ_{12}</td>
<td>-0.0093</td>
<td>-2.6646***</td>
</tr>
<tr>
<td>$(\ln Y_2)(\ln P_2)$</td>
<td>ρ_{22}</td>
<td>-0.0050</td>
<td>-1.4347</td>
</tr>
<tr>
<td>$(\ln Y_1^*)(\ln P_3)$</td>
<td>ρ_{13}</td>
<td>0.0076</td>
<td>1.1490</td>
</tr>
<tr>
<td>$(\ln Y_2^*)(\ln P_3)$</td>
<td>ρ_{23}</td>
<td>0.0124</td>
<td>2.1336**</td>
</tr>
<tr>
<td>Z_Q</td>
<td>δ</td>
<td>0.1509</td>
<td>5.7479***</td>
</tr>
<tr>
<td>σ_{u}^2</td>
<td></td>
<td>0.0093</td>
<td></td>
</tr>
<tr>
<td>σ_{ν}^2</td>
<td></td>
<td>0.0087</td>
<td></td>
</tr>
</tbody>
</table>

Note: Adjusted $R^2 = 0.9845$.
*Significant at 10%.