Identification of factors affecting continuity of cooperative electronic supply chain relationships: empirical case of the Taiwanese motor industry

Ying-Pin Yeh
National Chiao-Tung University, Hsin chu, Taiwan

Abstract
Purpose – To explore the factors affecting continuity of cooperative electronic supply chain relationships in Taiwanese motor industry.
Design/methodology/approach – This study has developed a research framework that integrates the three perspectives of resource dependence, risk perception, and relationship marketing to identify the factors affecting the continuity of a cooperative electronic supply chain. After constructing a structural equation model, empirical testing on 851 raw material and spare parts suppliers for the Taiwanese motor industry was conducted.
Findings – All path coefficients in the proposed model were statistically significant, and were as hypothesized. Resource dependence, trust, and relationship commitment are positively related to the continuity of the cooperative electronic relationship. Risk perception is negatively related to the continuity of the cooperative electronic relationship.
Research limitations/implications – This paper has theoretically developed an extensive set of interrelationships among these variables (resource dependency, perceived risk, trust, relationship commitment, and continuity of cooperative electronic relationships), illustrating their comparative effects on supplier intention to use the internet for on-line transactions.
Practical implications – This empirical study provides consistent support for the proposed business-to-business (B2B) e-commerce acceptance model. Given the high explanatory power of the resulting model, it is likely to serve as the basic model for predicting supplier behavior, and the continuity of enhanced understanding of cooperative electronic relationships.
Originality/value – Previous studies did not fully address the relevant influential factors related to the continuity of cooperative electronic supply chain relationships or the causal relationships among these factors. The primary contribution of this research is the integration of constructs associated with resources, environmental uncertainty, and relationship marketing, into a coherent model that jointly predicts supplier acceptance of e-commerce.

Keywords Supply chain management, Electronic commerce, Resource management, Risk management, Relationship marketing, Taiwan

Paper type Research paper

Introduction
The rapid development of the internet and e-commerce has seen the integration of business processes, fostered across supply chains, by facilitating the information flows necessary for coordinated business activity (Sebastian and Lambert, 2003). Zhao et al. (2002) found that the coordination of information sharing and ordering had a significant impact on supply chain performance, in terms of both total cost and service level. Motor companies have fully utilized electronic tools and technology to integrate supply chain information systems. The necessary documents and data interchange format of these transactions are designed to exchange information via the internet. Presently, raw material and spare parts suppliers in the motor industry can provide merchandise to different motor companies simultaneously. Motor companies do not necessarily adopt the same electronic information systems, or assume a leading position in the supply chain. To maintain their business operations, these suppliers must establish numerous electronic information systems to cope with the demands of different motor companies, clearly resulting in an increased burden in terms of investment cost and system maintenance. In this situation, suppliers are likely concerned that they may lose some manufacturing orders if they do not use these various electronic systems; alternatively they still may fail to boost their performance, regardless of which electronic systems they implement. In order to generate added value, through the
electronic supply chain system, motor companies must develop sound electronic systems; they cannot ignore supplier opinions and attitudes.

Reviewing the literature on cooperative relationships among enterprises reveals the existence of approximately three approaches, which include resource dependence, risk perception and relationship marketing. To enhance supply chain competitiveness, motor companies must gain the cooperation of suppliers, in order to successfully implement an electronic supply chain system. The degree of resource dependence between two partners will increase if both can establish a good interactive relationship (Ganesan, 1994; Kumar et al., 1995). Both partners would also be more willing to invest in the substantial assets and human resources required to maintain and develop a cooperative relationship, if they can establish a good interactive relationship. Buckley and Casson (1988) noted that a cooperative relationship makes coordination effective, through mutual restraint. Through the mutual distribution of resources aimed at achieving ideal improvements in this coordinated relationship, both parties may be able to achieve a win-win result based on appropriate resource distribution. The above points are the key findings in past research on resource dependence. Besides these findings, after trust has been established between buyer and seller, mutual dependence, or a situation of control by one party, occurs. At this point, risk perception also will increase (Das and Teng, 2001). The development of cooperation between the two parties is influenced if the risk perceptions exceed the limit acceptable to either partner. These are key findings in the literature from risk perception studies. Additionally, the relationship marketing orientated approach has mainly explored cooperative relationships between vehicle companies and suppliers (Morgan and Hunt, 1994). Relationship marketing can involve communication, trust and relationship commitment. Sound communication across companies also facilitates increased satisfaction with mutual cooperation (Mohr et al., 1996). Simpson and Mato (1997) identified trust as the reliability of an organization’s members, and belief in their willingness to perform their duties. Mohr et al. (1996) considered relationship commitment to be the extent to which a firm’s perception contributes to maintaining their cooperative relationships.

Prior literature has investigated the relationship between communication and trust (Anderson and Narus, 1990; Kumar, 1996; Sanzo et al., 2003); the relationship between trust and cooperation (Ganesan, 1994; Carter and Jennings, 2002); the relationship between resource dependence and cooperation (Ganesan, 1994; Zaheer and Venkatraman, 1995); and the relationships among trust, relationship commitment and cooperation (Moore, 1998; Jonsson and Zineldin, 2003). These previous studies did not fully address the relevant influential factors related to the continuity of cooperative electronic supply chain relationships or the causal relationships among these factors. Suppliers would be willing to cooperate, by investing in the resource facilities and procedural reform involved in an electronic supply chain system, in hope of enhancing their competitive edge. Risk perception and relationship marketing affects cooperative electronic relationships. Integrating these related approaches can clarify the previously unexplainable parts.
fact that future competition will intensify has forced the industry to respond more swiftly to market needs. Given the recent explosive development of the internet and e-commerce, motor companies have taken full advantage of the electronic technology and tools to integrate their supply chain information systems. The motor industry in Taiwan has been vigorously pursuing electronic data exchange in order to improve information transmission rates and accuracy. Looking at it from how orders are sent, most use the electronic data form to send their orders. The major operating system of electronic information transmission in the previous electronic data interchange (EDI) application environment was a closed value-added network. With the advances in information technology, the present network is primarily designed for an open internet application environment. Accordingly, the traditional EDI information exchange standard has been shifted toward EOI (EDI over internet) in response to the changes in the operating environment. Moreover, the development of traditional EDI information exchange standard will continue to evolve until XML becomes the standard. The necessary documents and the data exchange format of the transaction will be designed for exchanging information via the internet.

Research model and hypotheses

This study explores the issue of the continuity of cooperative electronic supply chain relationships, set up as an endogenous variable. Moreover, adopting an electronic supply chain system is a new plan and action. Thus, cooperating firms must be provided advance knowledge of the plan and course of action, as well as resources required, adjustment procedures, personnel training and achievable benefits and risks which may occur. Communication and coordination were, therefore, set up as exogenous variables. Coordination between the motor companies and the suppliers can produce resource dependence, and the perception of risk, for cooperative suppliers. Finally, communication between the motor companies and the suppliers tends to produce trust between the cooperative suppliers, followed by commitment to the relationship; only after this has been achieved, are suppliers willing to maintain mutual cooperation. Therefore, resource dependence, risk perception, trust, and relationship commitment, were mediating variables. In other words, this study has attempted to integrate resource dependence, risk perception, and relationship marketing to deduce the framework and hypotheses of the research. Figure 1 illustrates the research framework.

Resource dependence perspective

Pfeffer and Salancik (1978) viewed an organization as an open system. Based on this concept, an organization must interact with the external environment to obtain the resources necessary to maintain organizational survival. Hall (1987) considered a major influence on dependence level to be the significance of resources to organizational operations, the distribution of resources and use rights, and the concentration of resources in the environment.

While exploring cooperative relationships among industrial firms, Heide and John (1988) indicated that increased investment in transaction-specific assets of suppliers enhanced cooperative relationships and the expectation of continued cooperation. Zaheer and Venkatraman (1995) noted that the effort made by firms in building stable and long-term relationships increased with their investment in transaction-specific assets. Consequently, firms are more willing to maintain the continuity of such cooperative relationships. In this respect, supplier investment in transaction-specific assets helps reduce production costs and simultaneously increases production efficiency, helping build a closer cooperative relationship between suppliers and buyers. Meanwhile, the buyer has the increased cost of switching exchange partners. Accordingly, suppliers that are willing to establish a cooperative electronic supply chain relationship with a motor company will invest in transaction-specific assets, in compliance with the substantial assets, human resources and production procedures of the buyer. The above reasoning demonstrates that supplier investment in relevant assets, human resources or adjustment of production procedures, in line with demand for electronic supply chain systems, will help suppliers establish a long-term and stable relationship; this can help meet expectations, to maintain a lasting and cooperative relationship, with the buyer. The following hypothesis is based on the above reasoning:

H1. Resource dependence is positively related to the continuity of the cooperative electronic relationship.

Frazier et al. (1988) suggested in their study of just-in-time relationships, that high levels of coordination are associated with mutually fulfilled expectations. Mohr et al. (1996) provided a somewhat different perspective on how communication resources and efforts should be allocated. Specifically, combining collaborative communication with low levels of governance may be a viable strategy to enhance outcomes. Garcia-Dastugue and Lambert (2003) indicated that lack of coordination will result in inefficiencies in the supply chain, in the form of inventory buffers, underutilized capacity, obsolete products or lost sales. The following hypothesis is based on the above reasoning:

H2. Coordination is positively related to resource dependence.

Risk perception perspective

Cunningham (1967) named risk perception, previously defined by Cox and Rick (1967), as “uncertainty” and “unfavorable results.” Douglas and Wildavsky (1982) considered that general risk perception was not based on an inherent understanding of technology, but rather that risk perception was influenced by individual psychological awareness and social culture.

Mayer et al. (1995) stated that the perception of risk involved the trustee’s beliefs, about the likelihood of gains or losses, outside of considerations that involve the relationship with the particular trustee. Moreover, the feeling resulting from risk perception can influence generated differences in cooperation. From the above analysis, the desire to be involved in continuous electronic cooperation with the motor company declines as the level of risk perception faced by the suppliers increases. Accordingly, the following hypothesis was developed:

H3. Risk perception is negatively related to the continuity of the cooperative electronic relationship.

Madhok (1995) suggested that a lack of trust and a perception of a high-risk prompt alliance influenced

Figure 1 Research model and hypotheses

![Diagram]

Partners to choose a governance structure with tighter control mechanisms. This essentially supports the idea, that when it is difficult to rely on trust, more control is the answer for lowering risk. Parkhe (1993) found that a perception of opportunistic behavior (high relational risk) leads to the deployment of contractual safeguards, or control in alliance. Kumar and Seth (1998) indicated that control has been found to facilitate coordination. The following hypothesis is based on the above reasoning:

H4. Coordination is negatively related to Risk perception.

Relationship marketing perspective

Relationship marketing stresses continuous and long-term interchange (Dwyer *et al.*, 1987). Shani and Chalasani (1992) viewed relationship marketing as an integrated force, which not only confirms, maintains and establishes network relationships among individual customers, but also sustains these network relationships through interaction, individualization and extended contact, in order to increase profits. Morgan and Hunt (1994) considered relationship marketing to include marketing activities implemented to establish, maintain and develop a successful exchange model. Morgan and Hunt considered the two key concepts in relationship marketing to be “trust” and “relationship commitment”. Gundlach *et al.* (1995) noted that the commitment of both exchange partners represented a strong signal of anticipated relationship quality, which could be used to develop trust in a relationship, and influence the regulations in the sharing society regarding the development of future exchange management. Gruen (2000) considered the main goal of relationship marketing to be the creation of a more effective method of interacting with the customer, thus developing a continuous and long-term relationship.

Anderson and Narus (1990) defined trust as a firm’s degree of belief that their cooperative partners will not act speculatively. Anderson and Narus further believed that the actions of cooperative partners would always have positive results and have no unexpected negative consequences. Similarly, Anderson and Weitz (1992) viewed trust as the goodwill and trust that firms hold towards their partners; they further believed that cooperative partners would actively try to satisfy the needs of the firms they were in partnership with. Moorman *et al.* (1992) described trust as the volition of firms in trusting and relying on trading partners. Ganesan (1994) indicated that a supplier’s trust in a buyer and their willingness to be involved in maintaining a long-term relationship are positively correlated. Wilson (1995) noted that trust is a firm’s belief in an exchange relationship, namely that the other partner will act to benefit the cooperative partner. The following hypothesis was developed, following the above analysis:

H5. Trust is positively related to the continuity of the cooperative electronic relationship.

Dwyer *et al.* (1987) defined relationship commitment as a firm’s willingness to contribute to the cooperative relationship, which implies willingness to sacrifice short-term benefits to achieve long-term gains. Anderson and Weitz (1992) considered that relationship commitment may represent the attitude of partners to the development and maintenance of a stable and lasting relationship. Moore (1998) found that a firm’s relationship commitment influenced the willingness to maintain a cooperative relationship. Additionally, the characteristics of long-term perspectives in the alliance are displayed in relationship commitment, stressing desire for continuing trade in the future. The above analysis produced the following hypothesis:

H6. Relationship commitment is positively related to the continuity of the cooperative electronic relationship.

Dwyer *et al.* (1987) considered trust to be the extent of the belief of one partner, in the willingness of the other partner, to fulfill the contractual obligations associated with their trade relationship. Achrol (1991) indicated that the stronger the firm’s trust in its cooperative partner, the stronger the relationship commitment of that firm to the cooperative partner. Morgan and Hunt (1994) found that mutual trust between two firms correlates positively with relationship commitment:

H7. Trust is positively related to relationship commitment.

Presenting a partner relationship model, Anderson and Narus (1990) further tested and verified the cooperative relationship between the reseller and the supplier. Furthermore, from the supplier perspective, Anderson and Narus demonstrated that communication clearly and positively influences trust. Anderson and Weitz (1992) indicated that communication may increase the consistency of the expectations and perceptions between partners, reducing role ambiguity and mutual misunderstanding, and thus, possibly, enhancing trust. Additionally, Bruce *et al.*
(1995) considered routine communication to be conducive to establishing trust among alliance members. Moreover, Kumar (1996) remarked that excellent communication quality and frequent communication help improve mutual understanding, and also increase trust. Simpson and Mato (1997) indicated that exchanges of opinions and agreement, established through communication, help improve trust in, and appraisal of, the partner. Thus, this study concludes that communication among partners helps boost mutual understanding and trust. Accordingly, the following hypothesis was presented:

H8. Communication is positively related to trust.

Methods

Measurement

The latent variables involved in the different aspects of this research, (communication, coordination, relationship commitment) which are classified under perceptions or feelings of the testee, cannot be directly observed or obtained. Instead, these latent variables must be generated from inferences drawn from manifest variables. Accordingly, this study cites related literature or scales, and adopts manifest variables, that have been demonstrated to be effective. The measurements of the related variables mainly refer to appropriately revised evidence-based literature. This study further developed the required research variables and measurements, employing 22 manifest variables as multiple indicators for seven constructs (or latent variables) of the research model (see Table I). A Likert five-point scale was used to measure the 22 items, and the range of answers was divided into strongly agree, agree, neutral, disagree, and strongly disagree.

Data

The data collected for this study was based on the membership list of the Taiwan Transportation Vehicle Manufacturers Association and the list of motor raw material and spare parts suppliers, provided by motor companies in Taiwan; this amounted to 851 firms. To simplify questionnaire completion and return, this study sent e-questionnaires to raw material and spare parts suppliers via e-mail, requesting them to assign a staff member to fill out the questionnaire contents.

Analysis

The analysis followed a two-step procedure, based partly on an approach recommended by Anderson and Gerbing (1988). The first step employed confirmatory factor analysis to design a measurement model that achieved an acceptable fit with the data. The second step then tested the theoretical model (or structural model) using path analysis to demonstrate a meaningful and statistically acceptable structural model. The research model in Figure 1 was path analyzed using the Maximum Likelihood estimator of LISREL, which used the correlation coefficient matrix of the measured variables as an input (Joreskog and Sorbom, 1993). This study applied the CALIS procedure of the SAS system to perform LISREL.

Results

Reliability analysis and sample structure

A total of 851 questionnaires were sent out, one to every listed raw material and spare parts supplier in the Taiwanese motor industry. This process yielded 262 returned questionnaires. The returned questionnaires were encoded and filed. After removing incomplete responses, the actual number of valid questionnaires was 241. The rate of return was 28.3 percent.

To investigate the possibility of non-response bias in the data, a test for statistically significant difference in the response of early and late waves of returned surveys was performed (Armstrong and Overton, 1977; Lambert and Harrington, 1990; Lessler and Kalsbeek, 1992). For each phase, the last wave of surveys received was considered to be representative of non-respondents. Each survey sample was split into two groups on the basis of early and late survey return times; t-tests were performed on the responses of the two groups. The t-tests yielded no statistically significant differences among the survey items tested. These results suggest that non-response bias did not significantly impact the study.

Table II illustrates data reliability using Cronbach’s α. All constructs (latent variables), for the continuity of cooperative electronic supply chain relationships, had a high reliability, with a Cronbach’s α exceeding 0.8. The data reliability, in general, was acceptable.

Analyzing the number of employees and annual turnover of the sample companies revealed that the respondents were mostly from small- and medium-sized enterprises, although a few large enterprises were also included. Thus, the samples were highly representative of the industry in Taiwan. Additionally, 50 percent of the largest buyers from these sample firms were automobile companies, while the remaining 50 percent were motorcycle companies. These sample firms mostly placed orders electronically. The most common method for placing orders was e-mail, accounting for 37.3 percent of all orders, followed by other forms of EDI, such as XML, which accounted for 27.4 percent.

Confirmatory factor analysis

In the measurement model, each indicator variable is predicted to load just one factor; that is, none of the indicators are complex variables (measuring multiple latent variables) (Hatcher, 1998). The psychometric properties of the measures used in this research were assessed through confirmatory factor analysis, and two complex variables were removed, namely Items 19 and 13. The model fit also used the estimates of CFI, GFI, AGFI, NFI, NNFI, and RMR listed in Table III. The results in Table III indicated a good fit to the data; as the fit indices exceeded or approached 0.9, estimated RMR was 0.0292, and AGFI approached 0.8.

The reliability of the measures was assessed using composite reliability and variable extracted estimates, as listed in Table IV. The composite reliability of each construct exceeded 0.7 in this study, satisfying a minimally acceptable level (Hatcher, 1998). However, Fornell and Larcker (1981) suggested that variance extracted estimates should exceed 0.5. All indices in Table IV exceed 0.5. Therefore, overall, the constructs in this model performed fairly well. Table IV assesses validity using the t values of the factor loadings. All
indicator t values ranged from 12.9898 through 18.9066, indicating that all factor loadings were significant ($p < 0.001$). This fact supported the convergent validity of all indicators that effectively measured the same construct (Anderson and Gerbing, 1988).

Path analysis

From the above, the theoretical model testing was conducted with path analysis, using LISREL. The CFI, GFI, NFI, NNFI exceeded or were close to 0.9, estimated RMR was 0.0408, and AGFI was close to 0.8. The research model achieved quite a good fit (Joreskog and Sorbom, 1993). Figure 2 and Table V summarizes the results of the path
analysis. All path coefficients in the current model were statistically significant and as hypothesized (H1-H8 were supported).

Implications for theory and research

Implications for theory and research are as follows:

- The primary contribution of this research is the integration of constructs associated with resources and environmental uncertainty (resource dependency and perceived risk), with relationship marketing constructs (trust and relationship commitment), into a coherent model that jointly predicts supplier acceptance of e-commerce. Drawing upon relationship marketing, this paper has theoretically developed an extensive set of interrelationships among these variables, illustrating their comparative effects on supplier intention, to use the internet for on-line transactions.

- This empirical study jointly provides consistent empirical support for the proposed business-to-business (B2B) e-commerce acceptance model. Given the high explanatory power of the resulting model, it is likely to serve as the basic model for predicting supplier behavior and the continuity of enhanced understanding of cooperative electronic relationships.

- In terms of theory building, this study has attempted to develop a new theory by grounding new variables in a well-accepted general model (relationship marketing) and applying them in a new context. It is important to note that the two new constructs – resource dependence and risk perception – are placed within the nomological structure of the original model and are compatible with relationship marketing variables.

Practical implications

Practical implications are as follows:

- Motor companies can encourage suppliers to increase their transaction-specific investments, possibly through a reward system, and thus, can enhance supplier

Table IV Results of reliability analysis and factor loading analysis

<table>
<thead>
<tr>
<th>Latent variable and measurement variable</th>
<th>Standardized factor loadings</th>
<th>t-value</th>
<th>Composite reliability</th>
<th>Variance extracted estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuity of cooperative electronic relationship</td>
<td>V1</td>
<td>0.8602</td>
<td>16.4701 *</td>
<td>0.8956 a</td>
</tr>
<tr>
<td>Resource dependence</td>
<td>V2</td>
<td>0.8941</td>
<td>17.5403 *</td>
<td>0.9206</td>
</tr>
<tr>
<td></td>
<td>V3</td>
<td>0.8270</td>
<td>15.4814 *</td>
<td>0.8941</td>
</tr>
<tr>
<td>Coordination</td>
<td>V4</td>
<td>0.9171</td>
<td>18.4628 *</td>
<td>0.9272</td>
</tr>
<tr>
<td></td>
<td>V5</td>
<td>0.9158</td>
<td>18.4152 *</td>
<td>0.8941</td>
</tr>
<tr>
<td></td>
<td>V6</td>
<td>0.8804</td>
<td>17.2217 *</td>
<td>0.8941</td>
</tr>
<tr>
<td>Risk perception</td>
<td>V7</td>
<td>0.8804</td>
<td>17.2217 *</td>
<td>0.9508</td>
</tr>
<tr>
<td></td>
<td>V8</td>
<td>0.8050</td>
<td>14.7037 *</td>
<td>0.7509</td>
</tr>
<tr>
<td></td>
<td>V9</td>
<td>0.7365</td>
<td>12.9898 *</td>
<td>0.7509</td>
</tr>
<tr>
<td></td>
<td>V10</td>
<td>0.8050</td>
<td>14.7037 *</td>
<td>0.8111</td>
</tr>
<tr>
<td>Trust</td>
<td>V11</td>
<td>0.8776</td>
<td>16.5384 *</td>
<td>0.8973</td>
</tr>
<tr>
<td>Relationship commitment</td>
<td>V12</td>
<td>0.8865</td>
<td>16.7870 *</td>
<td>0.8865</td>
</tr>
<tr>
<td>Communication</td>
<td>V13</td>
<td>0.7362</td>
<td>13.6623 *</td>
<td>0.8741</td>
</tr>
<tr>
<td></td>
<td>V14</td>
<td>0.8776</td>
<td>16.5384 *</td>
<td>0.7509</td>
</tr>
<tr>
<td></td>
<td>V15</td>
<td>0.8973</td>
<td>17.5229 *</td>
<td>0.8973</td>
</tr>
<tr>
<td></td>
<td>V16</td>
<td>0.8673</td>
<td>16.5876 *</td>
<td>0.8673</td>
</tr>
<tr>
<td></td>
<td>V17</td>
<td>0.8715</td>
<td>16.2062 *</td>
<td>0.8715</td>
</tr>
<tr>
<td></td>
<td>V18</td>
<td>0.8766</td>
<td>16.3434 *</td>
<td>0.8766</td>
</tr>
<tr>
<td></td>
<td>V19</td>
<td>0.7487</td>
<td>13.0753 *</td>
<td>0.8194</td>
</tr>
<tr>
<td></td>
<td>V20</td>
<td>0.7454</td>
<td>12.9954 *</td>
<td>0.7454</td>
</tr>
<tr>
<td>Notes: * Denotes a significant value (p < 0.001). a indicates the composite reliability; b indicates the square of factor loadings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
dependence on electronic supply chain systems. Moreover, the high switching cost may also increase supplier willingness to maintain the cooperative relationship. Nonetheless, suppliers must understand the benefits of an electronic supply chain system in eliminating doubts and preventing speculation, which may possibly further reduce the perception of risk.

Given the special features of an electronic supply chain system, both personnel education and adjustments to procedures or facilities will require assistance from the motor company. Accordingly, the motor company should reinforce the forecasting capabilities of the electronic supply chain system for technological changes in relevant vehicle spare parts and also for market demand. Such a cooperative electronic supply chain relationship with the motor company is analogous with long-term supplier benefits and increased supplier satisfaction. Additionally, suppliers will continue to invest in electronic facilities, thus helping in the continuity of cooperative supply chain relationships.

The motor company must fully coordinate with suppliers regarding the setup process of the electronic supply chain system; the suppliers must be made aware that the motor company is committed to treating all suppliers fairly. When differences of opinion exist regarding the electronic supply chain system, the motor company must be willing to solve the problem through cooperation. The setting up of a specialized unit (personnel), or coordinating mechanism, can effectively reduce both partner conflict and perceptive disparity.

References
Continuity of cooperative electronic supply chain relationships

Ying-Pin Yeh

Information Handling in Consumer Behavior, Harvard University Press, Boston, MA, pp. 82-108.

