A Case Study of the Five-Point Double-Toggle Mould Clamping Mechanism

W Y Lin, C L Shen and K M Hsiao

DOI: 10.1243/09544062JMES216

The online version of this article can be found at:
http://pic.sagepub.com/content/220/4/527

Published by:

$SAGE

http://www.sagepublications.com

On behalf of:

Institution of Mechanical Engineers

Additional services and information for Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science can be found at:

Email Alerts: http://pic.sagepub.com/cgi/alerts

Subscriptions: http://pic.sagepub.com/subscriptions

Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.com/journalsPermissions.nav

Citations: http://pic.sagepub.com/content/220/4/527.refs.html

>> Version of Record - Apr 1, 2006

What is This?
A case study of the five-point double-toggle mould clamping mechanism

W Y Lin, C L Shen, and K M Hsiao

1Department of Mechanical Engineering, De Lin Institute of Technology, Taiwan, Republic of China
2Department of Mechanical Engineering, National Chiao Tung University, Taiwan, Republic of China

The manuscript was received on 25 October 2005 and was accepted after revision for publication on 9 December 2005.
DOI: 10.1243/09544062JMES216

Abstract: This work attempts to enhance the performances of the stroke ratio and/or thrust saving of the conventional and Fanuc five-point double-toggle mould clamping mechanisms, at the cost of increasing the offset and varying the cross-head height and loosening the initial transmission performance within an acceptable extent, on condition that the overall horizontal length cannot exceed the one of the original design in the work of Lin and Hsiao [1]. In addition, to show the effect of the initial transmission performance and the effect of the combination of the offset and the crosshead height individually, the present and previous designs in the work of Lin and Hsiao without loosening the initial transmission performance are also presented. The parameter study in the work of Lin and Hsiao is extended to synthesize the conventional and Fanuc linkages and to find the optimal dimensions in the programming discrete domain. The kinematic stick diagrams in the open and closed positions for the original and present designs are shown, which may see some features of the profiles of the toggle linkages with the larger stroke ratio and/or thrust saving and the difference between the two designs.

Keywords: toggle clamping mechanism, injection-moulding machines

1 INTRODUCTION

The conventional five-point double-toggle mould clamping mechanism shown in Fig. 1 is used for small- to middle-sized injection-moulding machines [2]. Fanuc Japan Company Limited developed a new five-point double-toggle mould clamping mechanism shown in Fig. 2 [3]. In Figs 1 and 2, the upper portion above the centre line (CL) illustrates the mould closing state, whereas the lower portion below the CL illustrates the initial state. Constructions of the two types of mechanism are described in references [1, 2]. Let 1 to 8 shown in Figs 1 and 2 denote moving-platen side links (link 1), tailstock-platen side links (link 2), crosshead links (link 3), crosshead (4) shown in Fig. 3, tailstock platen (5), moving platen (6), tie bars (7), and stationary platen (8) in this work. Points A to E denote centres of pin joints.

Owing to the lengths of the tailstock-platen side links limited by the size (height) of the tailstock platen and the requirement of enough horizontal space for the ejector unit related with the lengths of the moving-platen side links, the lengths of the moving-platen side links are fairly greater than the ones of the tailstock-platen side links in the common designs of the conventional and Fanuc five-point double-toggle clamping mechanisms [4]. Such designs, e.g. the original design in reference [1] may have a quite good transmission characteristic. The initial thrust applied to the crosshead for the original design is 3.1 per cent of the original maximum thrust. If the initial transmission characteristic is poor (i.e. the initial thrust is too large), it may indicate that a quite high initial acceleration in the moving platen may cause vibration and noise,
especially for the faster mechanism. However, such an arrangement does not take full advantage of the five-point double-toggle clamping mechanism according to reference [1]. In reference [1], keeping the value of \((L_1 + L_2)\) \((L_1\) and \(L_2\) are the distances between points A and B and points B and C, respectively) and the heights of the three sliders (the tailstock and moving platens and the crosshead) and the final orientation of the crosshead link invariable, a parameter study has been proposed to synthesize the conventional and Fanuc five-point toggle linkages and to find the optimal dimensions in the programming discrete domain. The parameter study has the advantage that the individual influence of the geometric parameters and the deeper understanding of the mechanism might be obtained. It has been concluded in reference [1] that the ratio of \(L_1\) to \(L_2\), whether for the conventional type or for the Fanuc type, should be as small as possible for thrust saving on condition that the geometry can be satisfied and the transmission characteristic can be accepted. Furthermore, the angle of swing of link 2 becomes smaller for the same opening stroke, so that the horizontal length of the projection (flange) of the tailstock platen may be reduced. If the horizontal space is not enough for the ejector unit, reference [1] adopts lengthening the projection of the moving platen. The variation of the overall horizontal length of the mechanism may be acceptable.

However, in reference [1], the offset of joint C relative to joint A, the crosshead height and the height of joint A pinning the moving platen and the moving-platen side links are invariable. Such limitations may affect the ratio of \(L_1\) to \(L_2\) incapable of reduction due to the interference, especially for a larger stroke ratio case. In this study, the height of joint C may increase by modifying the tailstock platen. During the real mould clamping operation, only the upper and lower end portions of the moving platen are pressed strongly. In the case where a mould to be attached is small size, the moving platen may be curved; furthermore, this bending effect may affect the quality of moulding [3]. Accordingly, the height of the joint A will not be increased.

The aim of this work is to enhance the performances of the stroke ratio and/or thrust saving of the conventional and Fanuc five-point double-toggle mould clamping mechanisms, at the cost of increasing the offset of joint C and varying the crosshead height and loosening the initial thrust within 6 per cent of the original maximum thrust, on condition that the overall horizontal length cannot exceed the one of the original design in reference [1]. In addition, to show the effect of the initial transmission performance and the effect of the combination of the offset and the crosshead height individually, the present and previous designs in reference [1], without loosening the initial transmission performance, are also presented. In contrast with 3.1 per cent for the original design, the looseness in the initial transmission performance may be within an acceptable extent. For the enhancement of thrust saving, the input and output strokes are the same as the original ones in reference [1]. However, for the enhancement of the stroke ratio, the thrust should not exceed the original design. The parameter study in reference [1] is extended to synthesize the conventional and Fanuc five-point double-toggle linkages and to find the optimal dimensions.
2 INTERFERENCES

Figure 4 depicts a skeleton drawing for the lower half of the conventional five-point double-toggle mould clamping mechanism. The solid lines denote the position during the mould closing operation and the dashed lines denote the initial position. In Fig. 4, \(L_i \) (\(i = 1 \sim 5 \)) are the distances between points A and B, B and C, C and D, and E, respectively; \(S_E \) and \(S_A \) are the displacements of the crosshead and the moving platen, respectively; \(R_{CE} \) is the horizontal distance between points C and E in the initial position. In this article, the symbol \((\tilde{\cdot})\) denotes that the quantity in parentheses is in the state of the final position during mould closing operation. The superscript \(* \) is used only for the original mechanism.

The crosshead is thrust by means of a drive mechanism composed of a servo electric motor and a ball nut-screw or a hydraulic ram. In the present work, only the former is considered. The motor can actuate the screw shaft of the ball nut-screw to rotate to drive the crosshead locked on the nut of the ball nut-screw to move in the CL of the machine. The interference presented in reference [1] is only for the crosshead thrust by a hydraulic ram.

For the conventional five-point type, to prevent the interference between the toggle linkages and the screw shaft of the ball nut-screw, the following conditions with a minimum clearance of 5 mm should be satisfied.

If \(\alpha_0 + \gamma_C < \pi/2 \), then check
\[
L_2 \sin \alpha_0 + R_B \leq d_0 - R_{bs} - 5 \quad \text{and} \quad L_4 \sin(\alpha_0 + \gamma_C) + R_D \leq d_0 - R_{bs} - 5
\]
(1)

where \(R_B \) and \(R_D \) are the semi-widths of link 1 and link 3, respectively, and \(R_{bs} \) denotes the major radius of the screw shaft.

For the Fanuc five-point type, to prevent the interference between the crosshead and joint D in the initial position, the following condition with a minimum clearance of 5 mm should be satisfied.

If \(\alpha_0 \geq \pi/2 \), then check
\[
L_2 + R_B \leq d_0 - R_{bs} - 5 \quad \text{and} \quad L_4 + R_D \leq d_0 - R_{bs} - 5
\]
(3)

For the conventional five-point type, to prevent the interference between the crosshead and joint B in the initial position, the following condition with a minimum clearance of 5 mm should be satisfied.

If \(\alpha_0 < \pi/2 \), then check
\[
L_2 \sin \alpha_0 + R_B \leq d_0 - R_{bs} - 5 \quad \text{and} \quad L_4 \sin(\alpha_0 + \gamma_C) + R_D \leq d_0 - R_{bs} - 5
\]
(5)

For the Fanuc five-point type, to prevent the interference between the toggle linkages and the screw shaft of the ball nut-screw, the following conditions with a minimum clearance of 5 mm should be satisfied.

\[
L_2 \sin \alpha_0 + R_B \leq d_0 - R_{bs} - 5 \quad \text{and} \quad L_4 \sin(\alpha_0 - \gamma_C) + R_D \leq d_0 - R_{bs} - 5
\]
(6)

If \(\alpha_0 - \gamma_C \geq \pi/2 \), then check
\[
L_2 + R_B \leq d_0 - R_{bs} - 5 \quad \text{and} \quad L_4 + R_D \leq d_0 - R_{bs} - 5
\]
(7)

For the Fanuc five-point type, to prevent the interference between the crosshead and joint B in the initial position, the following condition with a minimum clearance of 5 mm should be satisfied.

\[
L_2 \cos \alpha_0 + R_B^0 \geq R_B + 5
\]
(8)

The additional condition with a minimum clearance of 5 mm given subsequently for the Fanuc type should be satisfied to prevent the interference between joint D and the frame of machine

\[
L_3 \cos(\tilde{\phi} - \frac{\pi}{2}) + R_D \leq d_I + d_E - d_0 - 5
\]
(9)

Fig. 4 Geometry of the conventional toggle linkage during mould closing
The following geometry conditions may be satisfied for the two types of mechanism

\[L_1 \geq 2R_B, \quad L_2 \geq 2R_B, \quad L_3 \geq 2R_D, \]
\[L_4 \geq R_B + R_D, \quad \text{and} \quad L_5 \geq R_B + R_D \]

(10)

3 OVERALL LENGTH OF THE MECHANISM

The following condition, with \(h_1 \) adopted as a standard to avoid the interference between the ejector unit and link 1, should be checked according to reference [1]

\[\Delta h_1 = h_{2B} - h_1 \]

(11)

\[h_{2B} = L_1 \sin \beta - e_1^* \]

(12)

where \(h_{2B} \) denotes the horizontal distance between point B and the left end of the ejector unit; \(e_1 \) is the horizontal distance between point A and the left end of the ejector unit; \(e_1 \) is the vertical distance between the CL of the machine and the bottom end of the ejector unit; \(h_1 \) denotes the horizontal distance between point B and the left end of the ejector unit with a perpendicular clearance of 5 mm between the right side of link 1 and the left bottom end of the ejector unit.

In addition, the interference between the ejector unit and the screw shaft of the ball nut-screw in the initial position should be checked. Let \(h_{CE} \) denote the horizontal distance between point E and the left end of the ejector unit in the initial position

\[h_{CE} = h_{AC}^0 + h_{CE}^0 - e_1^* \]

(15)

\[h_{AC}^0 = \sqrt{(L_1 + L_2)^2 - d_1^2} - S_A \]

(16)

where \(h_{AC}^0 \) is the horizontal distance between points A and C in the initial position. Let \(h_2 \) denote the horizontal distance between point E and the left end of the ejector unit in the initial position with a clearance of 5 mm between the ball nut-screw and the ejector unit. Then

\[h_2 = \tilde{S}_E + \tilde{h}_{baE} + 5 \]

(17)

where \(\tilde{h}_{baE} \) is the horizontal distance between point E and the right end of the ball nut-screw in the final position. The value of \(h_2 \) is adopted as a standard to avoid the interference between the ejector unit and the screw shaft of the ball nut-screw in the initial position. Then, check

\[\Delta h_2 = h_{CE}^0 - h_2 \]

(18)

and

\[\Delta h = \min(\Delta h_1, \Delta h_2) \]

(19)

If the value of \(\Delta h \) is negative, the method of increasing the horizontal length of the projection of the moving platen by \(-\Delta h\) is adopted.

Let \(h_{CE}^0 \) denote the difference between \(h_{CE}^0 \) and \(h_{CE}^* \) that is

\[\Delta h_{CE}^0 = h_{CE}^0 - h_{CE}^* \]

(20)

If the value of \(\Delta h_{CE}^0 \) is negative, the horizontal length of the projection of the tailstock platen can be decreased by \(h_{CE}^0 \); however, the decrement should not exceed \(h_{CE}^* \). The variation of the overall horizontal length of the mechanism \(\Delta T_h \) for the crosshead thrust by the ball nut-screw can be expressed as

\[\Delta T_h = \Delta h_{CE}^0 - \Delta h + (L_1 + L_2)^2 - d_1^2 \]
\[- (L_1^2 + L_2^2) - (d_1^2) \]

(21)

The value of \(\Delta h \) is governed by \(\Delta h_2 \) for many conditions. For such situations, with the help of equations (15) to (18), (20), and (21), \(\Delta T_h \) may be expressed as

\[\Delta T_h = \tilde{S}_A + \tilde{S}_E + e_1^* + \tilde{h}_{baE} + 5 - h_{CE}^0 \]
\[- (L_1^2 + L_2^2) - (d_1^2) \]

(22)

It may be seen from equation (22) that the input stroke should be reduced in order to increase the output stroke but without increasing the overall horizontal length of the mechanism.

4 INITIAL TRANSMISSION PERFORMANCE

Most of the injection-moulding machines have three-step to five-step adjustment for the mould closing speed. The initial thrust applied to the crosshead is 3.1 per cent of the necessary maximum thrust for the original mechanism with constant acceleration of 120 mm/s² in the crosshead to 0.5 s for the first stage of the mould closing process. To avoid unsound motion characteristic and consider the initial transmission characteristic for a fair comparison and
a further enhancement on thrust saving, the following conditions are demanded individually

\[a^0_A > 0 \quad \text{and} \quad 0 < \frac{F_0^0}{F_{o,\text{max}}} \leq 3.1\% \]

\[a^0_A > 0 \quad \text{and} \quad 0 < \frac{F_0^0}{F_{e,\text{max}}} \leq 6\% \]

(23)

where \(a^0_A \) denotes the initial acceleration of the moving platen and \(F_0^0 \) denotes the initial thrust applied to the crosshead. The mass of the moving platen with the ejector unit and the moving mould is 220 kg. The static friction coefficients at the slider connection for both the moving platen and pin joints are 0.125. The circuit defect may be checked by performing the position analysis step by step from \(a_0 \) to \(a \) with the decrement one degree. If the solution does not exist during the position analysis, it may indicate that there is a circuit defect.

5 PARAMETRIC STUDY

A conventional five-point double-toggle mechanism used in an injection-moulding machine serves as the object of improvement in the parametric study. The geometric and material properties of the original mechanism are shown in Table 1.

Without changing the specifications of the mould clamping force and the ejector unit, the original allowable mould thickness, and the stationary mould platen for the object of improvement, let \(A_1, A_2, A_C, h_1, n_2, n_3, n_4, n_8, r_C, r_D, R_B, R_D, e_2, A, T_m, T_o, E \) (Figs 1 and 2) and \(L_1 + L_2 \) be invariable in the parametric study. For comparison, the final orientation of the crosshead link \(d = 92^\circ \) will be kept invariable. Moreover, the friction coefficient in the pin joints is assumed to be 0.1 and the final total deforming force of the tie bars \(F_c = 539 \) kN is considered.

Owing to the supported blocks underlying the platens and the steel bands fixed on the upper surface of the frame, there is a clearance between joint C (projection) and the upper surface of the frame. Let a minimum clearance be 8 mm between joint C and the frame; thus, the maximum value of \(d_0 \) is 300 mm (\(d_0 - R_B \)). Let a minimum clearance be 6 mm between joint E and the crosshead, i.e. \(d_0 - d_8 - R_B - R_D \geq 6 \) (see Fig. 3 for \(R_D \)). Thus, the maximum value of \(d_0 \) is (\(d_0 - 95 \) mm. Let \(S_A = S_A^r \) and \(S_E = S_E^r \) (i.e. the stroke ratio \(S_r = S_r^r = 0.84 \)) for the two types of mechanism for the thrust-saving case and \(S_A = 1.2S_A^r \) and \(S_E = 0.88S_E^r \) (\(S_r = 1.364S_r^r = 1.14 \)) for the conventional five-point type and \(S_A = 1.35S_A^r \) and \(S_E = 0.85S_E^r \) (\(S_r = 1.625S_r^r = 1.36 \)) for the Fanuc five-point type for the larger stroke ratio case. Also, let \(d_0 \) be 235–300 mm with an increment of 5 mm and the corresponding offset \(d_8 \) be \(d_0 - (d_8 - d_8^r) \) and then let \(d_8 \) vary from (\(d_0 - 95 \)) to 80 mm with a decrement of 5 mm. For the previously mentioned cases, let \(L_1 / L_2 \) be 1.7 to 0.6 with a decrement of 0.01 and then let the value of \(L_1 / L_2 \) vary from 1.0 to 0.3 with a decrement of 0.01 to find the profiles of the toggle linkages of two types with the minimum value of \(F_{o,\text{max}} \) denoted by \(F_{o,\text{max}}^r \) in the larger stroke ratio and thrust-saving cases.

6 RESULTS

The geometric parameters and the initial thrust corresponding to \(F_{o,\text{max}}^r \) of the present and previous designs with \(F_{o,\text{max}}^r \leq 3.1\% \) and \(F_{e,\text{max}}^r \leq 6\% \) for the thrust-saving case and the larger stroke ratio case are shown in Tables 2 and 3, respectively. The previous result indicates that the value of the offset and the crosshead height are invariable. The effect of the combination of increasing the offset and varying the crosshead height may be seen from the comparison between the present and previous designs with \(F_{o,\text{max}}^r \leq 3.1\% \). In contrast, the effect of the initial transmission performance might be seen from the comparison between the present design with \(F_{o,\text{max}}^r \leq 3.1\% \) and \(F_{e,\text{max}}^r \leq 6\% \).

6.1 The thrust-saving case

The thrust \(F_{o,\text{max}}^r \) for the present design of the conventional type with \(F_{o,\text{max}}^r \leq 6\% \) can be declined by

Table 1: Geometric and material properties of the original mechanism

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>2184</td>
<td>(d_8^r)</td>
<td>277</td>
<td>(L_2)</td>
<td>164</td>
<td>(R_0)</td>
<td>25</td>
</tr>
<tr>
<td>(A_2)</td>
<td>3276</td>
<td>(e_1^r)</td>
<td>47</td>
<td>(L_3)</td>
<td>70.04</td>
<td>(R_0)</td>
<td>42</td>
</tr>
<tr>
<td>(A_C)</td>
<td>2827</td>
<td>(e_2^r)</td>
<td>81</td>
<td>(L_3^r)</td>
<td>133.17</td>
<td>(R_0)</td>
<td>29</td>
</tr>
<tr>
<td>(d_2)</td>
<td>235</td>
<td>(E_B)</td>
<td>127</td>
<td>(n_1)</td>
<td>6</td>
<td>(S_A)</td>
<td>68</td>
</tr>
<tr>
<td>(d_3)</td>
<td>5</td>
<td>(E_C)</td>
<td>204</td>
<td>(n_2, n_3)</td>
<td>4</td>
<td>(S_E)</td>
<td>215.23</td>
</tr>
<tr>
<td>(d_8)</td>
<td>129</td>
<td>(h_{BE})</td>
<td>35</td>
<td>(r_C)</td>
<td>22.5</td>
<td>(T_h)</td>
<td>1250</td>
</tr>
<tr>
<td>(d_8)</td>
<td>135</td>
<td>(h_{CE})</td>
<td>101.44</td>
<td>(r_O)</td>
<td>15</td>
<td>(\gamma)</td>
<td>28.49</td>
</tr>
</tbody>
</table>

Units: \(A_1, A_2, A_C \) in mm^3; \(E_1, E_2 \) and \(E_3 \) in GPa; the length and distance in mm.
The result has the necessary maximum thrust exceeding the original one by 3.57 per cent when compared with the previous design of the Fanuc type with $F_{o, \text{max}}^g/F_{o, \text{max}}^s \leq 3.1\%$, where the amount of 7 per cent results from the effect of the combination of the offset and the crosshead height and the amount of 14 per cent are mainly from the effect of loosening the initial transmission performance.

The thrust $F_{o, \text{max}}^g$ for the present design of the Fanuc type with $F_{o, \text{max}}^g/F_{o, \text{max}}^s \leq 6\%$ can be declined by 8 per cent of $F_{o, \text{max}}^s$ when compared with the previous design of the Fanuc type with $F_{o, \text{max}}^g/F_{o, \text{max}}^s \leq 3.1\%$, where the amount of 3 per cent results from

26 per cent when compared with the original design. The enhancement on the thrust saving is quite significant at the cost of the initial thrust rising from 3.1 to 5.9 per cent of the original maximum thrust and the height of the linkage above CL increasing by 40 mm. The results for the previous design of the conventional type with $F_{o, \text{max}}^g/F_{o, \text{max}}^s \leq 3.1\%$ and $F_{o, \text{max}}^g/F_{o, \text{max}}^s \leq 6\%$ are the same. The thrust $F_{o, \text{max}}^g$ for the present design of the conventional type with $F_{o, \text{max}}^g/F_{o, \text{max}}^s \leq 6\%$ can be declined by 21 per cent of $F_{o, \text{max}}^s$ when compared with the previous design of the conventional type with $F_{o, \text{max}}^g/F_{o, \text{max}}^s \leq 3.1\%$, where the amount of 7 per cent results from the effect of the combination of the offset and the crosshead height and the amount of 14 per cent are mainly from the effect of loosening the initial transmission performance.

Table 2 Geometric parameters corresponding to $F_{o, \text{max}}^g$ for the thrust-saving case

<table>
<thead>
<tr>
<th>d_0</th>
<th>d_s</th>
<th>d_e</th>
<th>L_1/L_2</th>
<th>L_2/L_2</th>
<th>γ_c (°)</th>
<th>L_3</th>
<th>$F_{o, \text{max}}^g/F_{o, \text{max}}^s$ (%)</th>
<th>$F_{o, \text{max}}^g/F_{o, \text{max}}^s$ (%)</th>
<th>ΔT_h</th>
<th>Δd_e</th>
<th>d_{eh}</th>
</tr>
</thead>
<tbody>
<tr>
<td>235</td>
<td>5</td>
<td>135</td>
<td>1.41</td>
<td>0.81</td>
<td>0</td>
<td>100</td>
<td>3.1</td>
<td>0</td>
<td>0</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>5</td>
<td>135</td>
<td>1.63</td>
<td>0.82</td>
<td>0</td>
<td>24.21</td>
<td>76.44</td>
<td>94.72</td>
<td>3.0</td>
<td>−13.5</td>
<td>0</td>
</tr>
<tr>
<td>265</td>
<td>35</td>
<td>155</td>
<td>0.97</td>
<td>0.99</td>
<td>0</td>
<td>20.52</td>
<td>69.27</td>
<td>88.25</td>
<td>3.1</td>
<td>−13.5</td>
<td>30</td>
</tr>
<tr>
<td>235</td>
<td>5</td>
<td>135</td>
<td>1.63</td>
<td>0.82</td>
<td>0</td>
<td>24.21</td>
<td>76.44</td>
<td>94.72</td>
<td>3.0</td>
<td>−13.5</td>
<td>0</td>
</tr>
<tr>
<td>275</td>
<td>45</td>
<td>180</td>
<td>0.73</td>
<td>0.68</td>
<td>0</td>
<td>1.19</td>
<td>159.20</td>
<td>74.13</td>
<td>5.9</td>
<td>−13.5</td>
<td>40</td>
</tr>
</tbody>
</table>

$L_1 + L_2 = 395 \text{ mm}, \bar{F}_c = 539 \text{ kN}, F_{o, \text{max}}^s = 16 \text{ kN}, T_h = 1250 \text{ mm}, d_c = 277 \text{ mm}.$

Table 3 Geometric parameters corresponding to $F_{o, \text{max}}^g$ for the larger stroke ratio case

<table>
<thead>
<tr>
<th>d_0</th>
<th>d_s</th>
<th>d_e</th>
<th>L_1/L_2</th>
<th>L_2/L_2</th>
<th>γ_c (°)</th>
<th>L_3</th>
<th>$F_{o, \text{max}}^g/F_{o, \text{max}}^s$ (%)</th>
<th>$F_{o, \text{max}}^g/F_{o, \text{max}}^s$ (%)</th>
<th>ΔT_h</th>
<th>Δd_e</th>
<th>d_{eh}</th>
</tr>
</thead>
<tbody>
<tr>
<td>270</td>
<td>40</td>
<td>120</td>
<td>0.88</td>
<td>0.66</td>
<td>0.05</td>
<td>105.90</td>
<td>94.21</td>
<td>5.7</td>
<td>−3.2</td>
<td>35</td>
<td>179</td>
</tr>
<tr>
<td>270</td>
<td>40</td>
<td>120</td>
<td>0.88</td>
<td>0.66</td>
<td>0.05</td>
<td>105.90</td>
<td>94.21</td>
<td>5.7</td>
<td>−3.2</td>
<td>35</td>
<td>179</td>
</tr>
<tr>
<td>270</td>
<td>40</td>
<td>120</td>
<td>0.88</td>
<td>0.66</td>
<td>0.05</td>
<td>105.90</td>
<td>94.21</td>
<td>5.7</td>
<td>−3.2</td>
<td>35</td>
<td>179</td>
</tr>
</tbody>
</table>

$L_1 + L_2 = 395 \text{ mm}, \bar{F}_c = 539 \text{ kN}, F_{o, \text{max}}^s = 16 \text{ kN}, T_h = 1250 \text{ mm}, d_c = 277 \text{ mm}.$
the effect of the combination of the offset and the crosshead height and the amount of 5 per cent may be regarded as the effect of loosening the initial transmission performance.

For the present design with $F^0/F^* \leq 3.1\%$, the thrust $F^g_{o,max}$ for the Fanuc type is 19 per cent of $F^*_{o,max}$ less than the one for the conventional type, whereas the height of the linkage above CL for the former increases by 34 mm when compared with the latter. Moreover, for the present design with $F^0/F^* \leq 6\%$, the thrust $F^g_{o,max}$ for the Fanuc type is 10 per cent of $F^*_{o,max}$ less than the one for the conventional type, whereas the height of the linkage above CL for the former increases by 28 mm when compared with the latter.

For the present design with $F^0/F^* \leq 6\%$, the offset increases from 5 to 45 mm and the semi-height of the crosshead decreases from 129 to 124 mm for the conventional type, whereas the offset increases from 5 to 15 mm and the semi-height of the crosshead increases from 129 to 139 mm for the Fanuc type. Moreover, $\Delta h^0_{CE} = -34.5$ mm and $\Delta h = -23.5$ mm for the conventional type, whereas $\Delta h^0_{CE} = -40.1$ mm and $\Delta h = -26.9$ mm for the Fanuc type. The kinematic diagrams in the open and closed positions for the present designs with $F^0/F^* \leq 6\%$ and the original design are shown in Fig. 5.

6.2 The larger stroke ratio case

The present design of the conventional five-point type with $F^0/F^* \leq 6\%$ enables the original stroke ratio to increase by 36 per cent and the necessary maximum to decrease by 6 per cent at the cost of the initial thrust rising from 3.1 to 5.7 per cent of the original maximum thrust and the height of the
linkage above CL increasing by 35 mm. In contrast, the present design of the Fanuc five-point type \(F_0^*/F_{o,max}^* \leq 6\% \) enables the original stroke ratio to increase by 63 per cent and the necessary maximum to decrease by 8 per cent at the cost of the initial thrust rising from 3 to 6 per cent of the original maximum thrust and the height of the linkage above CL increasing by 56 mm.

For the present design with \(F_0^*/F_{o,max}^* \leq 6\% \), the offset and the semi-height of the crosshead increase by 35 and 50 mm for the conventional type and by 30 and 85 mm for the Fanuc type when compared with the original design. Moreover, \(\Delta h_{CE}^0 = -46.3 \) mm and \(\Delta h = -45.1 \) mm for the conventional type, whereas \(\Delta h_{CE}^0 = -68.5 \) mm and \(\Delta h = -67.6 \) mm for the Fanuc type. The kinematic diagrams in the open and closed positions for the present designs with \(F_0^*/F_{o,max}^* \leq 6\% \) are shown in Fig. 6.

7 CONCLUSIONS

The present design for the conventional five-point type enables the original maximum thrust to reduce by 26 per cent without changing the input and output strokes and increasing the overall horizontal length at the cost of the initial thrust rising from 3.1 to 5.9 per cent of the original maximum thrust and the height of the linkage above CL increasing by 40 mm. However, the present design for the Fanuc five-point type enables the original maximum thrust to reduce by 36 per cent without changing the input and output strokes and increasing the overall horizontal length at the cost of the initial thrust rising from 3.1 to 5.1 per cent of the original maximum thrust and the height of the linkage above CL increasing by 68 mm. The present designs for the conventional and Fanuc types enable the stroke ratio to increase by 36 and 63 per cent of the original one and the thrust to decrease by 6 and 8 per cent, respectively, at the cost of the initial thrust rising from 3.1 to 5.7 per cent of the original maximum thrust and the height of the linkage above CL increasing by 35 and 56 mm, respectively. The Fanuc five-point type is superior to the conventional five-point type because of its thrust saving and the larger stroke ratio but at the cost of the linkage height.

In the original or common design, the length of link 1 is fairly greater than the one of link 2, and the horizontal length of the projection of the tailstock platen is quite large. In addition, the length of link 3 is quite smaller than the one of link 1 or link 2. The original or common design has a quite good initial transmission performance, but does not make the best of the mechanical advantage of the toggle clamping mechanism. If the quite large output stroke is the objective of design and the overall horizontal length of the mechanism is limited, the input stroke should decrease as shown in this work, thus probably resulting in a large increase in the thrust. In this work, at the cost of loosening the initial transmission performance within an acceptable extent and increasing the offset and varying the crosshead height, the ratio of \(L_1 \) to \(L_2 \) can reduce and the performances of the larger stroke ratio and/or thrust saving can enhance. The parameter study can find the suitable heights of joint C and the crosshead, where the ratio of \(L_1 \) to \(L_2 \) can reduce to a suitable one and the combinative arrangement of the ratio of \(L_4 \) to \(L_2 \) and the value of \(L_3 \) can make the mechanical advantage maximum. There are several marked features of the present linkages when compared with the original one stated as follows.

1. The ratios of \(L_1 \) to \(L_2 \) are smaller than the one for the conventional type and close to the one for the Fanuc type.
2. The horizontal length of the projection of the tailstock platen decreases and the corresponding one of the moving platen increases.
3. For the conventional type, the values of \(\gamma_c \) approach to zero degree and the values of \(L_3 \) are quite greater than the one of the original design.
4. For the larger stroke ratio case, the values of \((d_0 - d_b) \) are fairly greater than the values of \(d_b \) and \(L_3 \), that is, the crosshead height should increase with increasing the stroke ratio.

The approach to find the optimal dimensions in this work may be classified as the exhaustive search algorithm. The combination of the double-toggle linkage synthesis and the genetic algorithm for the optimal dimensions may be a further work for more efficiency.

REFERENCES

APPENDIX

Notation

\(a_x \) acceleration of the moving platen
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1, A_2, A_c</td>
<td>Cross-sectional areas of link 1, link 2, and the tie bar</td>
</tr>
<tr>
<td>d_0</td>
<td>Vertical distance between the CL of the machine and point C</td>
</tr>
<tr>
<td>d_A</td>
<td>Vertical distance between points C and A</td>
</tr>
<tr>
<td>d_{ch}</td>
<td>Semi-height of the crosshead</td>
</tr>
<tr>
<td>d_E</td>
<td>Vertical distance between points C and E</td>
</tr>
<tr>
<td>d_t</td>
<td>Vertical distance between the CL of the machine and the upper surface of the frame</td>
</tr>
<tr>
<td>d_v</td>
<td>Height of the linkage above the CL of the machine and length of the tie bar under tension</td>
</tr>
<tr>
<td>e_1</td>
<td>Horizontal distance between point A and the left end of the ejector unit</td>
</tr>
<tr>
<td>e_2</td>
<td>Vertical distance between the CL of the machine and the bottom end of the ejector unit</td>
</tr>
<tr>
<td>E_1, E_2, E_c</td>
<td>Young’s modulus of link 1, link 2, and the tie bar</td>
</tr>
<tr>
<td>F_{cl}</td>
<td>Clamping force</td>
</tr>
<tr>
<td>F_0</td>
<td>Thrust applied to the crosshead</td>
</tr>
<tr>
<td>F^0_0</td>
<td>Initial thrust applied to the crosshead</td>
</tr>
<tr>
<td>$F_{o,max}$</td>
<td>Maximum value of the thrust F_o during the mould clamping process</td>
</tr>
<tr>
<td>$F_{o,max}^s$</td>
<td>Minimum value of $F_{o,max}$ in the thrust saving or larger stroke ratio case</td>
</tr>
<tr>
<td>h_1</td>
<td>Horizontal distance between point B and the left end of the ejector unit with a perpendicular clearance of 5 mm between the right side of link 1 and the left-bottom end of the ejector unit</td>
</tr>
<tr>
<td>h_2</td>
<td>Horizontal distance between point E and the left end of the ejector unit in the initial position with a clearance of 5 mm between the ball nut-screw and the ejector unit</td>
</tr>
<tr>
<td>h_{AC}</td>
<td>Horizontal distance between points A and C in the initial position</td>
</tr>
<tr>
<td>h_{BnE}</td>
<td>Distance between point E and the right end of the ball nut-screw in the final position</td>
</tr>
<tr>
<td>h_{CB}</td>
<td>Horizontal distance between points E and C in the initial position</td>
</tr>
<tr>
<td>h_{CE}</td>
<td>Horizontal nearest distance between point B and the left end of the ejector unit</td>
</tr>
<tr>
<td>h_{cE}</td>
<td>Horizontal distance between point E and the left end of the ejector unit in the initial position</td>
</tr>
<tr>
<td>L_c</td>
<td>Length of the tie bar</td>
</tr>
<tr>
<td>L_{i}</td>
<td>Distances between points A and B, B and C, D and E, C and D, and B and D</td>
</tr>
<tr>
<td>n_{c}, n_{i}</td>
<td>Number of the tie bar and member i</td>
</tr>
<tr>
<td>r_B, r_C, r_D</td>
<td>Radii of pin joints B, C, and D</td>
</tr>
<tr>
<td>R_B, R_D</td>
<td>Semi-widths of link 1 and link 3</td>
</tr>
<tr>
<td>S_A, S_E</td>
<td>Displacements of the moving platen and the crosshead</td>
</tr>
<tr>
<td>S_r</td>
<td>Stroke ratio defined as the ratio of the output stroke to the input stroke</td>
</tr>
<tr>
<td>T_{h}, T_{mv}, T_s</td>
<td>Dimensions defined in Figs 1 and 2</td>
</tr>
<tr>
<td>$\alpha, \beta, \gamma_C, \phi$</td>
<td>Angles defined in Fig. 4</td>
</tr>
<tr>
<td>α_0</td>
<td>Angle α in the initial position</td>
</tr>
<tr>
<td>$\bar{\beta}$</td>
<td>Angle defined in equation (13)</td>
</tr>
<tr>
<td>$\Delta d_v, \Delta h, \Delta h_1, \Delta h_2, \Delta h_{CE}^0$</td>
<td>Parameters defined in equations (19), (11), (18), and (20)</td>
</tr>
<tr>
<td>ΔT^0_h</td>
<td>Quantity in the state of the initial position of the mould closing process</td>
</tr>
<tr>
<td>$T^_{b} - T^_{v}$</td>
<td>Quantity in the state of the final position of the mould closing process</td>
</tr>
<tr>
<td>h_{AC}^*</td>
<td>Quantity only for the original mechanism</td>
</tr>
</tbody>
</table>