Optical-power-dependent photodesorption kinetics of graphene studied by conductance response

Yang-Yang Hsu,1 Chi-Yuan Lin,1,2 Yi-Chun Lai,2 Kun-Rui Wu,1 Kwai-Kong Ng,1 Chen-Shiung Chang,2 Gou Chung Chi,2 Pei-Chen Yu,2 and Forest Shih-Sen Chien1,*

1Department of Applied Physics, Tunghai University, Taichung 40704, Taiwan
2Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan

*fsschien@thu.edu.tw

Abstract: The photodesorption kinetics of graphene with various UV laser power is studied by conductance response. Analytical expressions of the power-dependent photodesorption kinetics of graphene in ambience are derived. The photodesorption time constant τ_d, steady current, and magnitude of modulation current, can be expressed as functions of the adsorption time constant τ_a, desorption cross section σ, and photon flux density. Under illumination the steady occupation ratio of adsorbed O$_2$ on graphene is equal to τ_d/τ_a. It is suggested that the photodesorption of O$_2$ on graphene is attributed the injection of photogenerated hot electrons and is restricted by the density of antibonding states of O$_2$.

©2015 Optical Society of America

OCIS codes: (160.5335) Photosensitive materials; (160.4236) Nanomaterials; (240.6700) Surfaces; (000.1570) Chemistry.

References and links

1. Introduction

Graphene [1], few atomic carbon layers in a honeycomb lattice, is the ultimate two-dimensional surface material without bulk effect. Because of its extremely high specific surface area and sensitive electrical response to molecular adsorption, graphene is regarded as an excellent candidate for chemical sensors [2–4]. The stable graphene-based sensors can sustain a great number of adsorption/desorption cycles. Typically, the gas molecules are physisorbed (weakly bound) on graphene and become the electron donors or acceptors to graphene. The carrier density of graphene is correlated to the density of adsorbed molecules, so adsorption results in the change of carrier density. It is assumed that the number of electron transferred per adsorbed molecule is constant and the absorbates do not affect the charge mobility of graphene [5]. Hence the conductance change is proportional to the area density of adsorbates on graphene. Therefore the conductance response of graphene can be utilized to monitor the molecular adsorption and desorption, making graphene an ideal system to study the kinetics of adsorption and desorption.

The conductance response of graphene on photodesorption has been studied recently [5–8]. Photodesorption is a photophysical/photochemical process to efficiently achieve surface treatments [9]. The density of adsorbates on surface can be controlled by photodesorption. The conductance response of graphene on photodesorption follows the exponential function \(e^{-\tau_d t} \) of exposure time \(t \), where \(\tau_d \) is the photodesorption time constant. In ambience, \(\text{O}_2 \) molecules act as electron acceptors for graphene and are the dominant species of adsorbates that influences the conductivity of graphene. Therefore, the density of adsorbed \(\text{O}_2 \) on graphene \(\text{N}(\text{t}) \) under UV illumination in vacuum (without re-adsorption) is well described by the differential equation

\[
\frac{d\text{N}(\text{t})}{dt} = -\sigma \text{F}\text{N}(\text{t}),
\]

where \(\text{F} \) is the photon flux density, \(\sigma \) the cross section of photodesorption, and \(\tau_d = \sigma^{-1}F^{-1} \) [10]. The photodesorption kinetics of absorbates on graphene is of great scientific interest and is significant to the gas sensor applications. However, the optical power-dependent kinetics has not been illustrated clearly.

Furthermore, it has been reported that \(\sigma \) of single-walled carbon nanotubes (CNT) is strongly dependent on photon energy \((\text{E}_{\text{ph}}) \), such that \(\sigma \) increases by several orders of magnitude with photon energy ranged from near-infrared to UV [10]. It is suggested that such a photon-energy dependence of \(\sigma \) is attributed to the optical absorption dependence of CNT (with an absorption peak at 5 eV) [11]. Graphene exhibits an absorption peak (at 4.7 eV) similar to that of CNT [12,13]. This optical absorption behavior of graphene is due to the excitonic Fano resonance arised from the coupling between the interband transition at the saddle point and the transition at the continuous Dirac cone. The \(\text{E}_{\text{ph}} \) dependence of \(\sigma \) in graphene is important to the understanding of the photodesorption mechanism of graphene, but is not well studied.
In this paper, we studied the UV-power-dependent photodesorption kinetics of graphene in ambience by monitoring the response current of graphene. An analytical expression of \(N(t) \) is derived to describe the power-dependent photodesorption kinetics (involving re-adsorption). From the expression of \(N(t) \), the photodesorption quantities of current response (photodesorption time constant, steady current and magnitude of modulation current) can be expressed as functions of \(\tau_a \), \(\sigma \), and \(F \). Furthermore, the steady occupation ratio of photodesorption \(\frac{N_s}{N_{\text{max}}} = \frac{\tau_d}{\tau_a} \) is obtained, where \(\tau_a \) is the adsorption time constant of graphene, \(N_s \) the steady density of \(\text{O}_2 \), and \(N_{\text{max}} \) the maximum density of \(\text{O}_2 \). In addition, in order to investigate the underlyin mechanism, the photodesorption is performed by the lasers of various \(E_{\text{ph}} \). From the dependence of \(\sigma \) on \(E_{\text{ph}} \), it is suggested that the photodesorption of graphene involves the injection of photogenerated hot electrons and is restricted by the density of antibonding states of \(\text{O}_2 \).

2. Experimental details

The graphene sample is grown on Cu foil by chemical vapor deposition (CVD). The CVD graphene is then transferred to SiO\(_2\)/Si substrate after the Cu foil is etched by Fe(NO\(_3\))\(_3\) solution. Silver paste is used to make electrodes on the sample. A bias of 10 mV is applied for current measurement. The graphene is placed in an air-tight chamber to keep the relative humidity constant (40%) at room temperature. A 325 nm UV He-Cd laser is employed in the power-dependent desorption and solid state lasers of 405, 473, and 532 nm are employed in the \(E_{\text{ph}} \)-dependent photodesorption.

3. Results and discussion

3.1 Optical-power-dependent current response

The current response of graphene on photodesorption subjected to various power density level of UV laser (from 0.39 mW/cm\(^2\) to 22 mW/cm\(^2\)) is observed as shown in Fig. 1(a). The currents decrease exponentially from the initial current \((I_0) \), because the hole density decreases with the photodesorption of \(\text{O}_2 \). The Raman spectra of adsorbed and desorbed graphenes are presented in Fig. 1(b). The intensity ratio of the G peak to 2D peak indicates that the sample is a monolayer or bilayer graphene. The D peak indicates the existence of defects in the CVD graphene. In desorption, a red shift of G band and a blue shift of 2D band suggest the hole de-doping occurs in the graphene [14].
Fig. 2. Photodesorption time constant τ_d (as well as N_s/N_{max} referring to the second ordinate on the left hand side) and ΔI (as well as $\Delta N/N_{\text{max}}$ referring to the second ordinate on the right side) as functions of the photon flux density (and power density). The solid line are the fittings from Eqs. (7) and (8).

The response current can be described by a function of time t as

$$I(t) = I_s + \Delta I \cdot e^{-t/\tau_d},$$

(2)

where I_s is the steady current at $t = \infty$, and $\Delta I = I_0 - I_s$ is the magnitude of current modulation due to photodesorption. The optical-power-dependent response current on photodesorption can be well fitted with Eq. (2), and the F dependence of τ_d and ΔI are obtained (1 mW/cm2 of 325 nm corresponds to the photon flux density of 1.64×10^{15} cm$^{-2}$ s$^{-1}$) (Fig. 2). In addition, I_s and ΔI are plotted as functions of τ_d (Fig. 3). I_s and ΔI show a positive and negative linear relationship with $\tau_d < 75$ s, respectively. When the laser is switched off, O$_2$ molecules start to re-adsorb on graphene. Accordingly, the current increases in another exponential form with the adsorption time constant τ_a, and is expressed as

$$I(t) = I_0 - \Delta I \cdot e^{-t/\tau_a},$$

(3)

where τ_a is about 2130 s and $I(\infty) = I_0$.

3.2 Kinetics of photodesorption

It is natural to assume that the current attributed to the density of adsorbed O$_2$ is given as $I_{\Delta}(t) = kN(t)$, where k is a constant coefficient. From Eq. (3), we propose the adsorption differential equation of the O$_2$ density on graphene as

$$\frac{dN(t)}{dt} = \tau_a^{-1} (N_{\text{max}} - N(t)).$$

(4)

If the laser is turned off at $t = 0$, and we let $N(0) = N_s$ and $N(\infty) = N_{\text{max}}$. The current associated with N_{max} is $I_{\text{N,max}} = kN_{\text{max}}$ and $\Delta I = k(N_{\text{max}} - N_s)$. Besides the charge density induced O$_2$, there is an intrinsic charge density in graphene that contributes an intrinsic current I_i. The currents are thus $I(t) = I_\Delta(t) + I_s, I_0 = I_{\text{N,max}} + I_s, I_s = kN_s + I_i$.

To understand the kinetics of photodesorption on graphene, the differential equation for photodesorption in ambience (modified from the Langmuir model [15]) is proposed as

$$\frac{dN(t)}{dt} = \tau_a^{-1} (N_{\text{max}} - N(t)) - \sigma FN(t).$$

(5)
Solving the differential equation with the boundary conditions, \(N(0) = N_{\text{max}} \) and \(N(\infty) = N_s \), gives the adsorbate density as

\[
N(t) = N_{\text{max}} \left(\frac{\tau_a^{-1}}{\tau_a^{-1} + \sigma F} \right) + N_{\text{max}} \left(\frac{\sigma F}{\tau_a^{-1} + \sigma F} \right) e^{-\frac{t}{\tau_a^{-1} + \sigma F}}, \tag{6}
\]

and \(N_s = N_{\text{max}} \left[\frac{\tau_a^{-1}}{(\tau_a^{-1} + \sigma F)} \right] \) and \(\Delta N = N_{\text{max}} - N_s = N_{\text{max}} \left[\sigma F / (\tau_a^{-1} + \sigma F) \right] \). By comparing Eqs. (2) and (6), the analytical expressions of \(\tau_d \), \(\Delta I \) and \(I_s \) as functions of \(F \) are derived as

\[
\tau_d = \left(\tau_a^{-1} + \sigma F \right)^{-1}, \tag{7}
\]

\[
\Delta I = I_{\text{max}} \frac{\sigma F}{\tau_a^{-1} + \sigma F}, \tag{8}
\]

\[
I_s = I_{\text{max}} \frac{\tau_a^{-1}}{\tau_a^{-1} + \sigma F} + I_i. \tag{9}
\]

\(\Delta I \) and \(I_s \) in Eqs. (8) and (9) can also be rewritten as linear functions of \(\tau_d \), as

\[
\Delta I = I_{\text{max}} \left(1 - \frac{\tau_a}{\tau_d} \right), \tag{10}
\]

\[
I_s = I_{\text{max}} \frac{\tau_d}{\tau_a} + I_i, \tag{11}
\]

where \(\Delta I \) and \(I_s - I_i \) are complementary. The dependence of \(\tau_d \) and \(\Delta I \) on \(F \) in Fig. 2 is well fitted by Eqs. (7) and (8), indicating the validity of those expressions derived from the photodesorption kinetics of Eq. (6). Fitting the plot of \(\tau_d \) vs. \(F \) with Eq. (7), we obtain the cross section \(\sigma = 6 \times 10^{-18} \text{ cm}^2 \) under UV laser illumination, which is similar to the reported value of CNT \((1.4 \times 10^{-17} \text{ cm}^2) \) by 254 nm UV [10]. It is noted that the contribution of re-adsorption cannot be ignored when \(\tau_a \) is small or \(F \) is low; otherwise \(\sigma \) will be overestimated.

![Fig. 3. Dependence of \(I_s \) and \(\Delta I \) on \(\tau_d \).](#)

Equations (10) and (11) account for the linear relationship of \(I_s \) and \(\Delta I \) with \(\tau_d \) in Fig. 3. \(I_s \) and \(\Delta I \) deviates from the linear relation when \(\tau_d \) is large (i.e., low \(F \)), because the measuring time (120 s) is much shorter than \(\tau_d \) in Fig. 1(a) and a significant uncertainty occurs to the fitted \(I_s \) and \(\Delta I \). According to Eq. (11), the intersection of the fitted line of \(I_s \) with the vertical axis shows \(I_i \equiv 0.6 \mu\text{A} \) in our case. Based on the above arguments, the photodesorption
quantities (τ_d, ΔI and I_s) of response current of graphene can be well described by the analytical expressions [Eqs. (7)-(11)]. For $t = \infty$, the steady occupation ratio N_s/N_{max} and unoccupation ratio $\Delta N/N_{\text{max}}$ on graphene can be given directly from measured currents,

$$\frac{N_s}{N_{\text{max}}} = \frac{I_s}{I_0 - I_s} \quad \text{and} \quad \frac{\Delta N}{N_{\text{max}}} = \frac{\Delta I}{I_0 - I_s}.$$ \hspace{1cm} (12)

Interestingly, these steady ratios can also be derived from from Eq. (6) in terms of the characteristic time constants:

$$\frac{N_s}{N_{\text{max}}} = \frac{\tau_d}{\tau_a} \quad \text{and} \quad \frac{\Delta N}{N_{\text{max}}} = 1 - \frac{\tau_d}{\tau_a}.$$ \hspace{1cm} (13)

Therefore, the F dependence of N_s/N_{max} and $\Delta N/N_{\text{max}}$ can be translated from either the F dependence of I_s and ΔI in Eqs. (8) and (9) or the F dependence of τ_d in Eq. (7). For example, N_s/N_{max} is derived from τ_d, and $\Delta N/N_{\text{max}}$ from ΔI, respectively, as illustrated in Fig. 2. Thus Eqs. (12) and (13) are very useful to estimate the steady occupation and unoccupation ratios of photodesorption.

![Graph showing dependence of cross section σ of graphene on photon energy, including the cross section σ of single-walled CNTs by 254 nm UV light [10].](image)

3.3 E_{ph}-dependent photodesorption

To explore the photodesorption mechanism of graphene, we investigate the dependence of σ on E_{ph}. Lasers of different wavelengths (325 nm, 405 nm, 473 nm and 532 nm) are applied to obtain the E_{ph}-dependent σ by Eq. (7), as shown in Fig. 4. σ increases by more than four orders of magnitude with E_{ph} ranged from 2.33 eV to 3.82 eV. However, the optical absorbance of graphene increases only from 2.3% (off resonance) to 11% (at resonance) [13]. Such a small absorbance change with E_{ph} cannot account for the dramatic change in σ. There are two types of possible mechanisms responsible for the photodesorption: the adsorbate excitation and substrate excitation [10]. Because the electronic transition from the fundamental state ($X^3\Sigma^+_g$) to the excited state ($A^3\Pi_u^+$) of O$_2$ occurs at wavelengths < 270 nm, known as the Herzberg continuum (i.e., O$_2$ is transparent to visible light) [16], the adsorbate (O$_2$) excitation does not account for the desorption from visible to UV we observe here. Therefore the substrate (graphene) excitation is the only possible underlying mechanism for the photodesorption of O$_2$.

The incident photons are absorbed by graphene to excite the electronic interband (π orbital to π^* orbital) transition. There are two possible paths for the excited electrons to induce
photodesorption: photothermal reaction and hot electron injection. Photodesorption can occur even the power density is as low as 0.14 mW/cm2, which is, however, too low to raise the temperature of substrate and graphene. Hence the photodesorption of graphene is not a photothermal reaction. We suggest that the photodesorption is evoked by the photogenerated hot electrons in graphene (Fig. 5(a)) [17,18]. By tunneling, the hot electrons transit into the antibonding orbital of O$_2$ to form excited negative oxygen ions. The short-lived negative ions at the ground vibronic level relax into neutral molecules at the excited vibronic level by another electron tunneling (to graphene) via the Franck-Condon transition (Fig. 5(b)) [19].

The excited vibronic state of O$_2$ has the vibrational zero-point energy with harmonic frequency ≈ 1580 cm$^{-1}$ [20], which exceeds the binding energy of O$_2$ on graphene (~100 meV) [21] and causes the desorption of O$_2$. Assume that $\sigma(E_{ph})$ is proportional to $\alpha_{abs}(E_{ph}) \eta(E_{ph}) \rho_{oxy}(E_{ph})$, where $\alpha_{abs}(E_{ph})$ is the optical absorbance of graphene, $\eta(E_{ph})$ the hot electron tunneling rate between graphene and O$_2$, and $\rho_{oxy}(E_{ph})$ the density of antibonding states of O$_2$. From $E_{ph} = 2.33$ eV to 3.82 eV, $\alpha_{abs}(E_{ph})$ increases by a factor of 2 [13] and $\eta(E_{ph})$ by a factor of 1.46 [estimated by the transmittance of tunneling, having the square potential barrier height = 5 eV (the work function of graphene), and width = 4 Å (the size of O$_2$)]. Thus $\rho_{oxy}(E_{ph})$ is the remaining dominant term of the photodesorption of O$_2$, responsible for a factor of 10^4 of the change in $\sigma(E_{ph})$, because $\rho_{oxy}(E_{ph})$ decreases rapidly as the electron energy is away from the band center of the antibonding orbital of O$_2$.

![Fig. 5.](image)

Fig. 5. (a) Photodesorption mechanism of graphene: (from left to right) excitation of electrons by the optical absorption of graphene, electron tunneling from graphene to the antibonding orbital of O$_2$, and O$_2$ acquires kinetic energy to desorb via the Franck-Condon transition. (b) Schematic of the vibronic levels of O$_2$ and O$_2^-$ to illustrate the Franck-Condon transition.

4. Conclusion

The UV-laser photodesorption of CVD graphene in air is studied by the current response. The analytical expressions of the power-dependent photodesorption kinetics are derived to describe the current response of graphene under illumination. The photodesorption quantities of current response (τ_d, I_s, and ΔI) can be expressed as functions of τ_a, σ, and F. Additionally, the steady occupation rate of O$_2$ on graphene $N_s/N_{max} = \tau_d/\tau_a$ is derived. The photodesorption cross section σ of graphene increases by four orders of magnitude as E_{ph} increases from 2.33 eV to 3.82 eV. It is suggested that the photodesorption of adsorbed O$_2$ on graphene is induced by the photogenerated hot electrons and is restricted by the density of antibonding states of O$_2$.

Acknowledgments

This work was supported by the Ministry of Science and Technology of Taiwan (Grant No. MOST 102-2112-M-029-005-MY3).