ON CONJUGATE BANACH SPACES WITH THE RADON-NIKODÝM PROPERTY

Tsang-wai Kuo

Department of Mathematics
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

(Received 23 January 1975)

The drawback of Fig. 1 is that the transfer function, if we are required to change the circuit parameters, are required to change the natural frequency unchanged. Fortunately, this disadvantage can be offset by the inclusion of a parallel resistance R with C, as shown in Fig. 2.

$V = \left(\frac{\omega^2}{\omega^2 + \omega_0^2} \right) V_0$
1. INTRODUCTION AND PRELIMINARIES

A Banach space X is said to have the Radon-Nikodym Property (RNP) if for each positive finite measure space $(\Omega, \Sigma, \lambda)$ and every λ-continuous vector measure $\mu : \Sigma \to X$ with finite variation, there exists a Bochner integrable function $f : \Omega \to X$ such that

$$\mu(A) = \text{Bochner} \int_A f(\omega) \, d\lambda \text{ for all } A \in \Sigma$$

The classical theorems of Dunford and Pettis [6] and Phillips [12] show that every separable conjugate space and every reflexive Banach space has RNP.

Recent developments of the Radon-Nikodym theorem provide a great progress either in the characterizations of Banach spaces with RNP or in the related Banach space geometry. For the purposes of this paper, we only list those that will be employed and refer to [17] for a more detailed introduction. The next two results are essentially due to Uhl [18].

Theorem 1.1 Let X be a Banach space. Then the following statements are equivalent:

(i) X possesses RNP;

(ii) every subspace (by a subspace, we refer to a closed infinite-dimensional linear submanifold) of X possesses RNP;

(iii) every separable subspace of X possesses RNP.

For a Banach space X, denote by X^* its conjugate space. Observe that if \mathcal{Y} is a separable subspace of X^* then there exists a separable subspace Y of X such that \mathcal{Y} can be isometrically embedded into Y^* [7, II. 4. 25]. Therefore, as an immediate consequence of Theorem 1.1, one has

Theorem 1.2 If for every separable subspace Y of X, Y^* is separable, then X^* has RNP.

The converse of Theorem 1.2 is proved by Stegall [17], i.e.,

Theorem 1.3 Suppose X^* has RNP. Then for every separable subspace Y of X, Y^* is separable.

We shall use these three theorems to deduce our main results. It seems to be an open question whether a conjugate Banach space X^* has RNP whenever the unit ball $B_{X^{**}}$ of X^{**} is weak* sequentially compact. Our result shows that when $B_{X^{**}}$, in its weak* topology, is homeomorphic to a weakly compact subset of some Banach space, or when X^* is isomorphic to a subspace of a weakly compactly generated Banach space (in either case, $B_{X^{**}}$ is weak* sequentially compact) then X^* possesses the RNP. This result improves the classical Dunford-Pettis-Phillips Theorem on RNP.
The possession of RNP by the conjugate spaces of the two specific classes of Banach spaces, the Grothendieck spaces and the Banach spaces X with X^{**}/X separable, is being investigated. For instance, if X is a non-reflexive continuous linear image of $C(S)$ with S an F-space then X^* cannot have RNP; if X is a Banach space with X^{**}/X separable then both X^* and X^{**} (and hence X) have the RNP.

It is also shown that if a conjugate space X^* possesses the RNP and X is weak* sequentially dense in X^{**} then B_x^{**} is weak* sequentially compact. Thus, in particular, if X^{**}/X is separable then B_x^{***} is weak* sequentially compact.

In the terminology of [10], a Banach space X is called quasi-separable if for each separable subspace Y of X, Y^* is separable; on account of Theorems 1.2 and 1.3, this concept is equivalent to the possession of RNP by X^*. We indicate here that if X is quasi-separable then every continuous linear closed image of X has the same property. For if Z is a continuous linear image of X then Z^* is isomorphic to a subspace of X^*; Z^* then has RNP. Thus by Theorem 1.3, every separable subspace of Z has a separable conjugate. This solves the question proposed by Lacey and Whitley [10] that whether a quotient space of a quasi-separable space is itself quasi-separable.

It is also not known whether a Banach space X is quasi-separable if B_x^{**} is weak** sequentially compact. This can be equivalently translated as whether a conjugate space X^* has RNP if B_x^{**} is weak* sequentially compact. Before proceeding to our discussion, recall that a Banach space X is said to be weakly compactly generated (WCG) if it is the closed span of some weakly compact subset of itself. As a result of Amir and Lindenstrauss [1], X is WCG if and only if B_x^* in its weak* topology, is affine homeomorphic to a weakly compact subset of some Banach space. A compact Hausdorff space S is Eberlein compact if it is homeomorphic to a weakly compact subset of some Banach space. In view of Eberlein’s Theorem, S is sequentially compact if it is Eberlein compact. Our result shows that if B_x^{**} is Eberlein compact in its weak* topology, or if X^* is isomorphic to a subspace of a WCG space then X^* has RNP.

For a subspace $Y \subset X$, set

$$Y^* = \{f \in X^* : f(y) = 0 \text{ for all } y \in Y\}.$$

Theorem 2.1 Let X be a Banach space. Suppose B_x^{**} is Eberlein compact in the weak* topology; then X^* possesses the RNP.
Proof. In view of Theorem 1.2, it suffices to show that every separable subspace of X has a separable conjugate space.

Let Y be a separable subspace of X. By Goldstine’s theorem, B_{r} is weak*-dense in B_{r}^{**}; thus B_{r}^{**} is weak*-separable. Let $J: Y \to X$ be the inclusion map. Observe that $J^{**}: Y^{**} \to X^{**}$ is a weak* isomorphism of Y^{**} onto Y^{11} with $J^{**}(B_{r}^{**}) = B_{r}^{11}$. Hence B_{r}^{11} is weak*-separable. Moreover, B_{r}^{11} is weak* closed in B_{r}^{**}, which is Eberlein compact by hypothesis, whence B_{r}^{11} is itself Eberlein compact.

It is well known that a separable Eberlein compact space is metrizable. We have then that B_{r}^{11} is metrizable. This then implies that B_{r}^{**} is metrizable. Therefore, Y^{*} is separable; which completes the proof.

Theorem 2.2. Suppose X^{*} is isomorphic to a subspace of a WCG Banach space Z; then X^{*} possesses RNP.

Proof. Again, it suffices to show that every separable subspace of X has a separable conjugate space. Let Y be a separable subspace of X. Apply the same argument as in the proof of Theorem 2.1, we see that B_{r}^{**} is weak*-separable.

Let (x_{*}^{**}) be a weak*-dense sequence in B_{r}^{11} and $J: X^{*} \to Z$ be an isomorphism. $J^{*}: Z^{*} \to X^{**}$ is then surjective. By the Open Mapping Theorem, there exists a bounded sequence (x_{*}) in Z^{*} such that $T^{*}x_{*} = x_{*}^{**}$. Denote by W the weak*-closure of (x_{*}). By the hypothesis that Z is WCG, B_{r}^{*} is then Eberlein compact in the weak* topology and hence W is also Eberlein compact. This together with the separability of W implies that W is a compact metric space in the weak* topology. $J^{*}(W)$ is then weak* compact and contains $(x_{*}^{**}) \subset B_{r}^{11}$. Hence $J^{*}(W) = B_{r}^{11}$. Moreover, being a continuous image of a compact metric space, B_{r}^{11} is compact metrizable. Therefore, B_{r}^{**} is metrizable and Y^{*} is separable.

It follows immediately from either Theorem 3.1 or Theorem 3.2 that Corollary 2.3. If X^{*} is WCG then X^{*} has RNP.

Remark. Corollary 2.3 can be proved by use of Theorem 1.2 and the fact that if a Banach space Y is separable and Y^{*} is WCG then Y^{*} is also separable. This result improves the classical Dunford-Pettis-Phillips Theorem on RNP, and is well known at present. However, recently H. P. Rosenthal [15] has given a counter-example to the heredity problem for WCG Banach space. Indeed, the Banach space X_{R} he exhibited has the following properties: (i) X_{R} is a subspace of a WCG space $L^{1}(\mu)$ and X_{R} is not WCG; (ii) X_{R} is isomorphic to a conjugate Banach space; (iii) the unit ball of X_{R}^{*} is Eberlein compact in its weak* topology. Thus our independent proof appears necessary.
Observe that those conjugate Banach spaces X^* with RNP discussed in the above theorems have the property that B_x^{**} is weak* sequentially compact. For the converse, we have obtained sufficient conditions to ensure that B_x^{**} is weak* sequentially compact whenever X^* has the RNP. In the following theorem, we set for each $A \subseteq X^{**}$

$$A^* = \{ f \in X^* : x^{**}(f) = 0 \text{ for all } x^{**} \in A \}$$

and write "\simeq" whenever two Banach spaces are isometrically isomorphic.

Theorem 2.4. If X^* possesses the RNP and X is weak* sequentially dense in X^{**}, then B_x^{**} is weak* sequentially compact.

Proof. Let (x^{**}_i) be a sequence in B_x^{**}. By assumption, X is weak* sequentially dense in X^{**}; for each x^{**}_i, there exists a sequence (x^k_i) in X such that $(x^k_i)_i$ converges to x^{**}_i in the weak* topology of X^{**}.

Let \mathcal{Y} be the weak* closed subspace of X^{**} spanned by (x^{**}_i) and \mathcal{Z} be the weak* closed subspace of X^{**} spanned by $(x^k_i)_i$. We have then that $\mathcal{Y} \subseteq \mathcal{Z}$ and

$$\mathcal{Y} = \left(\{ x^{**}_i \}^* \right)^\perp \simeq \left(X^* / \{ x^{**}_i \} \right)^*,$$

$$\mathcal{Z} = \left(\{ x^k_i \}^* \right)^\perp \simeq \left(X^* / \{ x^k_i \} \right)^*.$$

Let Z be the closed subspace of X spanned by $(x^k_i)_i$. Observe that Z is weak*-dense in $Z^{\perp\perp}$, whence $Z^{\perp\perp} = Z$. By hypothesis, X^* has RNP; hence Z is separable. But

$$Z \simeq X^*/\{ x^k_i \}^\perp \text{ and } \mathcal{Y} \subseteq \mathcal{Z};$$

$X^*/\{ x^k_i \}^\perp$ is a continuous linear image of $X^*/\{ x^k_i \}^\perp_i$. Thus $X^*/\{ x^{**}_i \}^\perp$ is separable. It follows then that the unit ball of $X^*/\{ x^{**}_i \}^*$ is weak* sequentially compact.

Moreover, since $(X^*/\{ x^{**}_i \}^*)^*$ is weak* isomorphic to \mathcal{Y}, the sequence (x^{**}_i) in \mathcal{Y} has a weak* convergent subsequence. This is equivalent to saying that B_x^{**} is weak* sequentially compact.

The above result will be used in Section 4 to prove that if X^{**}/X is separable then B_x^{***} is weak* sequentially compact.

3. THE RADON-NIKODYM PROPERTY IN GROTHENDIECK SPACES AND THEIR CONJUGATES.

A Banach space X is said to be a Grothendieck space if every weak* convergent sequence in X^* is weakly convergent. Let S be a compact Hausdorff space, and $C(S)$ the space of continuous functions on S. The original result of A. Grothendieck [9, p. 168] shows that if S is Stonian (i.e., every open set has an open closure), then $C(S)$ is a Grothendieck space. It is unknown whether the conjugate space of a non-reflexive Grothendieck
space can have RNP. If $C(S)$ is a Grothendieck space, then since S contains no nontrivial convergent sequence [2] the set of cluster points of an infinite subsets of S is perfect; thus $C(S)$ contains a subspace isomorphic to l^1 [13], and therefore, $C(S)^*$ doesn't have the RNP.

S is called an F-space if every pair of disjoint open F_o subsets of S have disjoint closures. By a result of Seever [16], if S is an F-space then $C(S)$ is a Grothendieck space. It is easily verified that a continuous linear closed image of a Grothendieck space is itself a Grothendieck space. Furthermore, most of the known Grothendieck spaces are continuous linear images of $C(S)$ with S an F-space. For such Grothendieck spaces, we have

Theorem 3.1. Let X be a non-reflexive continuous linear image of $C(S)$ with S an F-space. Then X^* cannot have RNP.

Proof. X is a non-reflexive continuous linear image of $C(S)$ with S an F-space. By a result of Rosenthal [14], l^* is then a continuous linear image of X. Hence X^* contains a subspace isomorphic to $(l^*)^*$. But $(l^*)^*$ doesn't have RNP; thus X^* cannot have RNP either. (Theorem 1.1).

Remark. Recall that the norm $\| \cdot \|$ of a Banach space X is said to be smooth if for each $x \in X$, $\|x\|=1$, there exists a unique support functional $\phi_x X$. X is said to be smooth if it has an equivalent smooth norm. If $\| \cdot \|$ is an equivalent smooth norm of X, the map $Z : x \mapsto f_x$ of $\{x \in X : \|x\|=1\}$ into $(f_x X^* : \|f\|=1)$ is "norm to weak*" continuous [8]. In case that Z is "norm to weak" continuous, X is then called very smooth by Diestel and Faires in [5], where they have shown that if a Banach space X is very smooth then X^* possesses the RNP. Obviously, if X is a smooth Grothendieck space then X is very smooth; thus X^* possesses RNP. However, we conclude from Theorem 3.1 that the Grothendieck space X is a continuous linear image of $C(S)$ with S an F-space X is not smooth.

Proposition 3.2. Suppose X is a weakly sequentially complete Banach space and X^* has RNP; then X is reflexive.

Proof. Let (x_n) be a bounded sequence in X, and Y the closed subspace spanned by (x_n). Since X^* has RNP, Y^* is separable by Theorem 1.3. Let (y_n^*) be a dense sequence in Y^*. A standard diagonal process then shows that there exists a subsequence (X_{s_k}) such that $(y_n^*(X_{s_k}))_i$ converges for each $y_n^* \in Y^*$, By the boundedness of (X_{s_k}), $(y_n^*(X_{s_k}))_i$ then converges for every $y^* \in Y^*$, i.e., (X_{s_k}) is a weak Cauchy sequence in X. But X is weakly sequentially complete by assumption; thus (X_{s_k}) converges weakly in X. By Eberlein's Theorem, this means that every bounded set of X is weakly
conditionally compact. Hence X is reflexive.

Corollary 3.3. (i) If X^* is a Grothendieck space which has RNP then X is reflexive.

(ii) If Y is a Grothendieck space and Y^{**} has RNP, then Y is reflexive.

Proof. (i) By assumption, X^* is a Grothendieck space. It is then clear that X^{**} is weakly sequentially complete, which in turn implies that X is weakly sequentially complete. But X^* is also assumed to have RNP; thus X is reflexive by proposition 3.2. (ii) Y is a Grothendieck space, hence Y^* is weakly sequentially complete. Apply proposition 3.2 to Y^*.

It is unknown whether a weakly sequentially complete Grothendieck space must be reflexive. However, the following corollary holds:

Corollary 3.4. Let X be a Grothendieck space. Assume that X is both weakly sequentially complete and smooth; then X is reflexive.

Proof. By assumption, X is a smooth Grothendieck space. It then follows from the preceding remark that X^* possesses the RNP. But X is also weakly sequentially complete; therefore, X is reflexive.

Remark. If a Banach space X has an equivalent Fréchet differentiable norm, then X is very smooth [8]; thus X^* has RNP. In other words, a non-reflexive weakly sequentially complete Banach space has no equivalent Fréchet differentiable norm.

Let X, Y be Banach spaces. We shall denote by $B(X, Y)$ the Banach space of bounded linear operators from X to Y, and $W(X, Y)$ the subspace of weakly compact operators.

Theorem 3.5. If X is a Grothendieck space and Y is isomorphic to a conjugate Banach space with the RNP, then $B(X, Y) = W(X, Y)$.

Proof. Without loss of generality, we may assume that $Y = Z^*$. Consider now the Banach space $B(X, Z^*)$. Observe that the map $T \rightarrow T^*|Z$ is an isometric isomorphism from $B(X, Z^*)$ onto $B(Z, X^*)$ such that $T \in W(X, Z^*)$ if and only if $T^*|Z \in W(Z, X^*)$. Thus it suffices to show that $B(Z, X^*) = W(Z, X^*)$.

Let $T \in B(Z, X^*)$ be given. Assume that (z_n) is a bounded sequence in Z. We shall prove that (Tz_n) has a weakly convergent subsequence. Denote by W the closed subspace spanned by (z_n). W^* is then separable for Z^* has RNP. Thus the argument in the proof of Proposition 3.2 shows that there exists a weak Cauchy subsequence (z_{n_k}) of (z_n), which in turn implies that (Tz_{n_k}) is a weak Cauchy sequence in X^*. But X is assumed to be a Grothendieck space; thus X^* is weakly sequentially complete. Therefore,
(T_{z_n}) converges weakly. Our argument concludes that every bounded subset of Z has a weakly conditionally compact image by Eberlein's Theorem; hence T is weakly compact.

4. THE BANACH SPACE X WITH X**/X SEPARABLE

In this section, we give examples of Banach space X such that both X* and X** (and hence X) have RNP. The Banach space X we are considering has the property that X* is WCG and B_{x***} is weak* sequentially compact. Theorem 4.1. Let X be a Banach space such that X**/X is separable. Then both X* and X** has RNP.

Proof. In view of Theorem 1.2, it suffices to show that every separable subspace of X (resp. X*) has a separable conjugate space.

Let Y be a separable subspace of X. Note that Y**/Y is isomorphic to a subspace of X**/X [3, p. 908]. By hypothesis, X**/X is separable, so is Y**/Y. It follows then that Y** and hence Y* is separable.

Assume Z is a separable subspace of X*. It is known that there exists a separable subspace W of X such that Z is isometrically isomorphic to a subspace of W*. Z* is then a continuous linear image of the separable space W**. Thus Z* is separable.

Remark. It is obvious that if both X* and X** have RNP then every separable subspace of X has a separable second conjugate. Indeed, if Y is a separable subspace of X, Y* is then separable since X* has RNP. But Y** is isometrically isomorphic to a subspace of X**; Y** has RNP. Thus by Theorem 1.3, Y** is separable. Note that the given hypothesis doesn’t necessarily imply that X**/X is separable. As a counter-example, we refer to [11, p. 124].

Together with the result of Theorem 2.4, we obtain Corollary 4.2 Suppose X**/X is separable. Then B_{x**} and B_{x***} (and hence B_{x*}) are sequentially compact in their respective weak* topologies.

Proof. Since X**/X is separable, X* and X** have RNP by Theorem 4.1. Also a result of [11, p. 123] shows that X* (resp. X**) is weak* sequentially dense in X** (resp. X***). Thus B_{x**} (resp. B_{x***}) is weak* sequentially compact by Theorem 2.4. Moreover, since B_{x*} is a continuous linear image of B_{x***} in the respective weak* topologies, B_{x*} is then weak* sequentially compact.

Corollary 4.3. Suppose X is non-reflexive and X**/X is separable. Then neither X nor X* is weakly sequentially complete.
Proof. Follows from Theorem 4.1 and Proposition 3.2.

Remark. Corollary 4.3 is motivated by the problem whether there exists a "small" Grothendieck space. Indeed, let X^{**}/X be separable. Suppose X^* (resp. X^{**}) were weakly sequentially complete; then X (resp. X^*) would be a Grothendieck space. Corollary 4.3 shows that the hypotheses we just made are absurd. However, the following question seems to be open: IF $X^* \oplus R = X^{**}$ with R a reflexive Banach space (see [4] for a detailed study of such Banach spaces X), can X^* be weakly sequentially complete? A positive answer would enable us to provide a non-reflexive Grothendieck space which doesn't contain a subspace isomorphic to c_0.

As a final result, we further prove that when X^{**}/X is separable X^* is indeed WCG.

Lemma 4.4 Let Z be a WCG subspace of a Banach space Y such that Y/Z is separable. Then Y is WCG.

Proof. Y/Z is separable, hence there exists a separable subspace $W \subset Y$ such that $Z+W$ is dense in Y. But both W and Z are WCG; thus Y is WCG.

Theorem 4.5. Suppose X^{**}/X is separable. Then X^* is WCG.

Proof. It is known that, under the given hypothesis, there exists a separable subspace Z such that X/Z is reflexive [11, p. 121]. We have then that Z^* is reflexive and X^*/Z^* is separable. It follows from Lemma 4.4 that X^* is WCG.
REFERENCES

(10) Lacey, E., Whitley, R. J., "Conditions under which all the bounded linear maps are compact", Math. Ann. 158, (1965), 1-5.

(13) Pelczynski, A., Semadeni, Z., "Spaces of continuous functions (III) (Spaces C(α) for α without perfect subsets)", Studia Math. 18, (1959), 211-222.

Tsang-hai Kuo
Department of Mathematics
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213